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Abstract

Multiclass learning problems involve �nding a de�nition for an unknown function f(x)
whose range is a discrete set containing k > 2 values (i.e., k \classes"). The de�nition is
acquired by studying collections of training examples of the form hxi; f(xi)i. Existing ap-
proaches to multiclass learning problems include direct application of multiclass algorithms
such as the decision-tree algorithms C4.5 and CART, application of binary concept learning
algorithms to learn individual binary functions for each of the k classes, and application
of binary concept learning algorithms with distributed output representations. This paper
compares these three approaches to a new technique in which error-correcting codes are
employed as a distributed output representation. We show that these output representa-
tions improve the generalization performance of both C4.5 and backpropagation on a wide
range of multiclass learning tasks. We also demonstrate that this approach is robust with
respect to changes in the size of the training sample, the assignment of distributed represen-
tations to particular classes, and the application of over�tting avoidance techniques such as
decision-tree pruning. Finally, we show that|like the other methods|the error-correcting
code technique can provide reliable class probability estimates. Taken together, these re-
sults demonstrate that error-correcting output codes provide a general-purpose method for
improving the performance of inductive learning programs on multiclass problems.

1. Introduction

The task of learning from examples is to �nd an approximate de�nition for an unknown
function f(x) given training examples of the form hxi; f(xi)i. For cases in which f takes
only the values f0; 1g|binary functions|there are many algorithms available. For example,
the decision-tree methods, such as C4.5 (Quinlan, 1993) and CART (Breiman, Friedman,
Olshen, & Stone, 1984) can construct trees whose leaves are labeled with binary values.
Most arti�cial neural network algorithms, such as the perceptron algorithm (Rosenblatt,
1958) and the error backpropagation (BP) algorithm (Rumelhart, Hinton, & Williams,
1986), are best suited to learning binary functions. Theoretical studies of learning have
focused almost entirely on learning binary functions (Valiant, 1984; Natarajan, 1991).

In many real-world learning tasks, however, the unknown function f often takes values
from a discrete set of \classes": fc1; : : : ; ckg. For example, in medical diagnosis, the function
might map a description of a patient to one of k possible diseases. In digit recognition (e.g.,

c1995 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



Dietterich & Bakiri

LeCun, Boser, Denker, Henderson, Howard, Hubbard, & Jackel, 1989), the function maps
each hand-printed digit to one of k = 10 classes. Phoneme recognition systems (e.g., Waibel,
Hanazawa, Hinton, Shikano, & Lang, 1989) typically classify a speech segment into one of
50 to 60 phonemes.

Decision-tree algorithms can be easily generalized to handle these \multiclass" learning
tasks. Each leaf of the decision tree can be labeled with one of the k classes, and internal
nodes can be selected to discriminate among these classes. We will call this the direct

multiclass approach.

Connectionist algorithms are more di�cult to apply to multiclass problems. The stan-
dard approach is to learn k individual binary functions f1; : : : ; fk, one for each class. To
assign a new case, x, to one of these classes, each of the fi is evaluated on x, and x is
assigned the class j of the function fj that returns the highest activation (Nilsson, 1965).
We will call this the one-per-class approach, since one binary function is learned for each
class.

An alternative approach explored by some researchers is to employ a distributed output

code. This approach was pioneered by Sejnowski and Rosenberg (1987) in their widely-
known NETtalk system. Each class is assigned a unique binary string of length n; we will
refer to these strings as \codewords." Then n binary functions are learned, one for each bit
position in these binary strings. During training for an example from class i, the desired
outputs of these n binary functions are speci�ed by the codeword for class i. With arti�cial
neural networks, these n functions can be implemented by the n output units of a single
network.

New values of x are classi�ed by evaluating each of the n binary functions to generate an
n-bit string s. This string is then compared to each of the k codewords, and x is assigned to
the class whose codeword is closest, according to some distance measure, to the generated
string s.

As an example, consider Table 1, which shows a six-bit distributed code for a ten-class
digit-recognition problem. Notice that each row is distinct, so that each class has a unique
codeword. As in most applications of distributed output codes, the bit positions (columns)
have been chosen to be meaningful. Table 2 gives the meanings for the six columns. During
learning, one binary function will be learned for each column. Notice that each column is
also distinct and that each binary function to be learned is a disjunction of the original
classes. For example, fvl(x) = 1 if f(x) is 1, 4, or 5.

To classify a new hand-printed digit, x, the six functions fvl; fhl; fdl; fcc; fol; and for
are evaluated to obtain a six-bit string, such as 110001. Then the distance of this string
to each of the ten codewords is computed. The nearest codeword, according to Hamming
distance (which counts the number of bits that di�er), is 110000, which corresponds to class
4. Hence, this predicts that f(x) = 4.

This process of mapping the output string to the nearest codeword is identical to the de-
coding step for error-correcting codes (Bose & Ray-Chaudhuri, 1960; Hocquenghem, 1959).
This suggests that there might be some advantage to employing error-correcting codes as
a distributed representation. Indeed, the idea of employing error-correcting, distributed
representations can be traced to early research in machine learning (Duda, Machanik, &
Singleton, 1963).
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Table 1: A distributed code for the digit recognition task.

