### Ranking with Boosted Decision Trees Seminar Information Retrieval Dozentin: Dr. Karin Haenelt

Schigehiko Schamoni

Ruprecht-Karls-Universität Heidelberg Institut für Computerlinguistik

January 16, 2012

#### Introduction

### Web Scale Information Retrieval

- Ranking in IR
- Algorithms for Ranking

# MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm
- 5 Using Multiple Rankers

### 6 References

#### Introduction

- Web Scale Information Retrieva
  - Ranking in IR
  - Algorithms for Ranking

## 3 MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

#### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm

### 5 Using Multiple Rankers

#### 6 References

| Google                                               | ranking boosted dcision tree                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Search                                               | About 1,370,000 results (0.30 seconds)                                                                                                                                                                                                                                                                                                          |
| Everything<br>Images                                 | Showing results for <u>ranking boosted</u> decision tree<br>Search instead for ranking boosted dcision tree                                                                                                                                                                                                                                     |
| Maps<br>Videos<br>News                               | <u>Gradient boosting - Wikipedia, the free encyclopedia</u><br>en.wikipedia.org/wiki/Gradient_boosting<br>Gradient boosting is typically used with decision trees (especially CART Recently,<br>gradient boosting method has gained some popularity in learning to rank                                                                         |
| Shopping<br>More                                     | Large-scale Learning to <b>Rank</b> using <b>Boosted Decision Trees</b><br>research.microsoft.com/apps/pubs/default.aspx?id=148312<br>Large-scale Learning to <b>Rank</b> using <b>Boosted Decision Trees</b> . Krysta M. Svore and<br>Christopher J.C. Burges May 2011. The Web search <b>ranking</b> task has become                          |
| All results<br>Related searches<br>More search tools | Learning to <b>Rank</b> on a Cluster using <b>Boosted Decision Trees</b><br>research microsoft.com/apps/pubs/default.aspx?id=143734<br>by KM Svore - Related articles<br>Learning to <b>Rank</b> on a Cluster using <b>Boosted Decision Trees</b> . Krysta M. Svore and<br>Christopher J.C. Burges December 2010. We investigate the problem of |

Technology features of modern web search engines:

- Estimation of hit counts
- Can index many pagess
- Very fast
- Automatic spelling correction
- Preview of data
- Sophisticated ranking of results
- ...

Technology features of modern web search engines:

- Estimation of hit counts
- Can index many pagess
- Very fast
- Automatic spelling correction
- Preview of data
- Sophisticated ranking of results  $\leftarrow$  Topic of this talk!

• ...

#### Introduction

### Web Scale Information Retrieval

- Ranking in IR
- Algorithms for Ranking

### 3 MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm

### 5 Using Multiple Rankers

#### 6 References

## What is the Size of the Web?



From http://www.worldwidewebsize.com/, accessed 08.1.2012

Special algorithms are needed to handle this amount of information.



The "retrieval pipeline" must reduce the number of pages significantly!

# Details of a Web Search Engine: Indexing



Components of the Indexing part of a search engine (CROFT et al., 2010).

# Details of a Web Search Engine: Querying



Components of the Querying part of a search engine (CROFT et al., 2010).

The most important element in the whole querying-process is ranking.

Classification of model types for Information Retrieval:

- Set-theoretic models, e.g.
  - boolean models
  - extended boolean models
- Algebraic models, e.g.
  - vector space model
  - latent semantic indexing
- Probabilistic models, e.g.
  - probabilistic relevance (BM25)
  - language models

IR Models generate different values describing the relationship between a search query and the target document, e.g. "similarity". This value expresses the relevance of a document w.r.t. to the query and induces a ranking of retrieval results.

Some important measures we heard of in this seminar<sup>1</sup>:

- (Normalized) term-frequency
- (Normalized) term-weight
- Inverse document frequency
- Cosine similarity (vector model)
- Retrieval status value (probabilistic model)

<sup>1</sup>see http://kontext.fraunhofer.de/haenelt/kurs/InfoRet/



From: LIU (2010), Learning to Rank for Information Retrieval.

