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Example: Web Search
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Web Search Features

Technology features of modern web search engines:

Estimation of hit counts

Can index many pagess

Very fast

Automatic spelling correction

Preview of data

Sophisticated ranking of results

...
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What is the Size of the Web?

From http://www.worldwidewebsize.com/, accessed 08.1.2012

Special algorithms are needed to handle this amount of information.
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Web Scale Information Retrieval

The “retrieval pipeline” must reduce the number of pages significantly!
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Details of a Web Search Engine: Indexing

Document data store

IndexText Acquisition

Text Transformation

Index Creation

Web pages

Components of the Indexing part of a search engine (Croft et al., 2010).
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Details of a Web Search Engine: Querying

Document data store

IndexUser interaction

Evaluation

Ranking

Log data

Components of the Querying part of a search engine (Croft et al., 2010).

The most important element in the whole querying-process is ranking.
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Model Types for Information Retrieval

Classification of model types for Information Retrieval:

1 Set-theoretic models, e.g.

boolean models
extended boolean models

2 Algebraic models, e.g.

vector space model
latent semantic indexing

3 Probabilistic models, e.g.

probabilistic relevance (BM25)
language models
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Relevance and Ranking

IR Models generate different values describing the relationship between a
search query and the target document, e.g. “similarity”.
This value expresses the relevance of a document w.r.t. to the query and
induces a ranking of retrieval results.

Some important measures we heard of in this seminar1:

(Normalized) term-frequency

(Normalized) term-weight

Inverse document frequency

Cosine similarity (vector model)

Retrieval status value (probabilistic model)

1see http://kontext.fraunhofer.de/haenelt/kurs/InfoRet/
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Learning to Rank

From: Liu (2010), Learning to Rank for Information Retrieval.

Basic Idea of Machine Learning:

Hypothesis F transforms input object x to output object y ′ = F (x).

L(y , y ′) is the loss, i.e. the difference between the predicted y ′ and
the target y .

“Learning” process: find the hypothesis minimizing L by tuning F .

Learning a ranking function with machine learning techniques:
Learning to Rank (LTR)
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Features for Learning

To learn a ranking function, each query-document pair is represented by a
vector of features of three categories:

1 Features modelling web document, d (static features):
inbound links, PAGE rank, document length, etc.

2 Features modelling query-document relationship (dynamic features):
frequency of search terms in document, cosine similarity, etc.

3 Features modelling user query, q:
number of words in query, query classification, etc.

In supervised training, the ranking function is learned using vectors of
known ranking levels.
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Example: Features for AltaVista (2002)

A0 - A4 anchor text score per term
W0 - W4 term weights
L0 - L4 first occurrence location

(encodes hostname and title match)
SP spam index: logistic regression of 85 spam filter variables

(against relevance scores)
F0 - F4 term occurrence frequency within document
DCLN document length (tokens)
ER Eigenrank
HB Extra-host unique inlink count
ERHB ER*HB
A0W0 etc. A0*W0
QA Site factor - logistic regression of 5 site link and url count ratios
SPN Proximity
FF family friendly rating
UD url depth

From: J. Pedersen (2008), The Machine Learned Ranking Story
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Algorithms for Ranking

Support Vector Machines (Vapnik, 1995)

Very good classifier
Can be adapted to ranking and multiclass problems

Neural Nets

RankNet (Burges et al., 2006)

Tree Ensembles

Random Forests (Breiman and Schapire, 2001)
Boosted Decision Trees

Multiple Additive Regression Trees (Friedman, 1999)
LambdaMART (Burges, 2010)
Used by AltaVista, Yahoo!, Bing, Yandex, ...

All top teams of the Yahoo! Learning to Rank Challenge (2010) used
combinations of Tree Ensembles!
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Yahoo! Learning to Rank Challenge

Yahoo! Webscope dataset (Chapelle and Chang, 2011):
36,251 queries, 883 k documents, 700 features, 5 ranking levels

set-1:

473,134 feature vectors
519 features
19,944 queries

set-2:

34,815 feature vectors
596 features
1,266 queries

Winner used a combination of 12 models:

8 Tree Ensembles (LambdaMART)
2 Tree Ensembles (Additive Regression Trees)
2 Neural Nets
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Decision Trees

Characteristics of a tree:

Graph based model

Consists of a root, nodes, and leaves

Advantages:

Simple to understand and interpret

White box model

Can be combined with other techniques

Decision trees are basic learners for machine learning, e.g. classification or
regression trees.
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Learning a Regression Tree (I)

Consider a 2-dimensional space consisting of data points of the indicated
values. We start with an empty root node (blue).
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Learning a Regression Tree (II)

The algorithm searches for split variables and split points, x1 and v1, that
predict values minimizing the predicted error, e.g.