Code Word
Class vl hl dl cc ol or

0 0 0 0 1 0 0
1 1 0 0 0 0 0
2 0 1 1 0 1 0
3 0 0 0 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 0 0 1 0 0
9 0 0 1 1 0 0

Table 2: Meanings of the six columns for the code in Table 1.

Column position Abbreviation Meaning

1 vl contains vertical line
2 hl contains horizontal line
3 dl contains diagonal line
4 cc contains closed curve
5 ol contains curve open to left
6 or contains curve open to right

Table 3: A 15-bit error-correcting output code for a ten-class problem.

Code Word
Class f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 1
1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
2 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1
3 0 0 1 1 0 1 1 1 0 0 0 0 1 0 1
4 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
5 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1
6 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1
7 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
8 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1
9 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1
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Table 3 shows a 15-bit error-correcting code for the digit-recognition task. Each class is
represented by a code word drawn from an error-correcting code. As with the distributed
encoding of Table 1, a separate boolean function is learned for each bit position of the error-
correcting code. To classify a new example x, each of the learned functions f0(x); : : : ; f14(x)
is evaluated to produce a 15-bit string. This is then mapped to the nearest of the ten
codewords. This code can correct up to three errors out of the 15 bits.

This error-correcting code approach suggests that we view machine learning as a kind
of communications problem in which the identity of the correct output class for a new
example is being \transmitted" over a channel. The channel consists of the input features,
the training examples, and the learning algorithm. Because of errors introduced by the
�nite training sample, poor choice of input features, and aws in the learning process,
the class information is corrupted. By encoding the class in an error-correcting code and
\transmitting" each bit separately (i.e., via a separate run of the learning algorithm), the
system may be able to recover from the errors.

This perspective further suggests that the one-per-class and \meaningful" distributed
output approaches will be inferior, because their output representations do not constitute
robust error-correcting codes. A measure of the quality of an error-correcting code is the
minimum Hamming distance between any pair of code words. If the minimum Hamming
distance is d, then the code can correct at least bd�12 c single bit errors. This is because each
single bit error moves us one unit away from the true codeword (in Hamming distance). If
we make only bd�12 c errors, the nearest codeword will still be the correct codeword. (The
code of Table 3 has minimum Hamming distance seven and hence it can correct errors in
any three bit positions.) The Hamming distance between any two codewords in the one-
per-class code is two, so the one-per-class encoding of the k output classes cannot correct
any errors.

The minimum Hamming distance between pairs of codewords in a \meaningful" dis-
tributed representation tends to be very low. For example, in Table 1, the Hamming
distance between the codewords for classes 4 and 5 is only one. In these kinds of codes, new
columns are often introduced to discriminate between only two classes. Those two classes
will therefore di�er only in one bit position, so the Hamming distance between their output
representations will be one. This is also true of the distributed representation developed by
Sejnowski and Rosenberg (1987) in the NETtalk task.

In this paper, we compare the performance of the error-correcting code approach to
the three existing approaches: the direct multiclass method (using decision trees), the
one-per-class method, and (in the NETtalk task only) the meaningful distributed output
representation approach. We show that error-correcting codes produce uniformly better
generalization performance across a variety of multiclass domains for both the C4.5 decision-
tree learning algorithm and the backpropagation neural network learning algorithm. We
then report a series of experiments designed to assess the robustness of the error-correcting
code approach to various changes in the learning task: length of the code, size of the training
set, assignment of codewords to classes, and decision-tree pruning. Finally, we show that
the error-correcting code approach can produce reliable class probability estimates.

The paper concludes with a discussion of the open questions raised by these results.
Chief among these questions is the issue of why the errors being made in the di�erent bit
positions of the output are somewhat independent of one another. Without this indepen-
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Table 4: Data sets employed in the study.

Number of Number of Number of Number of
Name Features Classes Training Examples Test Examples

glass 9 6 214 10-fold xval
vowel 10 11 528 462
POS 30 12 3,060 10-fold xval
soybean 35 19 307 376
audiologyS 69 24 200 26
ISOLET 617 26 6,238 1,559
letter 16 26 16,000 4,000
NETtalk 203 54 phonemes 1000 words = 1000 words =

6 stresses 7,229 letters 7,242 letters

dence, the error-correcting output code method would fail. We address this question|for
the case of decision-tree algorithms|in a companion paper (Kong & Dietterich, 1995).

2. Methods

This section describes the data sets and learning algorithms employed in this study. It
also discusses the issues involved in the design of error-correcting codes and describes four
algorithms for code design. The section concludes with a brief description of the methods
applied to make classi�cation decisions and evaluate performance on independent test sets.

2.1 Data Sets

Table 4 summarizes the data sets employed in the study. The glass, vowel, soybean, audi-
ologyS, ISOLET, letter, and NETtalk data sets are available from the Irvine Repository of
machine learning databases (Murphy & Aha, 1994).1 The POS (part of speech) data set
was provided by C. Cardie (personal communication); an earlier version of the data set was
described by Cardie (1993). We did not use the entire NETtalk data set, which consists of
a dictionary of 20,003 words and their pronunciations. Instead, to make the experiments
feasible, we chose a training set of 1000 words and a disjoint test set of 1000 words at
random from the NETtalk dictionary. In this paper, we focus on the percentage of letters
pronounced correctly (rather than whole words). To pronounce a letter, both the phoneme
and stress of the letter must be determined. Although there are 54�6 syntactically possible
combinations of phonemes and stresses, only 140 of these appear in the training and test
sets we selected.