Basic Idea of Machine Learning:

- Hypothesis F transforms input object x to output object y' = F(x).
- L(y, y') is the *loss*, i.e. the difference between the predicted y' and the target y.

• "Learning" process: find the hypothesis minimizing *L* by tuning *F*. Learning a ranking function with machine learning techniques: *Learning to Rank (LTR)*  To learn a ranking function, each query-document pair is represented by a vector of features of three categories:

- Features modelling web document, d (static features): inbound links, PAGE rank, document length, etc.
- Features modelling query-document relationship (*dynamic* features): frequency of search terms in document, cosine similarity, etc.
- Features modelling user query, q: number of words in query, query classification, etc.

In supervised training, the ranking function is learned using vectors of known ranking levels.

# Example: Features for AltaVista (2002)

| A0 - A4   | anchor text score per term                                            |
|-----------|-----------------------------------------------------------------------|
| W0 - W4   | term weights                                                          |
| L0 - L4   | first occurrence location                                             |
|           | (encodes hostname and title match)                                    |
| SP        | spam index: logistic regression of 85 spam filter variables           |
|           | (against relevance scores)                                            |
| F0 - F4   | term occurrence frequency within document                             |
| DCLN      | document length (tokens)                                              |
| ER        | Eigenrank                                                             |
| HB        | Extra-host unique inlink count                                        |
| ERHB      | ER*HB                                                                 |
| A0W0 etc. | A0*W0                                                                 |
| QA        | Site factor - logistic regression of 5 site link and url count ratios |
| SPN       | Proximity                                                             |
| FF        | family friendly rating                                                |
| UD        | url depth                                                             |
|           |                                                                       |

From: J. PEDERSEN (2008), The Machine Learned Ranking Story

- Support Vector Machines (VAPNIK, 1995)
  - Very good classifier
  - Can be adapted to ranking and multiclass problems
- Neural Nets
  - RankNet (BURGES et al., 2006)
- Tree Ensembles
  - Random Forests (BREIMAN and SCHAPIRE, 2001)
  - Boosted Decision Trees
    - Multiple Additive Regression Trees (FRIEDMAN, 1999)
    - LambdaMART (BURGES, 2010)
    - Used by AltaVista, Yahoo!, Bing, Yandex, ...

All top teams of the *Yahoo! Learning to Rank Challenge (2010)* used combinations of Tree Ensembles!

- Yahoo! Webscope dataset (CHAPELLE and CHANG, 2011): 36,251 queries, 883 k documents, 700 features, 5 ranking levels
  - set-1:
    - 473,134 feature vectors
    - 519 features
    - 19,944 queries
  - set-2:
    - 34,815 feature vectors
    - 596 features
    - 1,266 queries
- Winner used a combination of 12 models:
  - 8 Tree Ensembles (LambdaMART)
  - 2 Tree Ensembles (Additive Regression Trees)
  - 2 Neural Nets

#### Introduction

- 2 Web Scale Information Retrieva
  - Ranking in IR
  - Algorithms for Ranking

# 3 MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm
- 5 Using Multiple Rankers

#### 6 References

Characteristics of a tree:

- Graph based model
- Consists of a root, nodes, and leaves

Advantages:

- Simple to understand and interpret
- White box model
- Can be combined with other techniques



Decision trees are basic learners for machine learning, e.g. *classification* or *regression trees*.

# Learning a Regression Tree (I)



Consider a 2-dimensional space consisting of data points of the indicated values. We start with an empty root node (blue).

# Learning a Regression Tree (II)



The algorithm searches for split variables and split points,  $x_1$  and  $v_1$ , that predict values minimizing the predicted error, e.g.  $\sum (y_i - f(x_i))^2$ .

# Learning a Regression Tree (III)



Here we examine the right side first: find a split variable and a split value that minimize the predicted error, i.e.  $x_2$  and  $v_2$ .

