The AdaBoost Algorithm

A typical learning curve

...and a boosting one

this lecture

- boosting and on-line learning
- AdaBoost algorithm
- extensions
- applications

supervised learning

 $y_i = label(x_i); y_i \in \{-1, +1\}$

boosting : introduction

 = Combine more classifiers in a master one

Given

- Labeled data set (training set)
- Access to "weak learner" (error less than 50%)

LOOP

- Select weak learner
- Concentrate on the hard (wrong classified) instances

boosting example

Start with uniform distribution on data

 Weak learners = halfplanes

round 1

round 2

round 3

final hypothesis

the hypothesis points space

separation

Separation hyperplane

$$F(x) = \sum_{t} \alpha_{t} h_{t}(x)$$
$$H_{\text{FIN}}(x) = \text{sgn}(F(x))$$

- Geometric interpretation
- Optimal hyperplane

Non-separable data

AdaBoost - technical

- Start with uniform distrib D_1 : $D_1(i) = \frac{1}{m}$
- At every round t=1 to T
 given D_t
 - find weak hypothesis
 - with error

$$\mathbf{h}_{t}: \mathbf{X} \rightarrow \{-1, 1\}$$

$$\boldsymbol{\varepsilon}_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$$

- compute "belief" in h_t
- •
- update distribution

$$\alpha_t = \frac{1}{2} \ln \left(\frac{\ell - \varepsilon_t}{\varepsilon_t} \right) > 0$$

$$D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

• final hypothesis:

$$H_{\text{final}}(x) = \operatorname{sgn}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$$

a bayesian interpretation

• Bayes decision rule : predict 1 if

$$\Pr[y = 1 \mid h_1(x), \dots, h_T(x)] > \Pr[y = 0 \mid h_1(x), \dots, h_T(x)],$$

• For Adaboost : predict 1 if

$$\Pr[y=1] \prod_{t:h_t(x)=0} \epsilon_t \prod_{t:h_t(x)=1} (1-\epsilon_t) > \Pr[y=0] \prod_{t:h_t(x)=0} (1-\epsilon_t) \prod_{t:h_t(x)=1} \epsilon_t,$$

$$H_{\text{final}}(x) = \text{sgn}\left(\sum_{t} \ln\left(\frac{1-\varepsilon_{t}}{\varepsilon_{t}}\right) * h_{t}(x)\right)$$

AdaBoost – update rule

- Start with uniform distrib D_1 : $D_1(i) = \frac{1}{m}$
- At every round t=1 to T
 given D_t
 - find weak hypothesis
 - with error

$$h_t: X \rightarrow \{-1, 1\}$$

$$\varepsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$$

- compute "belief" in h_t
- •
- update distribution

$$\alpha_t = \frac{1}{2} \ln \left(\frac{\ell - \varepsilon_t}{\varepsilon_t} \right) > 0$$

$$D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

• final hypothesis:

$$H_{\text{final}}(x) = \text{sgn}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$$

online allocation - hedge algorithm

Parameters

 $\beta \in [0,1]$, N strategies (systems) initial weights $w^1 \in [0,1]^N$; $\sum_{i=1}^N w_i^1 = 1$

- LOOP for episode t=1,2,...,T
 - Choose allocation
 - Receive loss vector
 - Suffer loss
 - Update weights

$$p_i^t = \frac{w_i^t}{\sum_{i=1}^N w_i^t}$$
$$l^t \in [0,1]^N$$
$$p^t * l^t$$

$$w_i^{t+1} = w_i^t \bullet \boldsymbol{\beta}^{l_i^t}$$

• Hedge loss

$$L_{HEDGE} = \sum_{t=1}^{T} p^{t} * l^{t}$$

 ...not "too much worse" than the best system

$$L_{HEDGE} \leq \frac{\ln \left(\frac{1}{\beta}\right) L_{SYSTEM} + \ln N}{1 - \beta}$$