1. The repository refers to the soybean data set as \soybean-large", the \audiologyS" data set as \audiol-
ogy.standardized", and the \letter" data set as \letter-recognition".
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2.2 Learning Algorithms

We employed two general classes of learning methods: algorithms for learning decision trees
and algorithms for learning feed-forward networks of sigmoidal units (arti�cial neural net-
works). For decision trees, we performed all of our experiments using C4.5, Release 1, which
is an older (but substantially identical) version of the program described in Quinlan (1993).
We have made several changes to C4.5 to support distributed output representations, but
these have not a�ected the tree-growing part of the algorithm. For pruning, the con�dence
factor was set to 0.25. C4.5 contains a facility for creating \soft thresholds" for continuous
features. We found experimentally that this improved the quality of the class probability
estimates produced by the algorithm in the \glass", \vowel", and \ISOLET" domains, so
the results reported for those domains were computed using soft thresholds.

For neural networks, we employed two implementations. In most domains, we used the
extremely fast backpropagation implementation provided by the CNAPS neurocomputer
(Adaptive Solutions, 1992). This performs simple gradient descent with a �xed learning
rate. The gradient is updated after presenting each training example; no momentum term
was employed. A potential limitation of the CNAPS is that inputs are only represented
to eight bits of accuracy, and weights are only represented to 16 bits of accuracy. Weight
update arithmetic does not round, but instead performs jamming (i.e., forcing the lowest
order bit to 1 when low order bits are lost due to shifting or multiplication). On the
speech recognition, letter recognition, and vowel data sets, we employed the opt system
distributed by Oregon Graduate Institute (Barnard & Cole, 1989). This implements the
conjugate gradient algorithm and updates the gradient after each complete pass through
the training examples (known as per-epoch updating). No learning rate is required for this
approach.

Both the CNAPS and opt attempt to minimize the squared error between the computed
and desired outputs of the network. Many researchers have employed other error measures,
particularly cross-entropy (Hinton, 1989) and classi�cation �gure-of-merit (CFM, Hamp-
shire II & Waibel, 1990). Many researchers also advocate using a softmax normalizing layer
at the outputs of the network (Bridle, 1990). While each of these con�gurations has good
theoretical support, Richard and Lippmann (1991) report that squared error works just as
well as these other measures in producing accurate posterior probability estimates. Further-
more, cross-entropy and CFM tend to over�t more easily than squared error (Lippmann,
personal communication; Weigend, 1993). We chose to minimize squared error because this
is what the CNAPS and opt systems implement.

With either neural network algorithm, several parameters must be chosen by the user.
For the CNAPS, we must select the learning rate, the initial random seed, the number
of hidden units, and the stopping criteria. We selected these to optimize performance
on a validation set, following the methodology of Lang, Hinton, and Waibel (1990). The
training set is subdivided into a subtraining set and a validation set. While training on the
subtraining set, we observed generalization performance on the validation set to determine
the optimal settings of learning rate and network size and the best point at which to
stop training. The training set mean squared error at that stopping point is computed,
and training is then performed on the entire training set using the chosen parameters and
stopping at the indicated mean squared error. Finally, we measure network performance
on the test set.
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For most of the data sets, this procedure worked very well. However, for the letter
recognition data set, it was clearly choosing poor stopping points for the full training set.
To overcome this problem, we employed a slightly di�erent procedure to determine the
stopping epoch. We trained on a series of progressively larger training sets (all of which
were subsets of the �nal training set). Using a validation set, we determined the best
stopping epoch on each of these training sets. We then extrapolated from these training
sets to predict the best stopping epoch on the full training set.

For the \glass" and \POS" data sets, we employed ten-fold cross-validation to assess
generalization performance. We chose training parameters based on only one \fold" of the
ten-fold cross-validation. This creates some test set contamination, since examples in the
validation set data of one fold are in the test set data of other folds. However, we found
that there was little or no over�tting, so the validation set had little e�ect on the choice of
parameters or stopping points.

The other data sets all come with designated test sets, which we employed to measure
generalization performance.

2.3 Error-Correcting Code Design

We de�ne an error-correcting code to be a matrix of binary values such as the matrix shown
in Table 3. The length of a code is the number of columns in the code. The number of
rows in the code is equal to the number of classes in the multiclass learning problem. A
\codeword" is a row in the code.

A good error-correcting output code for a k-class problem should satisfy two properties:

� Row separation. Each codeword should be well-separated in Hamming distance
from each of the other codewords.

� Column separation. Each bit-position function fi should be uncorrelated with the
functions to be learned for the other bit positions fj ; j 6= i: This can be achieved by
insisting that the Hamming distance between column i and each of the other columns
be large and that the Hamming distance between column i and the complement of
each of the other columns also be large.

The power of a code to correct errors is directly related to the row separation, as
discussed above. The purpose of the column separation condition is less obvious. If two
columns i and j are similar or identical, then when a deterministic learning algorithm
such as C4.5 is applied to learn fi and fj , it will make similar (correlated) mistakes. Error-
correcting codes only succeed if the errors made in the individual bit positions are relatively
uncorrelated, so that the number of simultaneous errors in many bit positions is small. If
there are many simultaneous errors, the error-correcting code will not be able to correct
them (Peterson & Weldon, 1972).