# Learning a Regression Tree (IV)



Now to the left side: Again, find a split variable and a split value that minimize the predicted error, i.e.  $x_1$  and  $v_3$ .

# Learning a Regression Tree (V)



Once again, find a split variable and a split value that minimize the predicted error, here  $x_2$  and  $v_4$ .

# Learning a Regression Tree (V)



Once again, find a split variable and a split value that minimize the predicted error, here  $x_2$  and  $v_4$ . The tree perfectly fits the data! Problem?

## Formal Definition of a Decision Tree

A decision tree partitions the parameter space into disjoint regions  $R_k$ ,  $k \in \{1, ..., K\}$ , K = number of leaves. Formally, the regression model (1) predicts a value using a constant  $\gamma_k$  for each region  $R_k$ :

$$T(\mathbf{x};\Theta) = \sum_{k=1}^{K} \gamma_k \mathbf{1}(\mathbf{x} \in R_k)$$
(1)

 $\Theta = \{R_k, \gamma_k\}_1^K$  describes the model parameters,  $1(\cdot)$  is the *characteristic* function (1 if argument is true, 0 otherwise), and  $\hat{\gamma}_k = \text{mean}(y_i | \mathbf{x}_i \in R_k)$ . Optimal parameters  $\hat{\Theta}$  are found minimizing the empirical risk:

$$\hat{\Theta} = \arg\min_{\Theta} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in R_k} L(y_i, \gamma_k)$$
(2)

The combinatorial optimization problem (2) is usually split into two parts: (i) finding  $R_k$  and (ii) finding  $\gamma_k$  given  $R_k$ .

#### Idea

Combine multiple weak learners to build a strong learner. A weak learner is a learner with an error rate slightly better than random guessing. A strong learner is a learner with high accuracy.

Approach:

- Apply a weak learner to iteratively modified data
- Generate a sequence of learners
- For classification tasks: use majority vote
- For regression tasks: build weighted values

Find a function  $F^*(\mathbf{x})$  that maps  $\mathbf{x}$  to y, s.t. the expected value of some loss function  $L(y, F(\mathbf{x}))$  is minimized:

$$F^*(\mathbf{x}) = \operatorname*{arg\,min}_{F(\mathbf{x})} \mathbb{E}_{y,\mathbf{x}} \left[ L(y,F(\mathbf{x})) 
ight]$$

Boosting approximates  $F^*(\mathbf{x})$  by an additive expansion

$$F(\mathbf{x}) = \sum_{m=1}^{M} \beta_m h(\mathbf{x}; \mathbf{a}_m)$$

where  $h(\mathbf{x}; \mathbf{a})$  are simple functions of  $\mathbf{x}$  with parameters  $\mathbf{a} = \{a_1, a_2, ..., a_n\}$  defining the function h, and  $\beta$  are expansion coefficients.

Expansion coefficients  $\{\beta_m\}_0^M$  and the function parameters  $\{\mathbf{a}_m\}_0^M$  are iteratively fit to the training data:

- **(**) Set  $F_0(\mathbf{x})$  to initial guess
- **2** For each m = 1, 2..., M

$$(\beta_m, \mathbf{a}_m) = \arg\min_{\beta, \mathbf{a}} \sum_{i=1}^N L(y_i, F_{m-1}(\mathbf{x}_i) + \beta h(\mathbf{x}_i, \mathbf{a}))$$
(3)

and

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \beta_m h(\mathbf{x}; \mathbf{a}_m)$$
(4)

# Gradient Boosting

Gradient boosting approximately solves (3) for differentiable loss functions:

**(**) Fit the function  $h(\mathbf{x}; \mathbf{a})$  by least squares

$$\mathbf{a}_{m} = \arg\min_{\mathbf{a}} \sum_{i=1}^{N} \left[ \tilde{y}_{im} - h(\mathbf{x}_{i}, \mathbf{a}) \right]^{2}$$
(5)

to the "pseudo"-residuals

$$\tilde{y}_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$
(6)

**2** Given  $h(\mathbf{x}; \mathbf{a}_m)$ , the  $\beta_m$  are

$$\beta_m = \arg\min\sum_{i=1}^N L(y_i, F_{m-1}(\mathbf{x}_i) + \beta h(\mathbf{x}_i; \mathbf{a}_m))$$
(7)

 $\Rightarrow$  Gradient boosting simplifies the problem to least squares (5).

