
Noname manuscript No.
(will be inserted by the editor)

Jonathan S. Yedidia

Message-passing Algorithms for
Inference and Optimization:

“Belief Propagation” and “Divide and Concur”

Received: date / Accepted: date

Abstract Message-passing algorithms can solve a wide variety of optimiza-
tion, inference, and constraint satisfaction problems. The algorithms operate
on factor graphs that visually represent the problems. After describing some
of their applications, I survey the family of belief propagation (BP) algo-
rithms, beginning with a detailed description of the min-sum algorithm and
its exactness on tree factor graphs, and then turning to a variety of more so-
phisticated BP algorithms, including free-energy based BP algorithms, “split-
ting” BP algorithms that generalize “tree-reweighted” BP, and the various
BP algorithms that have been proposed to deal with problems with contin-
uous variables.

The Divide and Concur (DC) algorithm is a projection-based constraint
satisfaction algorithm that deals naturally with continuous variables, and
converges to exact answers for problems where the solution sets of the con-
straints are convex. I show how it exploits the “difference-map” dynamics to
avoid traps that cause more naive alternating projection algorithms to fail
for non-convex problems, and explain that it is a message-passing algorithm
that can also be applied to optimization problems. The BP and DC algo-
rithms are compared, both in terms of their fundamental justifications and
their strengths and weaknesses.

Keywords message-passing algorithms · factor graphs · belief propagation ·
divide and concur · difference-map · optimization · inference · constraint
satisfaction

J.S. Yedidia
Disney Research Boston
222 3rd Street, Suite 1101
Cambridge, MA 02142 USA
E-mail: yedidia@disneyresearch.com

2

1 Introduction

This paper is a tutorial introduction to the important “Belief Propagation”
(BP) and “Divide and Concur” (DC) algorithms. The tutorial will be infor-
mal, and my main goal is to explain the fundamental ideas clearly.

Iterative message-passing algorithms like BP and DC have an amazing
range of applications, and it turns out that their theory is deeply connected
to concepts from statistical physics. BP algorithms are already very well-
known, and have been discussed in depth in some excellent reviews [1–3].
The DC algorithm [4] has important advantages compared with BP, but is
so far much less known and used.

I have a couple target audiences in mind. One target reader is learning
about message-passing algorithms for the first time; this paper can serve as a
gentle introduction to the field. Another target reader might already have an
knowledge of at least some aspects of BP, but may not be familiar with recent
advances in our understanding of BP, or with projection-based algorithms like
DC, which are not usually described as message-passing algorithms. For such
readers, I will present an overview of different BP algorithms, and show that
DC can be interpreted as a message-passing algorithm that can be easily
compared and contrasted with other BP algorithms.

2 Inference and Optimization Problems

No algorithm can be discussed in isolation from the problem it is solving. BP
and DC Message-passing algorithms are used to solve inference problems,
optimization problems, and constraint satisfaction problems.

In an inference problem, one takes as input some noisy or ambiguous
measurements, and tries to infer from those measurements the likely state
of some hidden part of the world. In general, it is impossible to make those
inferences with complete certainty, but one can at least try to obtain, within
a model of the world and the measurements, the most probable state of the
hidden part of the world [5,6].

As an example, consider the “channel coding” problem which is funda-
mental to information theory [7–9]. We want to transmit a message consisting
of some sequence of bits across a noisy channel that might corrupt those bits.
To deal with that noise, additional bits that depend on the message are ap-
pended to it by an encoder before it is transmitted. The task of the decoder is
one of probabilistic inference: it tries to compute, from all the possibly noisy
received bits, the most probable message that might have been transmitted.

Computer vision is another example of a field where probabilistic in-
ference problems are ubiquitous [10–12]. In a typical scenario, one obtains
images or videos from one or more cameras, and wants to infer something
about the scene being captured. For a computer, photographic images are
simply two-dimensional matrices of color intensities, and the scene is a hidden
three-dimensional world of objects that must somehow be inferred from those
inherently ambiguous measurements. A computer vision probabilistic infer-
ence system uses a statistical model that connects the camera measurements
to the scene quantities of interest (e.g. the depth or the identity of objects),

3

and tries to find the most probable interpretation of the scene quantities
given the measurements.

Speech recognition [13–15] and language understanding [16,17] systems
are similar. Here one obtains measurements of a sound signal, and tries to
infer the most probable sequence of words, or meanings, consistent with those
sounds.

In statistical physics, one deals with mathematically analogous problems
[18,19]. If one is given the energy function for some magnetic system or
some macromolecule, the most probable configuration of the system is the
one that has the lowest energy. Of course, as physicists are well aware, the
lowest energy configuration may be the most probable, while not being a
typical configuration. To obtain probabilities about typical configurations,
one must also take into account the entropy of the system. In probabilistic
inference, this distinction corresponds to the difference between two tasks
the system might be asked to perform. First, it might be asked to obtain the
one most probable state of the entire system, or second, one might ask for
the marginal probabilities of particular hidden variables, after summing over
the probabilities of all possible configurations.

A probabilistic inference problem can be converted into a statistical physics
problem by defining an energy function using Boltzmann’s Law:

p(X) ∝ exp(−E(X)). (1)

That is, if we are given a statistical model (say for coding, or vision, or speech
recognition) that assigns probabilities p(X) to states X, we can completely
equivalently think of it as assigning energies E(X), and proceed using any
method of our choice from statistical physics. Or, if we are given a physical
system with an energy function E(X), we can fruitfully apply the proba-
bilistic inference algorithms that have been invented by computer scientists
and electrical engineers. Mathematically, many of the problems studied by
statistical physicists and computer scientists are completely equivalent [19].