The errors in columns i and j will also be highly correlated if the bits in those columns
are complementary. This is because algorithms such as C4.5 and backpropagation treat
a class and its complement symmetrically. C4.5 will construct identical decision trees if
the 0-class and 1-class are interchanged. The maximum Hamming distance between two
columns is attained when the columns are complements. Hence, the column separation
condition attempts to ensure that columns are neither identical nor complementary.
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Table 5: All possible columns for a three-class problem. Note that the last four columns
are complements of the �rst four and that the �rst column does not discriminate
among any of the classes.

Code Word
Class f0 f1 f2 f3 f4 f5 f6 f7
c0 0 0 0 0 1 1 1 1
c1 0 0 1 1 0 0 1 1
c2 0 1 0 1 0 1 0 1

Unless the number of classes is at least �ve, it is di�cult to satisfy both of these prop-
erties. For example, when the number of classes is three, there are only 23 = 8 possible
columns (see Table 5). Of these, half are complements of the other half. So this leaves us
with only four possible columns. One of these will be either all zeroes or all ones, which
will make it useless for discriminating among the rows. The result is that we are left with
only three possible columns, which is exactly what the one-per-class encoding provides.

In general, if there are k classes, there will be at most 2k�1 � 1 usable columns after
removing complements and the all-zeros or all-ones column. For four classes, we get a
seven-column code with minimum inter-row Hamming distance 4. For �ve classes, we get
a 15-column code, and so on.

We have employed four methods for constructing good error-correcting output codes
in this paper: (a) an exhaustive technique, (b) a method that selects columns from an
exhaustive code, (c) a method based on a randomized hill-climbing algorithm, and (d) BCH
codes. The choice of which method to use is based on the number of classes, k. Finding a
single method suitable for all values of k is an open research problem. We describe each of
our four methods in turn.

2.3.1 Exhaustive Codes

When 3 � k � 7, we construct a code of length 2k�1�1 as follows. Row 1 is all ones. Row 2
consists of 2k�2 zeroes followed by 2k�2�1 ones. Row 3 consists of 2k�3 zeroes, followed by
2k�3 ones, followed by 2k�3 zeroes, followed by 2k�3�1 ones. In row i, there are alternating
runs of 2k�i zeroes and ones. Table 6 shows the exhaustive code for a �ve-class problem.
This code has inter-row Hamming distance 8; no columns are identical or complementary.

2.3.2 Column Selection from Exhaustive Codes

When 8 � k � 11, we construct an exhaustive code and then select a good subset of
its columns. We formulate this as a propositional satis�ability problem and apply the
GSAT algorithm (Selman, Levesque, & Mitchell, 1992) to attempt a solution. A solution
is required to include exactly L columns (the desired length of the code) while ensuring
that the Hamming distance between every two columns is between d and L � d, for some
chosen value of d. Each column is represented by a boolean variable. A pairwise mutual
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Table 6: Exhaustive code for k=5.

Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0

01

1 0

0 1

Figure 1: Hill-climbing algorithm for improving row and column separation. The two closest
rows and columns are indicated by lines. Where these lines intersect, the bits in
the code words are changed to improve separations as shown on the right.

exclusion constraint is placed between any two columns that violate the column separation
condition. To support these constraints, we extended GSAT to support mutual exclusion
and \m-of-n" constraints e�ciently.

2.3.3 Randomized Hill Climbing

For k > 11, we employed a random search algorithm that begins by drawing k random
strings of the desired length L. Any pair of such random strings will be separated by a
Hamming distance that is binomially distributed with mean L=2. Hence, such randomly
generated codes are generally quite good on average. To improve them, the algorithm
repeatedly �nds the pair of rows closest together in Hamming distance and the pair of
columns that have the \most extreme" Hamming distance (i.e., either too close or too
far apart). The algorithm then computes the four codeword bits where these rows and
columns intersect and changes them to improve the row and column separations as shown
in Figure 1. When this hill climbing procedure reaches a local maximum, the algorithm
randomly chooses pairs of rows and columns and tries to improve their separations. This
combined hill-climbing/random-choice procedure is able to improve the minimum Hamming
distance separation quite substantially.
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2.3.4 BCH Codes

For k > 11 we also applied the BCH algorithm to design codes (Bose & Ray-Chaudhuri,
1960; Hocquenghem, 1959). The BCH algorithm employs algebraic methods from Galois
�eld theory to design nearly optimal error-correcting codes. However, there are three prac-
tical drawbacks to using this algorithm. First, published tables of the primitive polynomials
required by this algorithm only produce codes up to length 64, since this is the largest word
size employed in computer memories. Second, the codes do not always exhibit good column
separations. Third, the number of rows in these codes is always a power of two. If the num-
ber of classes k in our learning problem is not a power of two, we must shorten the code by
deleting rows (and possible columns) while maintaining good row and column separations.
We have experimented with various heuristic greedy algorithms for code shortening. For
most of the codes used in the NETtalk, ISOLET, and Letter Recognition domains, we have
used a combination of simple greedy algorithms and manual intervention to design good
shortened BCH codes.

