
www.digitalocean.com /community/tutorials/gradient-boosting-for-classification

Making Sense of Gradient Boosting in

Classification: A Clear Guide

Vihar Kurama ⋮ 24-30 minutes ⋮ 3/29/2020

Introduction

Machine learning algorithms require more than just fitting models and

making predictions to improve accuracy. Most winning models in the

industry or in competitions have been using Ensemble Techniques or

Feature Engineering to perform better.

Ensemble techniques, in particular, have gained popularity because of

their ease of use compared to Feature Engineering. Multiple ensemble

methods have proven to increase accuracy when used with advanced

machine learning algorithms. One such method is Gradient Boosting.

While Gradient Boosting is often discussed as if it were a black box, in

this article, we’ll unravel the secrets of Gradient Boosting step by step,

intuitively and extensively, so you can understand how it works.

In this article, we’ll cover the following topics:

What Is Gradient Boosting?

Gradient Boosting in Classification

An Intuitive Understanding: Visualizing Gradient Boosting

A Mathematical Understanding

Implementation of Gradient Boosting in Python

https://www.digitalocean.com/community/tutorials/gradient-boosting-for-classification
https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning
https://www.digitalocean.com/community/tutorials/implementing-gradient-boosting-regression-python

Comparing and Contrasting AdaBoost and Gradient Boost

Advantages and Disadvantages of Gradient Boost

Conclusion

Prerequisites

Basic Knowledge of Machine Learning: Familiarity with

supervised learning, especially classification tasks.

Understanding of Decision Trees: Knowledge of decision trees

is important, as Gradient Boosting builds upon weak learners,

typically decision trees.

Concept of Ensemble Methods: Understanding of ensemble

techniques like bagging and boosting, which combine multiple

models to improve performance.

Mathematics: A Basic understanding of calculus (differentiation)

and linear algebra (vectors and matrices) is helpful to grasp the

optimization and gradient descent process.

Python Programming: Familiarity with Python and common ML

libraries like Scikit-Learn for implementing Gradient Boosting

algorithms.

What is Gradient Boosting?

Let’s start by briefly reviewing ensemble learning. Like the name

suggests, ensemble learning involves building a strong model by using

a collection (or “ensemble”) of “weaker” models. Gradient boosting

https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning#decision-tree-learning
https://www.digitalocean.com/community/tutorials/logistic-regression-with-scikit-learn

falls under the category of boosting methods, which iteratively learn

from each of the weak learners to build a strong model. It can

optimize:

Regression

Classification

Ranking

The scope of this article will be limited to classification in particular.

The idea behind boosting comes from the intuition that weak learners

could be modified to become better. AdaBoost was the first boosting

algorithm. AdaBoost and related algorithms were first cast in a

statistical framework by Leo Breiman (1997), which laid the foundation

for other researchers, such as Jerome H. Friedman to modify this work

into the development of the gradient boosting algorithm for regression.

Subsequently, many researchers developed this boosting algorithm for

many more fields of machine learning and statistics, far beyond the

initial applications in regression and classification.

The term “Gradient” in Gradient Boosting refers to the fact that you

have two or more derivatives of the same function (we’ll cover this in

more detail later). Gradient Boosting is an iterative functional gradient

algorithm, i.e., an algorithm that minimizes a loss function by iteratively

choosing a function that points towards the negative gradient, a weak

hypothesis.

Gradient Boosting in Classification

https://www.digitalocean.com/community/tutorials/adaboost-optimizer
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf
https://statistics.stanford.edu/people/jerome-h-friedman

Over the years, gradient boosting has found applications across

various technical fields. The algorithm can look complicated at first, but

in most cases we use only one predefined configuration for

classification and one for regression, which can of course be modified

based on your requirements. In this article we’ll focus on Gradient

Boosting for classification problems. We’ll start with a look at how the

algorithm works behind-the-scenes, intuitively and mathematically.

