

Probably Approximately Correct (PAC) Learning

- Imagine we're doing classification with categorical inputs.
- All outputs are binary.
- Data is noiseless.
- There's a machine f(x,h) which has H possible settings (a.k.a. hypotheses), called h₁, h₂... h_H.

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

f(x, b) consists of all logical			And-Literals Machine				
 I(x,ii) consists of all logical sentences about X1, X2 Xm or their negations that 							
contain only logical ands.	True		True				
Example hypotheses:	True		X2				
• X1 ^ ~X3 ^ X19	True		~X2				
• X3 ^ ~X18	X1		True				
• ~X7	X1	^	X2				
• X1 ^ X2 ^ ~X3 ^ ^ Xm	X1	^	~X2				
 Question: if there are 2 	~X1		True				
attributes, what is the complete set of hypotheses in f? (H = 9)	~X1	^	X2				
	~X1	^	~X2				

And-Literals Machine

- f(x,h) consists of all logical sentences about X1, X2 .. Xm or their negations that contain only logical ands.
- Example hypotheses:
- X1 ^ ~X3 ^ X19
- X3 ^ ~X18
- ~X7
- X1 ^ X2 ^ ~X3 ^ ... ^ Xm
- Question: if there are m attributes, what is the size of the complete set of hypotheses in f?

Originals © 2001, Andrew W.	Moore, Modifications © 2003	Ronald 1. Williams
	110010, 11001100010 @ 2000	, Ronala 5. Williams

True		True
True		X2
True		~X2
X1		True
X1	^	X2
X1	^	~X2
~X1		True
~X1	^	X2
~X1	^	~X2

Test Error Rate Let's consider a worst-case scenario: Among all consistent hypotheses, if any one is • We specify f, the machine bad, then there's a danger that that's Nature chooses hidden hypothesis h* somehow the one we end up learning. Nature randomly generates R datapoints How probable is it that there is even one How is a datapoint generated? such consistent yet bad hypothesis? 1.Vector of inputs $\mathbf{x}_k = (x_{kl'}x_{k2'}, x_{km})$ is drawn from a fixed unknown distrib: D P(we learn a bad h)2. The corresponding output $y_k = f(\mathbf{x}_k, h^*)$ • We learn an approximation of h* by choosing some hest for which the training set error is 0 $\leq P(\exists h \mid h \text{ is consistent } \land h \text{ is bad})$ For each hypothesis h, $(h_1 \text{ is consistent } \land h_1 \text{ is bad}) \lor$ • Say *h* is consistent if *h* has zero training set error: TRAINERR(h) = 0 $= P \left| \begin{array}{c} (h_2 \text{ is consistent} \land h_2 \text{ is bad}) \lor \\ \vdots \end{array} \right|$ Define TESTERR(*h*) = Fraction of test points that h will classify incorrectly $(h_H \text{ is consistent } \land h_H \text{ is bad})$ = P(h classifies a random test point)incorrectly) $\leq \sum_{i=1}^{n} P(h_i \text{ is consistent } \wedge h_i \text{ is bad})$ Say h is bad if TESTERR(h) > ε Otherwise, say h is approximately correct $\leq \sum_{i=1}^{H} P(h_i \text{ is consistent } | h_i \text{ is bad})$ PAC-learning: Slide 16 Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

8

Bounding the prob. of a bad hypothesis

• Thus

$$P(\text{we learn a bad } h) \leq \sum_{i=1}^{H} P(h_i \text{ is consistent} | h_i \text{ is bad})$$
$$\leq \sum_{i=1}^{H} (1 - \varepsilon)^R$$
$$= H(1 - \varepsilon)^R$$

• We can combine this with the fact that $1-\varepsilon \leq e^{-\varepsilon}$ to conclude

 $P(\text{we learn a bad } h) \leq H(1-\varepsilon)^R \leq He^{-\varepsilon R}$

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

PAC Learning

Two ways to use a sufficient condition like

$$\delta \geq He^{-\varepsilon R}$$

Given that we've found a consistent hypothesis *h^{est}* for a training set of size *R*, how confident are we that its test error rate is no worse than some given ε? Like confidence intervals in statistical parameter estimation theory.

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

PAC in action						
Machine	Example Hypothesis	Н	R sufficient to PAC- learn			
And-positive- literals	X3 ^ X7 ^ X8	2 ^m	$\frac{1}{\varepsilon} \left(m \ln 2 + \ln \frac{1}{\delta} \right)$			
And-literals	X3 ^ ~X7	3 ^m	$\frac{1}{\varepsilon} \left(m \ln 3 + \ln \frac{1}{\delta} \right)$			
Lookup Table	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2^{2^{m}}$	$\frac{1}{\varepsilon} \left(2^m \ln 2 + \ln \frac{1}{\delta} \right)$			
And-lits or And-lits	(X1 ^ X5) v (X2 ^ ~X7 ^ X8)	$(3^m)^2 = 3^{2m}$	$\frac{1}{\varepsilon} \left(2m\ln 3 + \ln\frac{1}{\delta} \right)$			
Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams PAC-learning: Slide 22						

Extensions to PAC Analysis

- What if our hypothesis space is infinite?
- E.g.
 - perceptrons
 - multilayer neural networks
 - support vector machines
- In this case the bounds we've given are useless.
- Can we still bound the probability that TESTERR(*h*) ≤ TRAINERR(*h*) + ε for given ε?

Remarks

- This form of analysis makes no assumption about the underlying distribution of examples – just assumes same one used for both training and testing. Therefore valid for *any* distribution.
 - Distribution free.
- The lower bounds we've computed on the sample complexity are sufficient but not necessary for PAC-learning. But there are corresponding results providing lower bounds on the number of training examples necessary for PAC-learning with certain distributions.

Originals \odot 2001, Andrew W. Moore, Modifications \odot 2003, Ronald J. Williams

What you should know

• Be able to understand every step in the math that gets you to

 $P(\text{we learn a bad } h) \leq H(1-\varepsilon)^R \leq He^{-\varepsilon R}$

• Understand that you thus need this many records to PAC-learn a machine with *H* hypotheses

$$R \ge \frac{1}{\varepsilon} \left(\ln H + \ln \frac{1}{\delta} \right)$$

• Understand examples of deducing *H* for various machines

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams

What you should know

 Understand the generalization to nonzero training error, where having this many records is sufficient to guarantee with high probability that TESTERR(*h*) is not much worse than TRAINERR(*h*) when learning a machine with *H* hypotheses:

$$R \ge \frac{1}{2\varepsilon^2} \left(\ln H + \ln \frac{1}{\delta} \right)$$

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams