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PAC-learning
Ronald J. Williams

CSG220
Fall 2004

Containing many slides from the Andrew Moore tutorial of the same name.

Note to other teachers and users of these slides. Andrew would 
be delighted if you found this source material useful in giving 
your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. PowerPoint originals are 
available. If you make use of a significant portion of these slides 
in your own lecture, please include this message, or the 
following link to the source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . Comments and 
corrections gratefully received. 

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams 
PAC-learning: Slide 2

Probably Approximately Correct 
(PAC) Learning

• Imagine we’re doing classification with categorical 
inputs.

• All outputs are binary.
• Data is noiseless.
• There’s a machine f(x,h) which has H possible 

settings (a.k.a. hypotheses), called h1, h2 .. hH.
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Example of a machine
• f(x,h) consists of all logical sentences about X1, X2 

.. Xm that contain only logical ands.
• Example hypotheses:
• X1 ^ X3 ^ X19
• X3 ^ X18
• X7
• X1 ^ X2 ^ X2 ^ x4 … ^ Xm
• Question: if there are 3 attributes, what is the 

complete set of hypotheses in f? 
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Example of a machine
• f(x,h) consists of all logical sentences about X1, X2 

.. Xm that contain only logical ands.
• Example hypotheses:
• X1 ^ X3 ^ X19
• X3 ^ X18
• X7
• X1 ^ X2 ^ X2 ^ x4 … ^ Xm
• Question: if there are 3 attributes, what is the 

complete set of hypotheses in f? (H = 8)

X1 ^ X2 ^ X3X1 ^ X3X1 ^ X2X1

X2 ^ X3X3X2True
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And-Positive-Literals Machine
• f(x,h) consists of all logical sentences about X1, X2 

.. Xm that contain only logical ands.
• Example hypotheses:
• X1 ^ X3 ^ X19
• X3 ^ X18
• X7
• X1 ^ X2 ^ X2 ^ x4 … ^ Xm
• Question: if there are m attributes, how many 

hypotheses in f?
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And-Positive-Literals Machine
• f(x,h) consists of all logical sentences about X1, X2 

.. Xm that contain only logical ands.
• Example hypotheses:
• X1 ^ X3 ^ X19
• X3 ^ X18
• X7
• X1 ^ X2 ^ X2 ^ x4 … ^ Xm
• Question: if there are m attributes, how many 

hypotheses in f? (H = 2m)
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And-Literals Machine
• f(x,h) consists of all logical 

sentences about X1, X2 .. 
Xm or their negations that 
contain only logical ands.

• Example hypotheses:
• X1 ^ ~X3 ^ X19
• X3 ^ ~X18
• ~X7
• X1 ^ X2 ^ ~X3 ^ … ^ Xm
• Question: if there are 2 

attributes, what is the 
complete set of hypotheses 
in f? 
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And-Literals Machine
• f(x,h) consists of all logical 

sentences about X1, X2 .. 
Xm or their negations that 
contain only logical ands.

• Example hypotheses:
• X1 ^ ~X3 ^ X19
• X3 ^ ~X18
• ~X7
• X1 ^ X2 ^ ~X3 ^ … ^ Xm
• Question: if there are 2 

attributes, what is the 
complete set of hypotheses 
in f? (H = 9) ^

^

^
^

~X2~X1
X2~X1
True~X1
~X2X1
X2X1
TrueX1
~X2True
X2True
TrueTrue
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And-Literals Machine
• Equivalent to what we’ve called pure conjunctive 

concept descriptions when the attributes are 
Boolean

• E.g. X1 ^ ~X3 ^ X19 is equivalent to
(X1 = true) ^ (X3 = false) ^ (X19 = true)
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And-Literals Machine
• f(x,h) consists of all logical 

sentences about X1, X2 .. 
Xm or their negations that 
contain only logical ands.

• Example hypotheses:
• X1 ^ ~X3 ^ X19
• X3 ^ ~X18
• ~X7
• X1 ^ X2 ^ ~X3 ^ … ^ Xm
• Question: if there are m 

attributes, what is the size of 
the complete set of 
hypotheses in f? ^

^

^
^

~X2~X1
X2~X1
True~X1
~X2X1
X2X1
TrueX1
~X2True
X2True
TrueTrue



6

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams 
PAC-learning: Slide 11

And-Literals Machine
• f(x,h) consists of all logical 

sentences about X1, X2 .. 
Xm or their negations that 
contain only logical ands.