Gradient Boosting has three main components:

Loss Function - The role of the loss function is to estimate how

good the model is at making predictions with the given data. This

could vary depending on the problem at hand. For example, if

we’re trying to predict the weight of a person depending on some

input variables (a regression problem), then the loss function

would be something that helps us find the difference between the

predicted weights and the observed weights. On the other hand, if

we’re trying to categorize whether a person will like a certain

movie based on their personality, we’ll require a loss function that

helps us understand how accurate our model is at classifying

people who did or didn’t like certain movies.

Weak Learner—A weak learner classifies our data but does so

poorly, perhaps no better than random guessing. In other words, it

has a high error rate. These are typically decision trees (also

called decision stumps because they are less complicated than

typical decision trees).

Additive Model - This is the iterative and sequential approach of

adding the trees (weak learners) one step at a time. After each

iteration, we need to be closer to our final model. In other words,

each iteration should reduce the value of our loss function.

An Intuitive Understanding: Visualizing Gradient Boost

Let’s start by looking at one of the most common binary classification

machine learning problems. It aims at predicting the fate of the

passengers on the Titanic based on a few features: their age, gender,

etc. We will take only a subset of the dataset and choose certain

columns for convenience. Our dataset looks something like this:

Titanic Passenger Data

Pclass, or Passenger Class, is categorical: 1, 2, or 3.

Age is the age of the passenger when they were on the Titanic.

Fare is the Passenger Fare.

Sex is the gender of the person.

Survived refers to whether or not the person survived the crash; 0

if they did not, 1 if they did.

Now let’s look at how the Gradient Boosting algorithm solves this

problem.

We start with one leaf node that predicts the initial value for every

individual passenger. For a classification problem, it will be the

log(odds) of the target value. Log (odds) is the equivalent of the

average in a classification problem. Since four passengers in our case

survived, and two did not survive, the log(odds) that a passenger

survived would be:

This becomes our initial leaf.

Initial Leaf Node

The easiest way to use the log(odds) for classification is to convert it to

a probability. To do so, we’ll use this formula:

Note: Please bear in mind that we have rounded everything off to one

decimal place here, and hence, the log(odds) and probability are the

same, which may not always be the case.

If the probability of survival is greater than 0.5, then we first classify

everyone in the training dataset as survivors. (0.5 is a common

threshold used for classification decisions made based on probability;

note that the threshold can easily be taken as something else.)

Now, we need to calculate the Pseudo Residual, which is the

difference between the observed value and the predicted value. Let’s

draw the residuals on a graph.

The blue and the yellow dots are the observed values. The blue dots

are the passengers who did not survive, with a probability of 0, and the

yellow dots are the passengers who survived, with a probability of 1.

The dotted line here represents the predicted probability, which is 0.7

We need to find the residual, which would be :

Here, 1 denotes Yes and 0 denotes No.

We will use this residual to get the next tree. It may seem absurd that

we are considering the residual instead of the actual value, but we

shall explain more clearly.

Branching out data points using the residual values

We use a limit of two leaves here to simplify our example, but in reality,

Gradient Boost has a range between 8 leaves to 32 leaves.

Because of the limit on leaves, one leaf can have multiple values.

Predictions are in terms of log(odds), but these leave are derived from

probability, which causes disparity. So, we can’t just add the single leaf

we got earlier and this tree to get new predictions because they’re

derived from different sources. We have to use some kind of

transformation. The most common form of transformation used in

Gradient Boost for Classification is :

The numerator in this equation is the sum of residuals in that particular

leaf.

The denominator is sum of (previous prediction probability for each

residual) * (1 - same previous prediction probability).

The derivation of this formula shall be explained in the Mathematical

section of this article.

For now, let us put the formula into practice:

The first leaf has only one residual value that is 0.3, and since this is

the first tree, the previous probability will be the value from the initial

leaf; thus, the same for all residuals. Hence,

For the second leaf,

Similarly, for the last leaf:

Now the transformed tree looks like:

Transformed tree

Now that we have transformed it, we can add our initial lead with our

new tree with a learning rate.