∑

(yi − f (xi))
2.
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Learning a Regression Tree (III)

Here we examine the right side first: find a split variable and a split value
that minimize the predicted error, i.e. x2 and v2.
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Learning a Regression Tree (IV)

Now to the left side: Again, find a split variable and a split value that
minimize the predicted error, i.e. x1 and v3.
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Learning a Regression Tree (V)

Once again, find a split variable and a split value that minimize the
predicted error, here x2 and v4.
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Learning a Regression Tree (V)

Once again, find a split variable and a split value that minimize the
predicted error, here x2 and v4. The tree perfectly fits the data! Problem?
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Formal Definition of a Decision Tree

A decision tree partitions the parameter space into disjoint regions Rk ,
k ∈ {1, ...,K}, K = number of leaves. Formally, the regression model (1)
predicts a value using a constant γk for each region Rk :

T (x; Θ) =
K
∑

k=1

γk1(x ∈ Rk) (1)

Θ = {Rk , γk}
K
1 describes the model parameters, 1(·) is the characteristic

function (1 if argument is true, 0 otherwise), and γ̂k = mean(yi |xi ∈ Rk).
Optimal parameters Θ̂ are found minimizing the empirical risk:

Θ̂ = argmin
Θ

K
∑

k=1

∑

xi∈Rk

L(yi , γk) (2)

The combinatorial optimization problem (2) is usually split into two parts:
(i) finding Rk and (ii) finding γk given Rk .
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Boosting

Idea

Combine multiple weak learners to build a strong learner.
A weak learner is a learner with an error rate slightly better than random
guessing. A strong learner is a learner with high accuracy.

Approach:

Apply a weak learner to iteratively modified data

Generate a sequence of learners

For classification tasks: use majority vote

For regression tasks: build weighted values
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Function Estimation

Find a function F ∗(x) that maps x to y , s.t. the expected value of some
loss function L(y ,F (x)) is minimized:

F ∗(x) = arg min
F (x)

Ey ,x [L(y ,F (x))]

Boosting approximates F ∗(x) by an additive expansion

F (x) =
M
∑

m=1

βmh(x; am)

where h(x; a) are simple functions of x with parameters a = {a1, a2, ..., an}
defining the function h, and β are expansion coefficients.
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Finding Parameters

Expansion coefficients {βm}
M
0 and the function parameters {am}

M
0 are

iteratively fit to the training data:

1 Set F0(x) to initial guess

2 For each m = 1, 2...,M

(βm, am) = argmin
β,a

N
∑

i=1

L(yi ,Fm−1(xi ) + βh(xi , a)) (3)

and
Fm(x) = Fm−1(x) + βmh(x; am) (4)
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Gradient Boosting

Gradient boosting approximately solves (3) for differentiable loss functions:

1 Fit the function h(x; a) by least squares

am = argmin
a

N
∑

i=1

[ỹim − h(xi , a)]
2 (5)

to the “pseudo”-residuals

ỹim = −

[

∂L(yi ,F (xi ))

∂F (xi )

]

F (x)=Fm−1(x)

(6)

2 Given h(x; am), the βm are

βm = arg min

N
∑

i=1

L(yi ,Fm−1(xi ) + βh(xi ; am)) (7)

⇒ Gradient boosting simplifies the problem to least squares (5).
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Gradient Tree Boosting

Gradient tree boosting applies this approach on functions h(x; a)
representing K -terminal node regression trees.

h(x; {Rkm}
K
1 ) =

K
∑

k=1

ȳkm1(x ∈ Rkm) (8)

With ȳkm = meanxi∈Rkm
(ỹim) the tree (8) predicts a constant value ȳkm in

region Rkm. Equation (7) becomes a prediction of a γkm for each Rkm:

γkm = argmin
γ

∑

xi∈Rkm

L(yi ,Fm−1(xi ) + γ) (9)

The approximation for F in stage m is then:

Fm(x) = Fm−1(x) + η · γkm1(xi ∈ Rkm) (10)

The parameter η controls the learning rate of the procedure.

Hiko Schamoni (Universität Heidelberg) Ranking with Boosted Decision Trees January 16, 2012 30 / 49



Learning Boosted Regression Trees (I)

First, learn the most simple predictor that predicts a constant value
minimizing the error for all training data.
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Calculating Optimal Leaf Value for F0

Recall the exp. coefficient: γkm = argminγ
∑

xi∈Rkm
L(yi ,Fm−1(xi ) + γ)

Quadratic loss for the leaf (red):

f (x) =5 · (1− x)2 + 4 · (2− x)2

+ 3 · (3− x)2 + 5 · (4− x)2

f (x) is quadratic, convex
⇒ Optimum at f ′(x) = 0 (green)

∂f (x)

∂x
=5 · (−2 + 2x) + 4 · (−4 + 2x)2

+ 3 · (−6 + 2x)2 + 5 · (−8 + 2x)2

=− 84 + 34x = 32(x − 2.471) -150
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Learning Boosted Regression Trees (II)

Split root node based on least squares criterion to build a tree predicting
the “pseudo”-residuals.
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Learning Boosted Regression Trees (III)

In the next stage, another tree is created to fit the actual
“pseudo”-residuals predicted by the first tree.
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Learning Boosted Regression Trees (IV)

This is iteratively continued: in each stage, the algorithm builds a new tree
based on the “pseudo”-residuals predicted by the previous tree ensemble.
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Multiple Additive Regression Trees (MART)

Algorithm 1 Multiple Additive Regression Trees.

