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We assume that we have iid (independent identically distributed) samples X(1), . . . , X(n) that follow some
unknown distribution. The task of statistics is to estimate properties of the unknown distribution. In this
note we focus one estimating a parameter of the distribution such as the mean or variance. In some cases
the parameter completely characterizes the distribution and estimating it provides a probability estimate.

In this note, we assume that the parameter is a real vector θ ∈ Rd. To estimate it, we use an es-
timator which is a function of our observations θ̂(x(1), . . . , x(n)). We follow standard practice and omit

(in notation only) the dependency of the estimator on the samples, i.e. we write θ̂. However, note that

θ̂ = θ̂(X(1), . . . , X(n)) is a random variable since it is a function of n random variables.
A desirable property of an estimator is that it is correct on average. That is, if there are repeated

samplings of n samples X(1), . . . , X(n), the estimator θ̂(X(1), . . . , X(n)) will have, on average, the correct
value. Such estimators are called unbiased.

Definition 1. The bias of θ̂ is1 Bias(θ̂) = E(θ̂)− θ. If it is 0, the estimator θ̂ is said to be unbiased.

There is, however, more important performance characterizations for an estimator than just being unbi-
ased. The mean squared error is perhaps the most important of them. It captures the error that the estimator
makes. However, since the estimator is a RV, we need to average over its distribution thus capturing the
average performance if there are many repeated samplings of X(1), . . . , X(n).

Definition 2. The mean squared error (MSE) of an estimator is E(‖θ̂ − θ‖2) = E(
∑d
j=1(θ̂j − θj)2).

Theorem 1.
E(‖θ̂ − θ‖2) = trace(Var(θ̂)) + ‖Bias(θ̂)‖2.

Note that Var(θ̂) is the covariance matrix of θ̂ and so its trace is
∑d
j=1 Var(θ̂j).

Proof. Since the MSE equals
∑d
j=1 E((θ̂j − θj)

2) it is sufficient to prove for a scalar θ, E((θ̂ − θ)2) =

Var(θ̂) + Bias2(θ̂):

E((θ̂ − θ)2) = E(((θ̂ − E(θ̂)) + (E(θ̂)− θ)2) = E{(θ̂ − E(θ̂))2 + (E(θ̂)− θ)2 + (θ̂ − E(θ̂))(E(θ̂)− θ)}

= Var(θ̂) + Bias2(θ̂) + E((θ̂ − E(θ̂))(E(θ̂)− θ)) = Var(θ̂) + Bias2(θ̂) + E(θ̂E(θ̂)− (E(θ̂))2 − θθ̂ + E(θ̂)θ)

= Var(θ̂) + Bias2(θ̂) + (E(θ̂))2 − (E(θ̂))2 − θE(θ̂) + θE(θ̂) = Var(θ̂) + Bias2(θ̂).

Since the MSE decomposes into a sum of the bias and variance of the estimator, both quantities are
important and need to be as small as possible to achieve good estimation performance. It is common to
trade-off some increase in bias for a larger decrease in the variance and vice-verse.

1Note here and in the sequel all expectations are with respect to X(1), . . . , X(n).
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Two important special cases are the mean θ̂ = X̄ = 1
n

∑
X(i) which estimates the vector E(X) and

θ̂ = S2, where S2
j =

1

n− 1

n∑
i=1

(X
(i)
j − X̄j)

2 j = 1, . . . , d

which estimates the diagonal of the covariance matrix Var(X). We show below that both are unbiased and
therefore their MSE is simply their variance.

Theorem 2. X̄ is an unbiased estimator of E(X) and S2 is an unbiased estimator of the diagonal of the
covariance matrix Var(X).

Proof.

E(X̄) = E

(
n−1

n∑
i=1

X(i)

)
=

n∑
i=1

E(X(i))/n = nE(X(i))/n.

To prove that S2 is unbiased we show that it is unbiased in the one dimensional case i.e., X,S2 are scalars
(if this holds, we can apply this result to each component separately to get unbiasedness of the vector S2).
We first need the following result (recall that below X is a scalar)

n∑
i=1

(X(i) − X̄)2 =
∑

(X(i))2 − 2X̄
∑

X(i) + nX̄2 =
∑

(X(i))2 − 2nX̄X̄ + nX̄2 =
∑

(X(i))2 − nX̄2

and therefore

E

(
n∑
i=1

(X(i) − X̄)2

)
= E

(
n∑
i=1

(X(i))2 − nX̄2

)
=

n∑
i=1

E((X(i))2)− nE(X̄2) = nE((X(1))2)− nE(X̄2).

Substituting the expectations E(X2) = Var(X)+(E(X))2 = Var(X)+(EX)2 and E(X̄2) = Var(X̄)+(E(X̄))2 =
Var(X)
n + (EX)2 in the above equation we have

E

(
n∑
i=1

(X(i) − X̄)2

)
= n(Var(X) + (EX)2)− n

(
Var(X)

n
+ (EX)2

)
= (n− 1)Var(X).

Returning now to the multivariate case, this implies E(S2
j ) = E(

∑n
i=1(X

(i)
j − X̄j)

2/(n − 1)) = Var(Xj) for

all j and therefore ES2 = diag(Var(X)).

Since the bias is zero, the MSE of X̄ as an estimator of EX is
∑d
j=1 Var(X̄j) =

∑d
j=1

n
n2Var(Xj). Thus,

if d is fixed and n→∞ the MSE(X̄)→ 0. For S2, the MSE is trace(Var(S2)) which may be computed with
some tedious algebra (it also decreases to 0 as n→∞).

Another performance measure for estimators θ̂ is the probability that the estimator’s error is outside
some acceptable error range P (‖θ̂ − θ‖ ≥ ε). However, to evaluate the above quantity, we need (i) the pdf
fθ̂ which depends on the pdf of X (which is typically unknown) and (ii) the true value θ (also typically

unknown). If θ̂ is unbiased we may obtain the following bound

P (‖θ̂ − θ‖2 ≥ ε) = P

 d∑
j=1

|θ̂j − θj |2 ≥ ε

 ≤ d∑
j=1

P (|θ̂j − θj |2 ≥ ε/d) =

d∑
j=1

P (|θ̂j − θj | ≥
√
ε/d)

≤ d

ε

d∑
j=1

Var(θ̂j) =
d

ε
trace(Var(θ̂))

where we used Boole’s and Chebyshev’s inequalities. This again shows (but in a different way than the bias

variance decomposition of the MSE) that the quality of unbiased estimators is determined by trace(Var(θ̂)).
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