In each of the data sets that we studied, we designed a series of error-correcting codes
of increasing lengths. We executed each learning algorithm for each of these codes. We
stopped lengthening the codes when performance appeared to be leveling o�.

2.4 Making Classi�cation Decisions

Each approach to solving multiclass problems|direct multiclass, one-per-class, and error-
correcting output coding|assumes a method for classifying new examples. For the C4.5
direct multiclass approach, the C4.5 system computes a class probability estimate for each
new example. This estimates the probability that that example belongs to each of the
k classes. C4.5 then chooses the class having the highest probability as the class of the
example.

For the one-per-class approach, each decision tree or neural network output unit can
be viewed as computing the probability that the new example belongs to its corresponding
class. The class whose decision tree or output unit gives the highest probability estimate
is chosen as the predicted class. Ties are broken arbitrarily in favor of the class that comes
�rst in the class ordering.

For the error-correcting output code approach, each decision tree or neural network
output unit can be viewed as computing the probability that its corresponding bit in the
codeword is one. Call these probability values B = hb1; b2; : : : ; bni, where n is the length of
the codewords in the error-correcting code. To classify a new example, we compute the L1

distance between this probability vector B and each of the codewords Wi (i = 1 : : :k) in
the error correcting code. The L1 distance between B and Wi is de�ned as

L1(B;Wi) =
LX

j=0

jbj �Wi;j j:

The class whose codeword has the smallest L1 distance to B is assigned as the class of the
new example. Ties are broken arbitrarily in favor of the class that comes �rst in the class
ordering.
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Figure 2: Performance (in percentage points) of the one-per-class and ECOC methods rel-
ative to the direct multiclass method using C4.5. Asterisk indicates di�erence is
signi�cant at the 0.05 level or better.

3. Results

We now present the results of our experiments. We begin with the results for decision trees.
Then, we consider neural networks. Finally, we report the results of a series of experiments
to assess the robustness of the error-correcting output code method.

3.1 Decision Trees

Figure 2 shows the performance of C4.5 in all eight domains. The horizontal line corresponds
to the performance of the standard multiclass decision-tree algorithm. The light bar shows
the performance of the one-per-class approach, and the dark bar shows the performance of
the ECOC approach with the longest error-correcting code tested. Performance is displayed
as the number of percentage points by which each pair of algorithms di�er. An asterisk
indicates that the di�erence is statistically signi�cant at the p < 0:05 level according to the
test for the di�erence of two proportions (using the normal approximation to the binomial
distribution, see Snedecor & Cochran, 1989, p. 124).

From this �gure, we can see that the one-per-class method performs signi�cantly worse
than the multiclass method in four of the eight domains and that its behavior is statistically
indistinguishable in the remaining four domains. Much more encouraging is the observation
that the error-correcting output code approach is signi�cantly superior to the multiclass
approach in six of the eight domains and indistinguishable in the remaining two.
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In the NETtalk domain, we can also consider the performance of the meaningful dis-
tributed representation developed by Sejnowski and Rosenberg. This representation gave
66.7% correct classi�cation as compared with 68.6% for the one-per-class con�guration,
70.0% for the direct-multiclass con�guration, and 74.3% for the ECOC con�guration. The
di�erences in each of these �gures are statistically signi�cant at the 0.05 level or better
except that the one-per-class and direct-multiclass con�gurations are not statistically dis-
tinguishable.

3.2 Backpropagation

Figure 3 shows the results for backpropagation in �ve of the most challenging domains.
The horizontal line corresponds to the performance of the one-per-class encoding for this
method. The bars show the number of percentage points by which the error-correcting
output coding representation outperforms the one-per-class representation. In four of the
�ve domains, the ECOC encoding is superior; the di�erences are statistically signi�cant in
the Vowel, NETtalk, and ISOLET domains.2

In the letter recognition domain, we encountered great di�culty in successfully training
networks using the CNAPS machine, particularly for the ECOC con�guration. Experiments
showed that the problem arose from the fact that the CNAPS implementation of backprop-
agation employs a �xed learning rate. We therefore switched to the much slower opt

program, which chooses the learning rate adaptively via conjugate-gradient line searches.
This behaved better for both the one-per-class and ECOC con�gurations.

We also had some di�culty training ISOLET in the ECOC con�guration on large net-
works (182 units), even with the opt program. Some sets of initial random weights led to
local minima and poor performance on the validation set.

In the NETtalk task, we can again compare the performance of the Sejnowski-Rosenberg
distributed encoding to the one-per-class and ECOC encodings. The distributed encoding
yielded a performance of 71.5% correct, compared to 72.9% for the one-per-class encoding,
and 74.9% for the ECOC encoding. The di�erence between the distributed encoding and the
one-per-class encoding is not statistically signi�cant. From these results and the previous
results for C4.5, we can conclude that the distributed encoding has no advantages over the
one-per-class and ECOC encoding in this domain.

3.3 Robustness

These results show that the ECOC approach performs as well as, and often better than,
the alternative approaches. However, there are several important questions that must be
answered before we can recommend the ECOC approach without reservation:

� Do the results hold for small samples? We have found that decision trees learned using
error-correcting codes are much larger than those learned using the one-per-class or
multiclass approaches. This suggests that with small sample sizes, the ECOC method
may not perform as well, since complex trees usually require more data to be learned
reliably. On the other hand, the experiments described above covered a wide range of

2. The di�erence for ISOLET is only detectable using a test for paired di�erences of proportions. See
Snedecor & Cochran (1989, p. 122.).
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Figure 3: Performance of the ECOC method relative to the one-per-class using backprop-
agation. Asterisk indicates di�erence is signi�cant at the 0.05 level or better.

training set sizes, which suggests that the results may not depend on having a large
training set.

