Lecture 6/25 • HWZ demo • Next Schapter 4 raudon Forrests - boostinp/ensemble = Multilasel data, in particular ECOC -Active leaving. - Feature selection Ut(x) = score produced by tth weak learner -Feature aggregation/PCA -Features from Soundarity/TSNE (ust probab, not class prediction) - HW4 Ochapter 5; SVM + Kernels · chapter 6: advanced NN - CNN - RECNN VS Transformers

7 Weak learnor additive easemble Boostmp (meak learner detapoint $X = (x^{1} x^{2} - x)$ $t = 1 \cdot \tau$ $F(x) = Z(h_1(x)) \rightarrow 0 CC - 65\%$ final score tel scores candom Li Sut poor e Regression Mode label y = quantity La defautt : Shallow Dectree want $(F(x) - y)^2 \overset{\sim}{}_{-}^{2} O$ dec stump: 1-split DT all i $\sum_{i=1}^{N} (\overline{\nabla}(x_i) - \overline{y_i}) \simeq 0$ • Closenfication made $y \in \{1, 1\}$ f(x) = 1 f(x) $F(x) \xrightarrow{\text{wap}} pr(y=1|x)$ Suore P(y = -1|x) = (-P(y = -1|x))want wax likelihood T.I. P(J=JX) = 1 - P(J=1|X) (1-J*) which protect

infilion cca 1992: F(x) cannot be much better than h(x) MEDV MEAL backers $\frac{V \in V \cup V \cap G}{V \cap V \cap V} = Gradient Descent + Boosting$

							٠											
•	•		·	•				•	•	•	•	•	•	÷	•	•		
•	•	•	•	٠	•	•		•	•	۰	•	•		•	۰	*	•	•
٠	•	•	٠	٠	•	•		٠	٠	٠	٠	۰	•	٠	۰	٠	•	•
•		•	٠	۰	•	•		•	٠	۰	•	•	•	•	٠	٠	•	
	•	•	•	*	•	•	٠		٠	٠	•	•		•	•	*	•	•
•	•		•			•		•	•	•	•	•		•	•		•	٠
							٠	•	•		•	•		•	•			
			•				٠		٠	•					•	*		

 $\mathbf{P}(\mathbf{x}) = \sum \rho_t h_t(\mathbf{x})$ (ited copficients St for htl) 0.42 + 0.92 i = sillin + 0.65 $F(r) = \frac{add}{F(r)} = \frac{add}{F(r)}$ 2 ways to implement boosthip st (hintocally 1996): ADABODST - look at current wlearner htex) - reweight data Dt+1 (Xi) = dustrisution with error weighted of Otral) = importance of datapoint Xi vert Htt (Ki) もれ= 2 - [ht+1(xs)+y:] touch http:() = weak learner

weight for vouce the - add http:// to Fax? ACC 1 unstake O correct $F(x) = F(x) + h_{t+1}(x)$ $F(x) = h_1(x) + h_2(x) - + h_{t+1}(x)$ Key: AFter t=1:7 vounds of Adaboo st Weight $D_{T+1}(x) \sim \# rounds$ where x unistake $-1:h_t(x) = y$ on x $\pm t$ $h_t(x) \neq y$ $\pm t:h_t(x) \neq y$ $\pm h_t(x) \neq y$ $\pm h_t(x) = y$ $\frac{H(x) suall}{x}$ $\sim exp(\cdot \frac{1}{2} \prec h_t(x) \cdot -y]$ in correct • DTH(X) Swall =) unst classif $h_{f}(x) = y$ $D_{T+1}(x) = |arge \Rightarrow next classifier h_{T+1}(x)$ focus on datyoint x• $D_{TH}(x) > large \Rightarrow most classif <math>h_t(x) \neq y$

(The proper maights, h() training etc (see Adaloost details) training can finist in one of those 2 mays. $\sum_{i=1}^{n} \frac{1}{[F(K_i) + y_i]} \rightarrow 0$ either train-error MO F(r) ensembe ON Stuck: DTH() dist of point importance for vext round is s.t. the best http://x) classifier les random $P_{T+1} = \sum_{i=1}^{2} \frac{1}{[h_{T+1}(x_i) + y_i]} \sim 0.5$ as long as hours makes some progress (better than 0.5) franking error (F(x)) has to go to zoro

 $F(x) = P_{Y}(x) + h_{z}(x) + - - 4 h_{\tau}(x)$ Evaluation Boosting 2nd way much beter want F(x) VY (regression mode) "house pries" Net weak "no Net Learner (x) = Fuew (x) - Furrent(x) $\operatorname{error} \frac{1}{2}(F(x) - y)^{2} = J(x)$ \Im $\left(diff = F(x) - y = W(x) - y = W(x) - y = F(x) = F(x) - y = F(x) - y = F(x$ $\partial F()$ F(x) as variable ?? $\frac{1}{\lambda=1}$ Grad descent mode for Frew (x) = $F(x) - \lambda \cdot \frac{\partial J}{\partial F(J)} = F(x) + y - F(x)$ trivial? want Fnew (x) = y (wroup Hunking) MTH(X) MY-F(X) GD update ? Fnew (x) = F(x) +

want the next weak learner $h_{T+1}(x) \sim y - F(x)$ -reg updating label after even vound Thew = Torg -does not require weights like Addoost, modif train procedure Train $h_{t+1}(x)$: Declreelflg($x_{2}Y-F(x)$)

Close fication $y \in (1, -1)$ $y^* = 1 \neq (-1, 0)$ categories $F(x) = \sum_{i=1}^{n} ht(x)$ Score t=1 $\mathcal{P}_{\mathcal{P}}^{\mathcal{P}}(\mathcal{X})$ P(X) = P(Y=1|X) = $e^{F(x)} + e^{F(x)}$ $p(\overline{X}) = p(\underline{y}^* = o(\underline{x})) = \frac{e^{-F(x)}}{e^{F(x)} + e^{-F(x)}} = \frac{1 - p(x)}{filter}$ which polab. $loplikelihood = lop \left(\frac{N}{TT} p(x) \left(1 - p(x) \right)^{1-\gamma^{*}} \right)$ want MAX