Gradient tree boosting applies this approach on functions  $h(\mathbf{x}; \mathbf{a})$  representing K-terminal node regression trees.

$$h(\mathbf{x}; \{R_{km}\}_{1}^{K}) = \sum_{k=1}^{K} \bar{y}_{km} \mathbf{1}(\mathbf{x} \in R_{km})$$
(8)

With  $\bar{y}_{km} = \text{mean}_{\mathbf{x}_i \in R_{km}}(\tilde{y}_{im})$  the tree (8) predicts a constant value  $\bar{y}_{km}$  in region  $R_{km}$ . Equation (7) becomes a prediction of a  $\gamma_{km}$  for each  $R_{km}$ :

$$\gamma_{km} = \arg\min_{\gamma} \sum_{\mathbf{x}_i \in R_{km}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$$
(9)

The approximation for F in stage m is then:

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \eta \cdot \gamma_{km} \mathbb{1}(\mathbf{x}_i \in R_{km})$$
(10)

The parameter  $\eta$  controls the *learning rate* of the procedure.

# Learning Boosted Regression Trees (I)



First, learn the most simple predictor that predicts a constant value minimizing the error for all training data.

### Calculating Optimal Leaf Value for $F_0$

Recall the exp. coefficient:  $\gamma_{km} = \arg \min_{\gamma} \sum_{\mathbf{x}_i \in R_{km}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$ 

• Quadratic loss for the leaf (red):

$$f(x) = 5 \cdot (1-x)^2 + 4 \cdot (2-x)^2 + 3 \cdot (3-x)^2 + 5 \cdot (4-x)^2$$

f(x) is quadratic, convex
 ⇒ Optimum at f'(x) = 0 (green)

$$\frac{\partial f(x)}{\partial x} = 5 \cdot (-2 + 2x) + 4 \cdot (-4 + 2x)^2 + 3 \cdot (-6 + 2x)^2 + 5 \cdot (-8 + 2x)^2 = -84 + 34x = 32(x - 2.471)$$



# Learning Boosted Regression Trees (II)



Split root node based on least squares criterion to build a tree predicting the "pseudo"-residuals.

# Learning Boosted Regression Trees (III)



In the next stage, another tree is created to fit the actual "pseudo"-residuals predicted by the first tree.

# Learning Boosted Regression Trees (IV)



This is iteratively continued: in each stage, the algorithm builds a new tree based on the "pseudo"-residuals predicted by the previous tree ensemble.

# Multiple Additive Regression Trees (MART)

#### Algorithm 1 Multiple Additive Regression Trees.

1: Initialize 
$$F_0(\mathbf{x}) = \arg \min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$$

2: for m = 1, ..., M do

3: **for** 
$$i = 1, ..., N$$
 **do**

4: 
$$\tilde{y}_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$

5: end for

6: 
$$\{R_{km}\}_{k=1}^{K}$$
 // Fit a regression tree to targets  $\tilde{y}_{im}$ 

7: for  $k = 1, ..., K_m$  do

8: 
$$\gamma_{km} = \arg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$$

9: end for

10: 
$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \eta \sum_{k=1}^{K_m} \gamma_{km} \mathbb{1}(\mathbf{x}_i \in R_{km})$$