� Do the results depend on the particular assignment of codewords to classes? The
codewords were assigned to the classes arbitrarily in the experiments reported above,
which suggests that the particular assignment may not be important. However, some
assignments might still be much better than others.

� Do the results depend on whether pruning techniques are applied to the decision-
tree algorithms? Pruning methods have been shown to improve the performance of
multiclass C4.5 in many domains.

� Can the ECOC approach provide class probability estimates? Both C4.5 and back-
propagation can be con�gured to provide estimates of the probability that a test
example belongs to each of the k possible classes. Can the ECOC approach do this
as well?

3.3.1 Small sample performance

As we have noted, we became concerned about the small sample performance of the ECOC
method when we noticed that the ECOC method always requires much larger decision trees
than the OPC method. Table 7 compares the sizes of the decision trees learned by C4.5
under the multiclass, one-per-class, and ECOC con�gurations for the letter recognition task
and the NETtalk task. For the OPC and ECOC con�gurations, the tables show the average
number of leaves in the trees learned for each bit position of the output representation. For
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Table 7: Size of decision trees learned by C4.5 for the letter recognition task and the
NETtalk task.

Letter Recognition Leaves per bit Total leaves

Multiclass 2353
One-per-class 242 6292
207-bit ECOC 1606 332383

NETtalk Leaves per bit Total leaves
phoneme stress phoneme stress

Multiclass 1425 1567
One-per-Class 61 600 3320 3602
159-bit ECOC 901 911 114469 29140

letter recognition, the trees learned for a 207-bit ECOC are more than six times larger
than those learned for the one-per-class representation. For the phoneme classi�cation part
of NETtalk, the ECOC trees are 14 times larger than the OPC trees. Another way to
compare the sizes of the trees is to consider the total number of leaves in the trees. The
tables clearly show that the multiclass approach requires much less memory (many fewer
total leaves) than either the OPC or the ECOC approaches.

With backpropagation, it is more di�cult to determine the amount of \network re-
sources" that are consumed in training the network. One approach is to compare the
number of hidden units that give the best generalization performance. In the ISOLET task,
for example, the one-per-class encoding attains peak validation set performance with a 78-
hidden-unit network, whereas the 30-bit error-correcting encoding attained peak validation
set performance with a 156-hidden-unit network. In the letter recognition task, peak per-
formance for the one-per-class encoding was obtained with a network of 120-hidden units
compared to 200 hidden units for a 62-bit error-correcting output code.

From the decision tree and neural network sizes, we can see that, in general, the error-
correcting output representation requires more complex hypotheses than the one-per-class
representation. From learning theory and statistics, we known that complex hypotheses
typically require more training data than simple ones. On this basis, one might expect that
the performance of the ECOC method would be very poor with small training sets. To test
this prediction, we measured performance as a function of training set size in two of the
larger domains: NETtalk and letter recognition.

Figure 4 presents learning curves for C4.5 on the NETtalk and letter recognition tasks,
which show accuracy for a series of progressively larger training sets. From the �gure it is
clear that the 61-bit error-correcting code consistently outperforms the other two con�gu-
rations by a nearly constant margin. Figure 5 shows corresponding results for backpropa-
gation on the NETtalk and letter recognition tasks. On the NETtalk task, the results are
the same: sample size has no apparent inuence on the bene�ts of error-correcting out-
put coding. However, for the letter-recognition task, there appears to be an interaction.
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Figure 4: Accuracy of C4.5 in the multiclass, one-per-class, and error-correcting output
coding con�gurations for increasing training set sizes in the NETtalk and letter
recognition tasks. Note that the horizontal axis is plotted on a logarithmic scale.
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Figure 5: Accuracy of backpropagation in the one-per-class and error-correcting output
coding con�gurations for increasing training set sizes on the NETtalk and letter
recognition tasks.

Error-correcting output coding works best for small training sets, where there is a statisti-
cally signi�cant bene�t. With the largest training set|16,000 examples|the one-per-class
method very slightly outperforms the ECOC method.

From these experiments, we conclude that error-correcting output coding works very
well with small samples, despite the increased size of the decision trees and the increased
complexity of training neural networks. Indeed, with backpropagation on the letter recog-
nition task, error-correcting output coding worked better for small samples than it did for
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Table 8: Five random assignments of codewords to classes for the NETtalk task. Each
column shows the percentage of letters correctly classi�ed by C4.5 decision trees.

61-Bit Error-Correcting Code Replications
Multiclass One-per-class a b c d e

70.0 68.6 73.8 73.6 73.5 73.8 73.3

large ones. This e�ect suggests that ECOC works by reducing the variance of the learning
algorithm. For small samples, the variance is higher, so ECOC can provide more bene�t.