AdaBoost – distribution update

• "neutralize" the last weak hypothesis

training error Theorem training error(H_{final}) $\leq 2^T \prod \sqrt{\varepsilon_t (1 - \varepsilon_t)}$ [Freund&Schapire '97] $Z_t = \sum D_t(x) \exp(-y_x \alpha_t h_t(x))$ proof $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_1} \right)$ $= \sum D_t(x) \exp(-\alpha_t) + \sum D_t(x) \exp(+\alpha_t)$ $y_x h_t(x) = = \exp(-\alpha_t)(1-\varepsilon_t) + \exp(\alpha_t)\varepsilon_t$ $D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases} = \frac{D_t}{Z_t} e^{-\alpha_t y h_t(x)}$ $= (1 - \varepsilon_t) \sqrt{\frac{\varepsilon_t}{1 - \varepsilon_t}} + \varepsilon_t \sqrt{\frac{1 - \varepsilon_t}{\varepsilon_t}} = 2\sqrt{\varepsilon_t (1 - \varepsilon_t)}$ $F(x) = \sum \alpha_t h_t(x)$ $D_{T+1}(x) = \frac{1}{m} \prod_{t} \frac{\exp(-y\alpha_{t}h_{t}(x))}{Z_{t}} = \frac{1}{\prod Z_{t}} \frac{1}{m} \exp(-yF(x))$ $H_{\text{FIN}}(x) = \text{sgn}(F(x))$ $\frac{1}{m}\sum \exp(-yF(x)) = \prod Z_t$

Boosting and margin distribution

Why margins are important

typical curve

AdaBoost

Generalization error

generalization error-based on margins

Schapire, Freund, Barlett, Lee 1998

Theorem 1 Let \mathcal{D} be a distribution over $X \times \{-1, 1\}$, and let S be a sample of m examples chosen independently at random according to \mathcal{D} . Assume that the base-classifier space \mathcal{H} is finite, and let $\delta > 0$. Then with probability at least $1 - \delta$ over the random choice of the training set S, every weighted average function $f \in \mathcal{C}$ satisfies the following bound for all $\theta > 0$:

AdaBoost - remarks

AdaBoost is <u>adaptive</u>

$$\gamma = \min(\frac{1}{2} - \varepsilon_t)$$

- does not need to know [M] or T a priori
- can exploit $\varepsilon_t \ll \frac{1}{2}$

- GOOD : does not overfit
- BAD : Susceptible to noise
 - <u>but</u> a nice property : identify outliers