- 11: end for
- 12: Return  $F_M(\mathbf{x})$

#### Introduction

- 2 Web Scale Information Retrieva
  - Ranking in IR
  - Algorithms for Ranking

## 3 MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm

#### Using Multiple Rankers

#### 6 References

- Differentiable function of the model parameters, typically neural nets
- RankNet maps a feature vector x to a value f(x; w)
- Learned probabilities URL  $U_i \succ U_j$  modelled via a sigmoid function

$$P_{ij} \equiv P(U_i \succ U_j) \equiv rac{1}{1 + e^{-\sigma(s_i - s_j)}}$$

with 
$$s_i = f(\mathbf{x}_i), \ s_j = f(\mathbf{x}_j)$$

• Cost function calculates cross entropy:

$$\mathcal{C} = -ar{\mathcal{P}}_{ij}\log \mathcal{P}_{ij} - (1-ar{\mathcal{P}}_{ij})\log(1-\mathcal{P}_{ij})$$

 $P_{ij}$  is the model probability,  $\bar{P}_{ij}$  is the known probability from training.

#### Algorithm 2 RankNet Training.

- 1: Initialize  $F_0(\mathbf{x}) = \arg \min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$
- 2: for each query  $q \in Q$  do
- 3: for each pair of URLs  $U_i$ ,  $U_j$  with different label do

4: 
$$s_i = f(\mathbf{x}_i), \ s_j = f(\mathbf{x}_j)$$

- 5: Estimate cost C
- 6: Update model scores  $w_k \to w_k \eta \frac{\partial C}{\partial w_k}$
- 7: end for
- 8: end for
- 9: Return w

The crucial part is the update:

$$\frac{\partial C}{\partial w_k} = \frac{\partial C}{\partial s_i} \frac{\partial s_i}{\partial w_k} + \frac{\partial C}{\partial s_j} \frac{\partial s_j}{\partial w_k} = \lambda_{ij} \left( \frac{\partial s_i}{\partial w_k} - \frac{\partial s_j}{\partial w_k} \right)$$

- $\lambda_{ij}$  describes the desired change of scores for the pair  $U_i$  and  $U_j$
- The sum over all λ<sub>ij</sub>'s and λ<sub>ji</sub>'s of a given query-document vector x<sub>i</sub> w.r.t. all other differently labelled documents is

$$\lambda_i = \sum_{j:\{i,j\}\in I} \lambda_{ij} - \sum_{k:\{k,i\}\in I} \lambda_{ki}$$

•  $\lambda_i$  is (kind of) a gradient of the pairwise loss of vector  $\mathbf{x}_i$ .

# RankNet Example



(a) is the perfect ranking, (b) is a ranking with 10 pairwise errors, (c) is a ranking with 8 pairwise errors. Each blue arrow represents the  $\lambda_i$  for each query-document vector  $\mathbf{x}_i$ .

From: BURGES (2010), From RankNet to LambdaRank to LambdaMART: An Overview.

## LambdaRank Example



Problem: RankNet is based on pairwise error, while modern IR measures emphasize higher ranking positions. Red arrows show better  $\lambda$ 's for modern IR measures.

From: BURGES (2010), From RankNet to LambdaRank to LambdaMART: An Overview.

From RankNet to LambdaRank:

- Multiply λ's with |ΔZ|, i.e. the difference of an IR measure when U<sub>i</sub> and U<sub>j</sub> are swapped
- E.g.  $|\Delta \text{NDCG}|$  is the change in NDCG when swapping  $U_i$  and  $U_j$ :

$$\lambda_{ij} = \frac{\partial C(s_i - s_j)}{\partial s_i} = \frac{-\sigma}{1 + e^{\sigma(s_i - s_j)}} |\Delta \text{NDCG}|$$

From LambdaRank to LambdaMART:

- LambdaRank models gradients
- MART works on gradients
- Combine both to get *LambdaMART*:
  - $\Rightarrow$  MART with specified gradients and Newton step