3.3.2 Assignment of Codewords to Classes

In all of the results reported thus far, the codewords in the error-correcting code have been
arbitrarily assigned to the classes of the learning task. We conducted a series of experiments
in the NETtalk domain with C4.5 to determine whether randomly reassigning the codewords
to the classes had any e�ect on the success of ECOC. Table 8 shows the results of �ve
random assignments of codewords to classes. There is no statistically signi�cant variation
in the performance of the di�erent random assignments. This is consistent with similar
experiments reported in Bakiri (1991).

3.3.3 Effect of Tree Pruning

Pruning of decision trees is an important technique for preventing over�tting. However, the
merit of pruning varies from one domain to another. Figure 6 shows the change in perfor-
mance due to pruning in each of the eight domains and for each of the three con�gurations
studied in this paper: multiclass, one-per-class, and error-correcting output coding.

From the �gure, we see that in most cases pruning makes no statistically signi�cant
di�erence in performance (aside from the POS task, where it decreases the performance of
all three con�gurations). Aside from POS, only one of the statistically signi�cant changes
involves the ECOC con�guration, while two a�ect the one-per-class con�guration, and one
a�ects the multiclass con�guration. These data suggest that pruning only occasionally has
a major e�ect on any of these con�gurations. There is no evidence to suggest that pruning
a�ects one con�guration more than another.

3.3.4 Class Probability Estimates

In many applications, it is important to have a classi�er that cannot only classify new cases
well but also estimate the probability that a new case belongs to each of the k classes.
For example, in medical diagnosis, a simple classi�er might classify a patient as \healthy"
because, given the input features, that is the most likely class. However, if there is a
non-zero probability that the patient has a life-threatening disease, the right choice for the
physician may still be to prescribe a therapy for that disease.

A more mundane example involves automated reading of handwritten postal codes on
envelopes. If the classi�er is very con�dent of its classi�cation (i.e., because the estimated
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probabilities are very strong), then it can proceed to route the envelope. However, if it
is uncertain, then the envelope should be \rejected", and sent to a human being who can
attempt to read the postal code and process the envelope (Wilkinson, Geist, Janet, et al.,
1992).

One way to assess the quality of the class probability estimates of a classi�er is to
compute a \rejection curve". When the learning algorithm classi�es a new case, we require
it to also output a \con�dence" level. Then we plot a curve showing the percentage of
correctly classi�ed test cases whose con�dence level exceeds a given value. A rejection curve
that increases smoothly demonstrates that the con�dence level produced by the algorithm
can be transformed into an accurate probability measure.

For one-per-class neural networks, many researchers have found that the di�erence in
activity between the class with the highest activity and the class with the second-highest
activity is a good measure of con�dence (e.g., LeCun et al., 1989). If this di�erence is large,
then the chosen class is clearly much better than the others. If the di�erence is small, then
the chosen class is nearly tied with another class. This same measure can be applied to the
class probability estimates produced by C4.5.

An analogous measure of con�dence for error-correcting output codes can be computed
from the L1 distance between the vector B of output probabilities for each bit and the
codewords of each of the classes. Speci�cally, we employ the di�erence between the L1

distance to the second-nearest codeword and the L1 distance to the nearest codeword as
our con�dence measure. If this di�erence is large, an algorithm can be quite con�dent of
its classi�cation decision. If the di�erence is small, the algorithm is not con�dent.

Figure 7 compares the rejection curves for various con�gurations of C4.5 and backprop-
agation on the NETtalk task. These curves are constructed by �rst running all of the test
examples through the learned decision trees and computing the predicted class of each ex-
ample and the con�dence value for that prediction. To generate each point along the curve,
a value is chosen for a parameter �, which de�nes the minimum required con�dence. The
classi�ed test examples are then processed to determine the percentage of test examples
whose con�dence level is less than � (these are \rejected") and the percentage of the re-
maining examples that are correctly classi�ed. The value of � is progressively incremented
(starting at 0) until all test examples are rejected.

The lower left portion of the curve shows the performance of the algorithm when � is
small, so only the least con�dent cases are rejected. The upper right portion of the curve
shows the performance when � is large, so only the most con�dent cases are classi�ed.
Good class probability estimates produce a curve that rises smoothly and monotonically.
A at or decreasing region in a rejection curve reveals cases where the con�dence estimate
of the learning algorithm is unrelated or inversely related to the actual performance of the
algorithm.

The rejection curves often terminate prior to rejecting 100% of the examples. This occurs
when the �nal increment in � causes all examples to be rejected. This gives some idea of the
number of examples for which the algorithm was highly con�dent of its classi�cations. If
the curve terminates early, this shows that there were very few examples that the algorithm
could con�dently classify.

In Figure 7, we see that|with the exception of the Multiclass con�guration|the rejec-
tion curves for all of the various con�gurations of C4.5 increase fairly smoothly, so all of
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Figure 7: Rejection curves for various con�gurations of C4.5 and backpropagation on the
NETtalk task. The \Distributed" curve plots the behavior of the Sejnowski-
Rosenberg distributed representation.

them are producing acceptable con�dence estimates. The two error-correcting con�gura-
tions have smooth curves that remain above all of the other con�gurations. This shows that
the performance advantage of error-correcting output coding is maintained at all con�dence
levels|ECOC improves classi�cation decisions on all examples, not just the borderline ones.