Learning Rate is used to scale the contribution from the new tree.

This results in a small step in the right direction of prediction. Empirical

evidence has proven that taking lots of small steps in the right direction

results in better prediction with a testing dataset, i.e, the dataset that

the model has never see,n as compared to the perfect prediction in 1st

step. Learning Rate is usually a small number like 0.1

We can now calculate a new log(odds) prediction and hence a new

probability.

For example, for the first passenger, Old Tree = 0.7. Learning Rate,

which remains the same for all records, is equal to 0.1, and by scaling

the new tree, we find its value to be -0.16. Hence, substituting in the

formula, we get:

Similarly, we substitute and find the new log(odds) for each passenger

and hence find the probability. Using the new probability, we will

calculate the new residuals.

This process repeats until we have made the maximum number of

trees specified or the residuals get super small.

A Mathematical Understanding

Now that we have intuitively understood how a Gradient Boosting

Algorithm works on a classification problem, it would be important to fill

in the many blanks that we left in the previous section, which can be

done by understanding the process mathematically.

We shall go through each step, one at a time, and try to understand it.

We can predict the log likelihood of the data given the predicted

probability.

Here, p is the predicted probability.

The goal would be to maximize the log likelihood function. Hence, if we

use the log(likelihood) as our loss function, where smaller values

represent better fitting models, then:

Now the log(likelihood) is a function of predicted probability p but we

need it to be a function of predictive log(odds). So, let us try and

convert the formula :

We know that :

Substituting,

Now,

Hence,

Now that we have converted the p to log(odds), this becomes our

Loss Function.

We have to show that this is differentiable.

This can also be written as :

Now we can proceed to the actual steps of the model building.

Step 1: Initialize the model with a constant

value

Here, yᵢ represents the observed values, L is the loss function, and γ

(gamma) is the value representing the log(odds).

We’re summing the loss function across all observations, meaning we

calculate the loss for each individual yᵢ and then add them all together.

When we say “argmin over gamma”, it means we are looking for the

value of γ (log(odds) value) that minimizes the total loss. In other

words, we want to find the best possible log(odds) that makes the

predictions as close as possible to the actual observed values,

according to the chosen loss function.

Then, we take the derivative of each loss function :

… and so on.

Step 2: for m = 1 to M

(A)

This step requires you to calculate the residual using the given

formula. We have already found the loss function to be:

Hence,

(B) Fit a regression tree to the residual values and create terminal

regions

Because the leaves are limited for one branch hence, we might have

more than one value in a particular terminal region.

In our first tree, m=1 and j will be the unique number for each terminal

node. So R11, R21 and so on.

©

For each leaf in the new tree, we calculate gamma which is the output

value. The summation should be only for those records which goes

into making that leaf. In theory, we could find the derivative with

respect to gamma to obtain the value of gamma but that could be

extremely wearisome due to the hefty variables included in our loss

function.

Substituting the loss function and i=1 in the equation above, we get:

We use a second-order Taylor Polynomial to approximate this Loss

Function :

https://en.wikipedia.org/wiki/Taylor_series

There are three terms in our approximation. Taking the derivative

concerning gamma gives us:

Equating this to 0 and subtracting the single derivative term from both

sides.

Then, gamma will be equal to :

The gamma equation may look humongous, but in simple terms, it is :

Substitute the derivative of the loss function’s value.

Now we shall solve for the second derivative of the loss function. After

some heavy computations, we get:

We have simplified the numerator as well as the denominator. The

final gamma solution looks like:

We were trying to find the value of gamma that, when added to the

most recent predicted log(odds), minimizes our Loss Function. This

gamma works when our terminal region has only one residual value

and hence one predicted probability. But, do recall from our example

above that because of the restricted leaves in Gradient Boosting, one

terminal region may have many values. Then the generalized formula

would be:

Hence, we have calculated the output values for each leaf in the tree.