1: Initialize F0(x) = argminγ
∑N

i=1 L(yi , γ)
2: for m = 1, ...,M do

3: for i = 1, ...,N do

4: ỹim = −
[

∂L(yi ,F (xi ))
∂F (xi )

]

F (x)=Fm−1(x)

5: end for

6: {Rkm}
K
k=1 // Fit a regression tree to targets ỹim

7: for k = 1, ...,Km do

8: γkm = argminγ
∑

xi∈Rjm
L(yi ,Fm−1(xi ) + γ)

9: end for

10: Fm(x) = Fm−1(x) + η
∑Km

k=1 γkm1(xi ∈ Rkm)
11: end for

12: Return FM(x)
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RankNet Model

Differentiable function of the model parameters, typically neural nets

RankNet maps a feature vector x to a value f (x;w)

Learned probabilities URL Ui ≻ Uj modelled via a sigmoid function

Pij ≡ P(Ui ≻ Uj) ≡
1

1 + e−σ(si−sj )

with si = f (xi ), sj = f (xj )

Cost function calculates cross entropy:

C = −P̄ij logPij − (1− P̄ij) log(1− Pij)

Pij is the model probability, P̄ij is the known probability from training.
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RankNet Algorithm

Algorithm 2 RankNet Training.

1: Initialize F0(x) = argminγ
∑N

i=1 L(yi , γ)
2: for each query q ∈ Q do

3: for each pair of URLs Ui , Uj with different label do
4: si = f (xi ), sj = f (xj )
5: Estimate cost C
6: Update model scores wk → wk − η ∂C

∂wk

7: end for

8: end for

9: Return w
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RankNet λ’s

The crucial part is the update:

∂C

∂wk

=
∂C

∂si

∂si
∂wk

+
∂C

∂sj

∂sj
∂wk

= λij

(

∂si
∂wk

−
∂sj
∂wk

)

λij describes the desired change of scores for the pair Ui and Uj

The sum over all λij ’s and λji ’s of a given query-document vector xi
w.r.t. all other differently labelled documents is

λi =
∑

j :{i ,j}∈I

λij −
∑

k:{k,i}∈I

λki

λi is (kind of) a gradient of the pairwise loss of vector xi .
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RankNet Example

(a) is the perfect ranking, (b) is a ranking with 10 pairwise errors, (c) is a ranking with
8 pairwise errors. Each blue arrow represents the λi for each query-document vector xi .

From: Burges (2010), From RankNet to LambdaRank to LambdaMART: An Overview.
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LambdaRank Example

Problem: RankNet is based on pairwise error, while modern IR measures emphasize
higher ranking positions. Red arrows show better λ’s for modern IR measures.

From: Burges (2010), From RankNet to LambdaRank to LambdaMART: An Overview.
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From RankNet to LambdaRank to LambdaMART

From RankNet to LambdaRank:

Multiply λ’s with |∆Z |, i.e. the difference of an IR measure when Ui

and Uj are swapped

E.g. |∆NDCG | is the change in NDCG when swapping Ui and Uj :

λij =
∂C (si − sj)

∂si
=

−σ

1 + eσ(si−sj)
|∆NDCG |

From LambdaRank to LambdaMART:

LambdaRank models gradients

MART works on gradients

Combine both to get LambdaMART :
⇒ MART with specified gradients and Newton step
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LambdaMART Algorithm

Algorithm 3 LambdaMART.

1: for i = 0, ...,N do

2: F0(xi ) = BaseModel(xi ) // Set to 0 for empty BaseModel
3: end for

4: for m = 1, ...,M do

5: for i = 0, ...,N do

6: yi = λi // Calculate λ-gradient
7: wi =

∂yi
∂Fk−1(xi )

// Calculate derivative of gradient for xi
8: end for

9: {Rkm}
K
k=1 // Create K -leaf tree on {xi , yi}

10: γkm =

∑
xi∈Rkm

yi
∑

xi∈Rkm
wi

// Assign leaf values

11: Fm(xi ) = Fm−1(xi ) + η
∑

k γkm1(xi inRkm)
12: end for
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Optimally combine Rankers

From: Wu et al. (2008),Ranking, Boosting,
and Model Adaptation.

Linearly combine rankers:
(1− α)R(xi ) + αR ′(xi )

Let α go from 0 to 1:

Score changes only at the
intersections
Enumerate all α for which
pairs swap position
Calculate desired IR measure
(e.g. NDCG)

Select the α giving best scores

Solution can be found analytically,
or approximated by Boosting or a
LambdaRank approach.
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