Similar behavior is seen in the rejection curves for backpropagation. Again all con�g-
urations of backpropagation give fairly smooth rejection curves. However, note that the
159-bit code actually decreases at high rejection rates. By contrast, the 61-bit code gives a
monotonic curve that eventually reaches 100%. We have seen this behavior in several of the
cases we have studied: extremely long error-correcting codes are usually the best method
at low rejection rates, but at high rejection rates, codes of \intermediate" length (typically
60-80 bits) behave better. We have no explanation for this behavior.

Figure 8 compares the rejection curves for various con�gurations of C4.5 and backprop-
agation on the ISOLET task. Here we see that the ECOC approach is markedly superior
to either the one-per-class or multiclass approaches. This �gure illustrates another phe-
nomenon we have frequently observed: the curve for multiclass C4.5 becomes quite at and
terminates very early, and the one-per-class curve eventually surpasses it. This suggests that
there may be opportunities to improve the class probability estimates produced by C4.5
on multiclass trees. (Note that we employed \softened thresholds" in these experiments.)
In the backpropagation rejection curves, the ECOC approach consistently outperforms the
one-per-class approach until both are very close to 100% correct. Note that both con�gura-
tions of backpropagation can con�dently classify more than 50% of the test examples with
100% accuracy.

From these graphs, it is clear that the error-correcting approach (with codes of interme-
diate length) can provide con�dence estimates that are at least as good as those provided
by the standard approaches to multiclass problems.
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4. Conclusions

In this paper, we experimentally compared four approaches to multiclass learning problems:
multiclass decision trees, the one-per-class (OPC) approach, the meaningful distributed
output approach, and the error-correcting output coding (ECOC) approach. The results
clearly show that the ECOC approach is superior to the other three approaches. The
improvements provided by the ECOC approach can be quite substantial: improvements on
the order of ten percentage points were observed in several domains. Statistically signi�cant
improvements were observed in six of eight domains with decision trees and three of �ve
domains with backpropagation.

The improvements were also robust:

� ECOC improves both decision trees and neural networks;

� ECOC provides improvements even with very small sample sizes; and

� The improvements do not depend on the particular assignment of codewords to classes.

The error-correcting approach can also provide estimates of the con�dence of classi�ca-
tion decisions that are at least as accurate as those provided by existing methods.

There are some additional costs to employing error-correcting output codes. Decision
trees learned using ECOC are generally much larger and more complex than trees con-
structed using the one-per-class or multiclass approaches. Neural networks learned using
ECOC often require more hidden units and longer and more careful training to obtain
the improved performance (see Section 3.2). These factors may argue against using error-
correcting output coding in some domains. For example, in domains where it is important
for humans to understand and interpret the induced decision trees, ECOC methods are not
appropriate, because they produce such complex trees. In domains where training must
be rapid and completely autonomous, ECOC methods with backpropagation cannot be
recommended, because of the potential for encountering di�culties during training.
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Finally, we found that error-correcting codes of intermediate length tend to give better
con�dence estimates than very long error-correcting codes, even though the very long codes
give the best generalization performance.

There are many open problems that require further research. First and foremost, it is
important to obtain a deeper understanding of why the ECOC method works. If we assume
that each of the learned hypotheses makes classi�cation errors independently, then coding
theory provides the explanation: individual errors can be corrected because the codewords
are \far apart" in the output space. However, because each of the hypotheses is learned
using the same algorithm on the same training data, we would expect that the errors made
by individual hypotheses would be highly correlated, and such errors cannot be corrected by
an error-correcting code. So the key open problem is to understand why the classi�cation
errors at di�erent bit positions are fairly independent. How does the error-correcting output
code result in this independence?

A closely related open problem concerns the relationship between the ECOC approach
and various \ensemble", \committee", and \boosting" methods (Perrone & Cooper, 1993;
Schapire, 1990; Freund, 1992). These methods construct multiple hypotheses which then
\vote" to determine the classi�cation of an example. An error-correcting code can also
be viewed as a very compact form of voting in which a certain number of incorrect votes
can be corrected. An interesting di�erence between standard ensemble methods and the
ECOC approach is that in the ensemble methods, each hypothesis is attempting to predict
the same function, whereas in the ECOC approach, each hypothesis predicts a di�erent
function. This may reduce the correlations between the hypotheses and make them more
e�ective \voters." Much more work is needed to explore this relationship.

Another open question concerns the relationship between the ECOC approach and the
exible discriminant analysis technique of Hastie, Tibshirani, and Buja (In Press). Their
method �rst employs the one-per-class approach (e.g., with neural networks) and then
applies a kind of discriminant analysis to the outputs. This discriminant analysis maps the
outputs into a k�1 dimensional space such that each class has a de�ned \center point". New
cases are classi�ed by mapping them into this space and then �nding the nearest \center
point" and its class. These center points are similar to our codewords but in a continuous
space of dimension k � 1. It may be that the ECOC method is a kind of randomized,
higher-dimensional variant of this approach.

Finally, the ECOC approach shows promise of scaling neural networks to very large
classi�cation problems (with hundreds or thousands of classes) much better than the one-
per-class method. This is because a good error-correcting code can have a length n that is
much less than the total number of classes, whereas the one-per-class approach requires that
there be one output unit for each class. Networks with thousands of output units would
be expensive and di�cult to train. Future studies should test the scaling ability of these
di�erent approaches to such large classi�cation tasks.
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