• Example hypotheses:
• X1 ^ ~X3 ^ X19
• X3 ^ ~X18
• ~X7
• X1 ^ X2 ^ ~X3 ^ … ^ Xm
• Question: if there are m 

attributes, what is the size of 
the complete set of 
hypotheses in f? (H = 3m) ^

^

^
^

~X2~X1
X2~X1
True~X1
~X2X1
X2X1
TrueX1
~X2True
X2True
TrueTrue
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Lookup Table Machine
• f(x,h) consists of all truth 

tables mapping combinations 
of input attributes to true 
and false

• Example hypothesis:

• Question: if there are m 
attributes, what is the size of 
the complete set of 
hypotheses in f? 

01111

00111

01011

00011

11101

00101

01001

00001

11110

00110

01010

10010

01100

10100

11000

00000

YX4X3X2X1
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Lookup Table Machine
• f(x,h) consists of all truth 

tables mapping combinations 
of input attributes to true 
and false

• Example hypothesis:

• Question: if there are m 
attributes, what is the size of 
the complete set of 
hypotheses in f? 

01111

00111

01011

00011

11101

00101

01001

00001

11110

00110

01010

10010

01100

10100

11000

00000

YX4X3X2X1

m

H 22=
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A Game
• We specify f, the machine
• Nature chooses hidden hypothesis h*
• Nature randomly generates R datapoints

•How is a datapoint generated?
1.Vector of inputs xk = (xk1,xk2, xkm) is drawn from a fixed unknown distrib: D
2.The corresponding output yk=f(xk , h*)

• We learn an approximation of h* by choosing some hest for which the training set 
error is 0
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Test Error Rate
• We specify f, the machine
• Nature chooses hidden hypothesis h*
• Nature randomly generates R datapoints

•How is a datapoint generated?
1.Vector of inputs xk = (xk1,xk2, xkm) is drawn from a fixed unknown 

distrib: D
2.The corresponding output yk=f(xk , h*)

• We learn an approximation of h* by choosing some hest for which the 
training set error is 0

• For each hypothesis h ,
• Say h is consistent if h has zero training set error: TRAINERR(h) = 0
• Define TESTERR(h ) 

= Fraction of test points that h will classify incorrectly
= P(h classifies a random test point incorrectly) 

• Say h is bad if TESTERR(h) > ε
• Otherwise, say h is approximately correct
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Let’s consider a worst-case scenario: Among 
all consistent hypotheses, if any one is 
bad, then there’s a danger that that’s 
somehow the one we end up learning.

How probable is it that there is even one 
such consistent yet bad hypothesis?

Test Error Rate
• We specify f, the machine
• Nature chooses hidden hypothesis h*
• Nature randomly generates R datapoints

•How is a datapoint generated?
1.Vector of inputs xk = (xk1,xk2, xkm) is 

drawn from a fixed unknown distrib: D
2.The corresponding output yk=f(xk , h*)

• We learn an approximation of h* by choosing 
some hest for which the training set error is 0

• For each hypothesis h ,
• Say h is consistent if h has zero training set 

error: TRAINERR(h) = 0
• Define TESTERR(h ) 

= Fraction of test points that h will 
classify incorrectly

= P(h classifies a random test point 
incorrectly) 

• Say h is bad if TESTERR(h) > ε
• Otherwise, say h is approximately correct
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Bounding the probability
of learning a bad hypothesis

• What is
• Note that if hi is a bad hypothesis, then the 

probability it classifies any single training example 
correctly is ≤ 1-ε.

• Then, using the i.i.d. assumption, the probability it 
classifies all R training examples correctly is
≤ (1-ε)R.

• Therefore we have shown that

for any i .

?)bad is  | consistent is ( ihihP

R
ihihP )1()bad is  | consistent is ( ε−≤
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Bounding the prob. of a bad hypothesis
• Thus

• We can combine this with the fact that 1-ε ≤ e-ε to 
conclude

) bad alearn  we( hP ( )∑
=

≤
H

i
ii hhP

1

bad is  | consistent  is 
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=
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1
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RR HeHhP εε −≤−≤ )1() bad alearn  we(
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Probably Approximately Correct

• Suppose we want the probability to  be at least 1-δ that the 
h we learn is not bad.