(D)

This formula is asking us to update our predictions now. In the first

pass, m =1, and we will substitute F0(x), the common prediction for all

samples, i.e., the initial leaf value plus nu, which is the learning rate,

into the output value from the tree we built previously. The summation

is for the cases where a single sample ends up in multiple leaves.

Now we will use this new F1(x) value to get new predictions for each

sample.

The new predicted value should get us a little closer to actual value. It

is to be noted that in contrary to one tree in our consideration, gradient

boosting builds a lot of trees and M could be as large as 100 or more.

This completes our for loop in Step 2, and we are ready for the final

step of Gradient Boosting.

Step 3: Output

If we get new data, then we shall use this value to predict whether the

passenger survived or not. This would give us the log(odds) that the

person survived. Plugging it into the ‘p’ formula:

If the resultant value lies above our threshold, then the person

survived; otherwise, they did not.

Implementation of Gradient Boosting using

Python

We will work with the complete Titanic Dataset available on Kaggle.

The dataset is already divided into training set and test set for our

convenience.

The first step would be to import the libraries that we will need in the

process.

import pandas as pd

from sklearn.ensemble import

GradientBoostingClassifier

import numpy as np

from sklearn import metrics

https://www.kaggle.com/c/titanic/data

Then we will load our training and testing data

train = pd.read_csv("train.csv")

test= pd.read_csv("test.csv")

Let us print out the data types of each column

train.info(), test.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

PassengerId 891 non-null int64

Survived 891 non-null int64

Pclass 891 non-null int64

Name 891 non-null object

Sex 891 non-null object

Age 714 non-null float64

SibSp 891 non-null int64

Parch 891 non-null int64

Ticket 891 non-null object

Fare 891 non-null float64

Cabin 204 non-null object

Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.6+ KB

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 418 entries, 0 to 417

Data columns (total 11 columns):

PassengerId 418 non-null int64

Pclass 418 non-null int64

Name 418 non-null object

Sex 418 non-null object

Age 332 non-null float64

SibSp 418 non-null int64

Parch 418 non-null int64

Ticket 418 non-null object

Fare 417 non-null float64

Cabin 91 non-null object

Embarked 418 non-null object

dtypes: float64(2), int64(4), object(5)

memory usage: 36.0+ KB

Set PassengerID as our Index

set "PassengerId" variable as index

train.set_index("PassengerId", inplace=True)

test.set_index("PassengerId", inplace=True)

We generate training target set and training input set and check the

shape. All the variables except “Survived” columns becomes the input

variables or features and the “Survived” column alone becomes our

target variable because we are trying to predict based on the

information of passengers if the passenger survived or not.

Join the train and test datasets to get a train-test dataset

train_test = train.append(test)

The next step would be to preprocess the data before we feed it into

our model.

We do the following preprocessing:

1. Remove columns “Name”, “Age”, “SibSp”, “Ticket”, “Cabin”,

“Parch”.

2. Convert objects to numbers with pandas.get_dummies.

3. Fill nulls with a value of 0.0 and the most common occurrence in

the case of a categorical variable.

4. Transform data with the MinMaxScaler() method.

5. Randomly split the training set into train and validation subsets.

delete columns that are not used as features for

training and prediction

columns_to_drop = ["Name", "Age", "SibSp", "Ticket",

"Cabin", "Parch"]

train_test.drop(labels=columns_to_drop, axis=1,

inplace=True)

train_test_dummies = pd.get_dummies(train_test,

columns=["Sex"])

train_test_dummies.shape

Check the missing values in the data:

train_test_dummies.isna().sum().sort_values(ascending=Fa

Embarked 2

Fare 1

Sex_male 0

Sex_female 0

Pclass 0

dtype: int64

Let us handle these missing values. For “Embarked”, we will impute

the most occurring value and then create dummy variables, and for

“Fare”, we will impute 0.