Recent advances

 Normalized weights - Hyperplane is always convergent

 If data is nonseparable weight vector is convergent

If data is separable the weights are cyclic

Experiments with a New Boosting Algorithm

• Schapire, Freund 1996

	FindAttrTest				FindDecRule					C4.5			
	error		pseudo-loss		error		pseudo-loss		error				
name	-	boost	bag	boost	bag	-	boost	bag	boost	bag	-	boost	bag
soybean-small	57.6	56.4	48.7	0.2	20.5	51.8	56.0	45.7	0.4	2.9	2.2	3.4	2.2
labor	25.1	8.8	19.1			24.0	7.3	14.6			15.8	13.1	11.3
promoters	29.7	8.9	16.6			25.9	8.3	13.7			22.0	5.0	12.7
iris	35.2	4.7	28.4	4.8	7.1	38.3	4.3	18.8	4.8	5.5	5.9	5.0	5.0
hepatitis	19.7	18.6	16.8			21.6	18.0	20.1			21.2	16.3	17.5
sonar	25.9	16.5	25.9			31.4	16.2	26.1			28.9	19.0	24.3
glass	51.5	51.1	50.9	29.4	54.2	49.7	48.5	47.2	25.0	52.0	31.7	22.7	25.7
audiology.stand	53.5	53.5	53.5	23.6	65.7	53.5	53.5	53.5	19.9	65.7	23.1	16.2	20.1
cleve	27.8	18.8	22.4			27.4	19.7	20.3			26.6	21.7	20.9
soybean-large	64.8	64.5	59.0	9.8	74.2	73.6	73.6	73.6	7.2	66.0	13.3	6.8	12.2
ionosphere	17.8	8.5	17.3			10.3	6.6	9.3			8.9	5.8	6.2
house-votes-84	4.4	3.7	4.4			5.0	4.4	4.4			3.5	5.1	3.6
votes1	12.7	8.9	12.7			13.2	9.4	11.2			10.3	10.4	9.2
crx	14.5	14.4	14.5			14.5	13.5	14.5			15.8	13.8	13.6
breast-cancer-w	8.4	4.4	6.7			8.1	4.1	5.3			5.0	3.3	3.2
pima-indians-di	26.1	24.4	26.1			27.8	25.3	26.4			28.4	25.7	24.4
vehicle	64.3	64.4	57.6	26.1	56.1	61.3	61.2	61.0	25.0	54.3	29.9	22.6	26.1
vowel	81.8	81.8	76.8	18.2	74.7	82.0	72.7	71.6	6.5	63.2	2.2	0.0	0.0
german	30.0	24.9	30.4			30.0	25.4	29.6			29.4	25.0	24.6
segmentation	75.8	75.8	54.5	4.2	72.5	73.7	53.3	54.3	2.4	58.0	3.6	1.4	2.7
hypothyroid	2.2	1.0	2.2			0.8	1.0	0.7			0.8	1.0	0.8
sick-euthyroid	5.6	3.0	5.6			2.4	2.4	2.2			2.2	2.1	2.1
splice	37.0	9.2	35.6	4.4	33.4	29.5	8.0	29.5	4.0	29.5	5.8	4.9	5.2
kr-vs-kp	32.8	4.4	30.7			24.6	0.7	20.8			0.5	0.3	0.6
satimage	58.3	58.3	58.3	14.9	41.6	57.6	56.5	56.7	13.1	30.0	14.8	8.9	10.6
agaricus-lepiot	11.3	0.0	11.3			8.2	0.0	8.2			0.0	0.0	0.0
letter-recognit	92.9	92.9	91.9	34.1	93.7	92.3	91.8	91.8	30.4	93.7	13.8	3.3	6.8

boosting vs bagging

satimage

classifiers

1000

Boosting vs SVMs

Map data in Feature space

- Adaboost weak hypotesis
- SVM kernel function
- Separate with a hyperplane
- Maximize margins
 - AdaBoost iterative convex optimization
 - SVM global optimization via Lagrange multipliers
- Different norms can result in very different margins
 - AdaBoost I1 norm
 - SVM I2 norm
- The computation requirements are different
 - AdaBoost linear programming
 - SVM quadratic programming
- A different approach for searching efficiently in high dimensional space
 - AdaBoost greedy
 - SVM Kernel method

☺...hope you are still with me

- boosting and on-line learning
- AdaBoost algorithm
- extensions
- applications

boosting using confidence-rated predictions

Given: $(x_1, y_1), \dots, (x_m, y_m)$; $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$ Initialize $D_1(i) = 1/m$. For $t = 1, \dots, T$:

Train weak learner using distribution D_t.

• Choose $\alpha_t \in \mathbb{R}$.

Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

$$u_i = y_i h_t(x_i)$$
 $r = \sum_i D(i) u_i.$

$$Z = \sum_{i} D(i)e^{-\alpha u_i}$$

$$\leq \sum_{i} D(i)\left(\frac{1+u_i}{2}e^{-\alpha} + \frac{1-u_i}{2}e^{\alpha}\right). \qquad \alpha = \frac{1}{2}\ln\left(\frac{1+r}{1-r}\right)$$

multiclass : AdaBoost.M1

Algorithm AdaBoost.M1

Input: sequence of N examples $\langle (x_1, y_1), \dots, (x_N, y_N) \rangle$ with labels $y_i \in Y = \{1, \dots, k\}$ distribution D over the examples weak learning algorithm WeakLearn integer T specifying number of iterations Initialize the weight vector: $w_i^1 = D(i)$ for $i = 1, \dots, N$. Do for $t = 1, 2, \dots, T$ 1. Set