• A sufficient condition is that 

• If H, R, δ, and ε satisfy this relationship, then with 
probability ≥ 1-δ we are assured that the test error rate of 
the h we learn is ≤ ε.

• The h we learn is probably (with probability ≥ 1-δ) 
approximately (with error rate ≤ ε) correct.

RHe εδ −≥
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PAC Learning
Two ways to use a sufficient condition like

1. Given that we’ve found a consistent hypothesis hest for a 
training set of size R, how confident are we that its test 
error rate is no worse than some given ε?  Like confidence 
intervals in statistical parameter estimation theory.

RHe εδ −≥
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PAC Learning
Two ways to use a sufficient condition like

1. Given that we’ve found a consistent hypothesis hest for a 
training set of size R, how confident are we that its test 
error rate is no worse than some given ε?  Like confidence 
intervals in statistical parameter estimation theory.

2. Sample complexity: Given δ and ε, how large must R be to 
guarantee that, with probability at least 1- δ, hest has a 
test error rate no worse than ε?  Get an answer by solving 
for R:







 +≥

δε
1lnln1 HR

RHe εδ −≥
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PAC in action

(X1 ^ X5) v 
(X2 ^ ~X7 ^ X8)

And-lits or 
And-lits

Lookup 
Table

3mX3 ^ ~X7And-literals

2mX3 ^ X7 ^ X8And-positive-
literals

R sufficient to PAC-
learn 

HExample 
Hypothesis

Machine

01111
00111
01011
00011
11101
00101
01001
00001
11110
00110
01010
10010
01100
10100
11000
00000
YX4X3X2X1 m22
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Extensions to PAC Analysis
• What if our learner does not produce a hypothesis with 

TRAINERR(h) = 0 (perhaps because of noisy data or 
limited representational power)?  More generally, say h is a 
bad hypothesis if TESTERR(h) > TRAINERR(h) + ε.

• In this case it turns out that the corresponding probability 
of learning a bad hypothesis is bounded by

• Thus to guarantee with probability at least 1-δ that 
TESTERR(h) ≤ TRAINERR(h) + ε, it is sufficient to have a 
training set of size







 +≥

δε
1lnln
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Extensions to PAC Analysis
• What if our hypothesis space is infinite?
• E.g.

• perceptrons
• multilayer neural networks
• support vector machines

• In this case the bounds we’ve given are useless.
• Can we still bound the probability that TESTERR(h) ≤ 

TRAINERR(h) + ε for given ε?
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Extensions to PAC Analysis
• What if our hypothesis space is infinite?
• E.g.

• perceptrons
• multilayer neural networks
• support vector machines

• In this case the bounds we’ve given are useless.
• Can we still bound the probability that TESTERR(h) ≤ 

TRAINERR(h) + ε for given ε?
• Perhaps surprisingly, the answer is YES, at least in many 

situations
• Magic words: VC (Vapnik-Chervonenkis) dimension
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Remarks
• This form of analysis makes no assumption about 

the underlying distribution of examples – just 
assumes same one used for both training and 
testing.  Therefore valid for any distribution.
• Distribution free. 

• The lower bounds we’ve computed on the sample 
complexity are sufficient but not necessary for 
PAC-learning.  But there are corresponding results 
providing lower bounds on the number of training 
examples necessary for PAC-learning with certain 
distributions.
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Remarks
• The underlying randomness in this theory is based 

on the randomness in the training sample
• The bounds derived from this theory are very 

conservative, for several reasons:
• designed to handle any distribution of examples, 

including worst-case
• derivation in PAC case, for example, based on bounding 

the prob. that there is any h that is both consistent and 
bad – when we select one, it could easily be better than 
this worst-case one
Questions to test your understanding of our PAC analysis:

1. What can be said about the best-case consistent hypothesis?

2. Can you see how to easily make a very, very slight improvement 
in the bound we derived on the probability of learning a bad h?
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What you should know
• Be able to understand every step in the math that 

gets you to

• Understand that you thus need this many records 
to PAC-learn a machine with H hypotheses

• Understand examples of deducing H for various 
machines

RR HeHhP εε −≤−≤ )1() bad alearn  we(
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δε
1lnln1 HR
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What you should know
• Understand the generalization to nonzero training 

error, where having this many records is sufficient 
to guarantee with high probability that 
TESTERR(h) is not much worse than TRAINERR(h) 
when learning a machine with H hypotheses:
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