train_test_dummies['Embarked'].value_counts()

train_test_dummies['Embarked'].fillna('S',inplace=True)

most common

train_test_dummies['Embarked_S'] =

train_test_dummies['Embarked'].map(lambda i: 1 if

i=='S' else 0)

train_test_dummies['Embarked_C'] =

train_test_dummies['Embarked'].map(lambda i: 1 if

i=='C' else 0)

train_test_dummies['Embarked_Q'] =

train_test_dummies['Embarked'].map(lambda i: 1 if

i=='Q' else 0)

train_test_dummies.drop(['Embarked'],axis=1,inplace=True

train_test_dummies.fillna(value=0.0, inplace=True)

One final look to check if we have handled all the missing values.

train_test_dummies.isna().sum().sort_values(ascending=Fa

Embarked_Q 0

Embarked_C 0

Embarked_S 0

Sex_male 0

Sex_female 0

Fare 0

Pclass 0

dtype: int64

All missing values seem to be handled.

Previously, we have generated our target set. Now we will generate

our feature set/input set.

X_train = train_test_dummies.values[0:891]

X_test = train_test_dummies.values[891:]

It is time for one more final step before we fit our model, which would

be to transform our data to get everything to one particular scale.

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X_train_scale = scaler.fit_transform(X_train)

X_test_scale = scaler.transform(X_test)

We have to now split our dataset into training and testing. Training to

train our model and testing to check how good our model fits the

dataset.

from sklearn.model_selection import train_test_split

X_train_sub, X_validation_sub, y_train_sub,

y_validation_sub = train_test_split(X_train_scale,

y_train, random_state=0)

Now we train our Gradient Boost Algorithm and check the accuracy at

different learning rates ranging from 0 to 1.

learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]

for learning_rate in learning_rates:

gb = GradientBoostingClassifier(n_estimators=20,

learning_rate = learning_rate, max_features=2,

max_depth = 2, random_state = 0)

gb.fit(X_train_sub, y_train_sub)

print("Learning rate: ", learning_rate)

print("Accuracy score (training):

{0:.3f}".format(gb.score(X_train_sub, y_train_sub)))

print("Accuracy score (validation):

{0:.3f}".format(gb.score(X_validation_sub,

y_validation_sub)))

('Learning rate: ', 0.05)

Accuracy score (training): 0.808

Accuracy score (validation): 0.834

('Learning rate: ', 0.1)

Accuracy score (training): 0.799

Accuracy score (validation): 0.803

('Learning rate: ', 0.25)

Accuracy score (training): 0.811

Accuracy score (validation): 0.803

('Learning rate: ', 0.5)

Accuracy score (training): 0.820

Accuracy score (validation): 0.794

('Learning rate: ', 0.75)

Accuracy score (training): 0.822

Accuracy score (validation): 0.803

('Learning rate: ', 1)

Accuracy score (training): 0.822

Accuracy score (validation): 0.816

This completes our code. A brief explanation about the parameters

used here.

n_estimators: The number of boosting stages to perform.

Gradient boosting is fairly robust to over-fitting, so a large number

usually results in a better performance.

learning_rate: Learning rate shrinks the contribution of each tree

by learning_rate. There is a trade-off between learning_rate and

n_estimators.

max_features: The number of features to consider when looking

for the best split.

max_depth: Maximum depth of the individual regression

estimators. The maximum depth limits the number of nodes in the

tree. Tune this parameter for best performance; the best value

depends on the interaction of the input variables.

random_state: Random_state is the seed used by the random

number generator.

Hyper-tune these parameters to get the best accuracy.

Comparing and Contrasting AdaBoost and

GradientBoost

Both AdaBoost and Gradient Boost learn sequentially from a weak set

of learners. A strong learner is obtained from the additive model of

these weak learners. The main focus here is to learn from the

shortcomings at each step in the iteration.