#### Algorithm 3 LambdaMART.

1: for i = 0, ..., N do 2:  $F_0(\mathbf{x}_i) = \text{BaseModel}(\mathbf{x}_i)$  // Set to 0 for empty BaseModel 3: end for 4: for m = 1, ..., M do 5: for i = 0, ..., N do  $y_i = \lambda_i$  // Calculate  $\lambda$ -gradient  $w_i = \frac{\partial y_i}{\partial F_{k-1}(\mathbf{x}_i)}$  // Calculate derivative of gradient for  $\mathbf{x}_i$ 6: 7: end for 8:  $\{R_{km}\}_{k=1}^{K}$  // Create K-leaf tree on  $\{\mathbf{x}_i, y_i\}$ 9:  $\gamma_{km} = \frac{\sum_{x_i \in R_k m} y_i}{\sum_{x_i \in R_k m} w_i} // \text{ Assign leaf values}$ 10:  $F_m(\mathbf{x}_i) = F_{m-1}(\mathbf{x}_i) + \eta \sum_k \gamma_{km} \mathbb{1}(\mathbf{x}_i \text{ in} R_{km})$ 11: 12: end for

#### Introduction

- 2 Web Scale Information Retrieva
  - Ranking in IR
  - Algorithms for Ranking

# 3 MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm

### 5 Using Multiple Rankers

#### References

# Optimally combine Rankers



From: WU et al. (2008), Ranking, Boosting, and Model Adaptation.

• Linearly combine rankers:

$$(1-\alpha)R(\mathbf{x}_i) + \alpha R'(\mathbf{x}_i)$$

• Let 
$$\alpha$$
 go from 0 to 1:

- Score changes only at the intersections
- Enumerate all α for which pairs swap position
- Calculate desired IR measure (e.g. NDCG)
- Select the  $\alpha$  giving best scores

Solution can be found analytically, or approximated by Boosting or a LambdaRank approach.

#### Introduction

- 2 Web Scale Information Retrieva
  - Ranking in IR
  - Algorithms for Ranking

# 3 MART

- Decision Trees
- Boosting
- Multiple Additive Regression Trees

### LambdaMART

- RankNet
- LambdaRank
- LambdaMART Algorithm

### 5 Using Multiple Rankers

### 6 References

- BREIMAN, LEO and E. SCHAPIRE (2001). Random forests. In Machine Learning, pp. 5–32.
- BURGES, CHRISTOPHER J. C. (2010). From RankNet to LambdaRank to LambdaMART: An Overview.
- BURGES, CHRISTOPHER J. C., R. RAGNO and Q. V. LE (2006). Learning to Rank with Nonsmooth Cost Functions.. In SCHÖLKOPF, BERNHARD, J. PLATT and T. HOFFMAN, eds.: NIPS, pp. 193–200. MIT Press.
- CHAPELLE, OLIVIER and Y. CHANG (2011). Yahoo! Learning to Rank Challenge Overview.. Journal of Machine Learning Research -Proceedings Track, 14:1–24.
- CROFT, W.B., D. METZLER and T. STROHMANN (2010). Search Engines: Information Retrieval in Practice. Pearson, London, England.

## References II

- FRIEDMAN, JEROME H. (1999). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5):1189–1232.
- GANJISAFFAR, YASSER (2011). *Tree Ensembles for Learning to Rank*. PhD thesis, University of California, Irvine.
- HASTIE, TREVOR, R. TIBSHIRANI and J. FRIEDMAN (2002). *The Elements of Statistical Learning*. Springer, New York.
- LIU, TIE-YAN (2010). Learning to Rank for Information Retrieval.. Springer-Verlag New York Inc.
- MANNING, CHRISTOPHER D., P. RAGHAVAN and H. SCHÜTZE (2008). Introduction to Information Retrieval. Cambridge University Press.
- VAPNIK, VLADIMIR N. (1995). The Nature of Statistical Learning Theory. Springer New York Inc., New York, NY, USA.
- WU, QIANG, C. J. C. BURGES, K. M. SVORE and J. GAO (2008). Ranking, Boosting, and Model Adaptation.