$$\mathbf{p}^t = \frac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}$$

2. Call **WeakLearn**, providing it with the distribution \mathbf{p}^t ; get back a hypothesis $h_t : X \to Y$.

- 3. Calculate the error of h_t : $\epsilon_t = \sum_{i=1}^N p_i^t \llbracket h_t(x_i) \neq y_i \rrbracket$. If $\epsilon_t > 1/2$, then set T = t - 1 and abort loop.
- 4. Set $\beta_t = \epsilon_t / (1 \epsilon_t)$.
- 5. Set the new weights vector to be

$$w_i^{t+1} = w_i^t \beta_t^{1 - \llbracket h_t(x_i) \neq y_i \rrbracket}$$

Output the hypothesis

$$h_f(x) = \arg \max_{y \in Y} \sum_{t=1}^T \left(\log \frac{1}{\beta_t} \right) \llbracket h_t(x) = y \rrbracket.$$

multiclass, multilabel : AdaBoost. MH

Given: $(x_1, Y_1), \ldots, (x_m, Y_m)$ where $x_i \in \mathcal{X}, Y_i \subseteq \mathcal{Y}$ Initialize $D_1(i, \ell) = 1/(mk)$. For $t = 1, \ldots, T$:

Train weak learner using distribution D_t.

• Get weak hypothesis
$$h_t : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$
.

- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i,\ell) = \frac{D_t(i,\ell)\exp(-\alpha_t Y_i[\ell]h_t(x_i,\ell))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x, \ell) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x, \ell)\right).$$

- Hamming Loss
- Decompose in k binary problems

$$\frac{1}{k} \operatorname{E}_{(x,Y)\sim D} \left[\left| h(x) \Delta Y \right| \right]$$

$$H : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$$

output coding for multiclass problems

	L1	L2	L3	L4	P1	P2
a	0	0	0		1	0
b	0	0	1		0	1
С	0	1	0		0	0
		1				
У	1	0	0			1
Ζ	1	0	1			0
Ζ	1	1	0			1

- Every learner trained on a subset of labels
- Label is identified by all predictions, as numbers in bynary
- Error-check redundancy learners

InfoBoost – [Aslam '2000]

Given:
$$(x_1, y_1), \ldots, (x_m, y_m); x_i \in \mathcal{X}, y_i \in \{-1, +1\}$$

Initialize $D_1(i) = 1/m$.
For $t = 1, \ldots, T$:

- 1. Train weak learner using distribution D_t .
- 2. Get weak hypothesis $h_t : \mathcal{X} \to \mathbb{R}$.
- 3. Choose $\alpha_t[-1] \in \mathbb{R}$ and $\alpha_t[+1] \in \mathbb{R}$; let $\alpha_t(z) = \begin{cases} \alpha_t[-1] & \text{if } z < 0, \\ \alpha_t[+1] & \text{if } z \ge 0. \end{cases}$

4. Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t(h_t(x_i))y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t(h_t(x))h_t(x)\right)$$

h_1	-1	+1	h_2	-1	+1
-1	$\frac{5}{16}$	³ /16	-1	6/16	$^{2}/_{16}$
+1	$^{1}/_{16}$	7/16	+1	$^{2}/_{16}$	⁶ /16

applications

Boostexter [Schapire, Singer '2000]

- Multilabel, multiclass text categorization
- Based on AdaBoost.MH

auction price uncertainty ATTac-2001

- [Schapire,Stone,McAllester,Littman,Csirik 02]
- Reduce the problem to multiclass, multilabel setup
- AdaBooost.MH

RankBoost[lyer,Lewis,Schapire,Singer,Singhal 2000]

- Ranking instead of classification
- IR routing

SO

• AdaBoost has many advantages. At least in theory...

- fast, simple, easy to program
- no parameters to tune
- no prior knowledge about the weak learner
- theoretical guarantees
- weak learners only need to be better than random

In practice

- Weak hypothesis are closer and closer to "random"
- It <u>may</u> overfit
- Theoretical guarantees are loose
- Real data is not fully separable
- Performance depends both on data and weak learner