AdaBoost requires users to specify a set of weak learners

(alternatively, it will randomly generate a set of weak learners before

the real learning process). It increases the weights of the wrongly

predicted instances and decreases the weights of the correctly

predicted instances. The weak learner thus focuses more on the

difficult instances. After being trained, the weak learner is added to the

strong one according to its performance. The higher it performs, the

more it contributes to the strong learner.

On the other hand, gradient boosting doesn’t modify the sample

distribution. Instead of training on a newly sampled distribution, the

weak learner trains on the remaining errors of the strong learner. It is

another way to give more importance to the difficult instances. At each

iteration, the pseudo-residuals are computed, and a weak learner is

fitted to these pseudo-residuals. Then, the contribution of the weak

learner to the strong one isn’t computed according to its performance

on the newly distributed sample, but using a gradient descent

optimization process. The computed contribution is the one minimizing

the overall error of the strong learner.

Adaboost is more about ‘voting weights,’ and gradient boosting is

more about ‘adding gradient optimization’.

Advantages and Disadvantages of Gradient

Boost

Advantages of Gradient Boosting are:

Often provides predictive accuracy that cannot be trumped.

Lots of flexibility - can optimize on different loss functions and

provides several hyperparameter tuning options that make the

function very flexible.

No data pre-processing required - often works great with

categorical and numerical values as is.

Handles missing data - imputation not required.

Pretty awesome, right? Let us look at some disadvantages, too.

Gradient Boosting Models will continue improving to minimize all

errors. This can overemphasize outliers and cause overfitting.

Computationally expensive - often require many trees (>1000),

which can be time and memory-exhaustive.

The high flexibility results in many parameters that interact and

influence heavily the behavior of the approach (number of

iterations, tree depth, regularization parameters, etc.). This

requires a large grid search during tuning.

Less interpretative, although this is easily addressed with various

tools.

Conclusion

In this article, we explored both the theory and practical application of

the Gradient Boosting algorithm—one of the most effective techniques

for building high-performing models in both classification and

regression tasks. While Gradient Boosting can be prone to overfitting,

techniques like penalized learning, tree constraints, randomized

sampling, and shrinkage help mitigate this and improve generalization.

Gradient Boosting has been instrumental in solving numerous real-

world machine learning problems across industries. We hope this

guide has inspired you to dive deeper into Gradient Boosting and start

applying it to your own ML projects.

Ready to experiment? Spin up a DigitalOcean GPU Droplet and begin

training your Gradient Boosting models in the cloud. You can also

explore tutorials in the DigitalOcean Community to learn more about

machine learning workflows.

References

1. Gradient Boosting Classifiers in Python with Scikit-Learn

2. Boosting with AdaBoost and Gradient Boosting - The Making Of…

a Data Scientist

3. Gradient Boost Part 1: Regression Main Ideas

4. Gradient Boosting Machines

5. Boosting with AdaBoost and Gradient Boosting - The Making Of…

a Data Scientist

6. 3.2.4.3.6. sklearn. ensemble.GradientBoostingRegressor — scikit-

learn 0.22.2 documentation

7. Gradient Boosting for Regression Problems With Example | Basics

of Regression Algorithm

https://www.digitalocean.com/products/gpu-droplets
https://www.digitalocean.com/community/tutorials
https://stackabuse.com/gradient-boosting-classifiers-in-python-with-scikit-learn/
https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81
https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81
https://www.youtube.com/watch?v=3CC4N4z3GJc
http://uc-r.github.io/gbm_regression
https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81
https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://acadgild.com/blog/gradient-boosting-for-regression-problems
https://acadgild.com/blog/gradient-boosting-for-regression-problems

8. A Gentle Introduction to Gradient Boosting

9. Understanding Gradient Boosting Machines

This work is licensed under a Creative Commons

Attribution-NonCommercial- ShareAlike 4.0 International License.

https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