3 Factor Graphs

The task of inferring the most probable state of a system is actually the op-
timization problem of finding the minimum energy of that system. I will now
describe a very convenient data structure called a factor graph [20,21] which
can be used to visualize and precisely define such optimization problems. A
variety of other “graphical models” exist (e.g. Bayesian networks [22], Markov
random fields [23], normal factor graphs [24,21]), and have their advantages,
but all these models can be easily converted into the standard factor graphs
I will discuss [25].

Factor graphs are bipartite graphs containing two types of nodes: variable
nodes and factor nodes. See figure 1 for our first example of a toy factor graph.

The variable nodes, usually denoted using circles, represent the variables
in the optimization problem. A variable might be discrete—that is, it can
only take on a finite number of states, like an Ising spin, which can only be

4

ost, x2

1 2

3

a c

4b

Fig. 1 A toy factor graph with one observed variable node (variable 1), three
hidden variable nodes, and three factor nodes.

in the two states that we might call “up” and “down”—or it might have a
continuous range of possible states.

If a variable’s state is known (or “observed”), we fill in the corresponding
circle in the factor graph; otherwise we use an open circle to denote a so-called
“hidden” variable. The factor graph of figure 1 has three hidden variables and
one observed variable.

The “factor” nodes in a factor graph show how the overall objective (“en-
ergy” or “cost”) function of our optimization problem breaks up—factorizes—
into local terms. We draw an edge between each factor node representing a
local cost function, and the variables that are involved in that local cost
function. For example, for the factor graph of figure 1, the overall “cost”
C(x1, x2, x3, x4) for a configuration (x1, x2, x3, x4) will be

C(x1, x2, x3, x4) = Ca(x1, x2, x3) + Cb(x2, x4) + Cc(x3, x4). (2)

More generally, if there are M local cost functions, we can write the overall
cost function C(X) as

C(X) =

M
∑

a=1

Ca(Xa) (3)

where Xa is the set of variables involved in the ath local cost function.
By itself, a factor graph just lets one visualize the relationships between

the variables and local functions in the problem; but it does not give the full
information one needs to compute the cost associated with a configuration. To
fill out that information, we would need to provide a table or explicit function
for each factor node. For example, in figure 2, we supplement the factor graph
from figure 1 with lookup tables that specify the local costs associated with
each factor. Notice that in this example some of the local costs for factor a
are infinite; this means that the corresponding configurations are forbidden
and represents a “hard” constraint. For factors b and c, all the costs are finite,
so these factors represent “soft” preferences.

5

1

1

1

2

0.6

1.4

, x2, x, x4) +Cb(
0

0

0

1

0

1

2

0

1.2

1.7

3.2

1.9

, x4) +

0

0

0

1

1

1

0

1

2

0

1

2

0.4

0.3

2.4

1.9

0.2

4.9

, x3) + Cc(

1 2

3

a c

4b

(x1 , x3) +Ca(

0 !

, x2, x

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

!

!

!

0

0

0

0

Fig. 2 A factor graph, along with the lookup tables associated with each local cost
function. Note that for this factor graph the four variables are all discrete. Factor a
is a “hard” constraint, that either allows or disallows different local configurations,
while factors b and c are “soft” factors.

The factor graph we have been looking at is just a toy example; we nor-
mally are interested in problems where there are a large number of hidden
variables—at least hundreds, maybe thousands or millions. In that case, there
will be an exponentially huge number of possible states of the system, so
while it is always easy to compute the energy of one configuration, finding
the lowest energy state, or summing over all the states, can be a very hard
problem.

In fact, it should be obvious that our formulation is so general that many
NP-hard optimization problems can be described in this way. Thus, we cer-
tainly are not going to be able to specify here an algorithm that is guaranteed
to find the lowest cost state of an arbitrary factor graph, while using com-
putational resources that only grows polynomially with the size of a factor
graph. Nevertheless, it turns out that the BP and DC message-passing algo-
rithms are often successfully used on problems that are NP-hard, and can in
fact often efficiently find the global optimum for those problems. The point
is that a problem might be NP-hard, and yet specific instances of it that
we care about may be in an easier regime than the worst case, and often be
solved by a clever algorithm. For example, the problem of finding the op-
timal decoding of a low-density parity-check (LDPC) code is NP-hard, and
yet efficient state-of-the-art BP decoders succeed sufficiently often that they

6

=

Fig. 3 Any observed variable nodes in a factor graph can be absorbed as parame-
ters in the factor nodes that they are connected to, leaving only “hidden” variable
nodes, and factor nodes that depend on the observations.

closely approach the Shannon limit of possible channel coding performance
[8,9].

4 Example Factor Graphs and Applications

Let’s take a look at just a few examples of how factor graphs can represent
interesting problems. To simplify the factor graphs in the following examples,
we take advantage of the fact that we can absorb any observed variable
nodes as parameters in the factors they are attached to, leaving only hidden
variables in the factor graph (see figure 3).

In the following examples, we will also describe some properties of message-
passing algorithms, anticipating our more extensive discussion in future sec-
tions.

4.1 Error Correcting Codes

Our first example is a factor graph for an error correcting code—the simple
(N = 7, k = 4) Hamming code shown in figure 4. In this code, there are seven
“hidden” variable nodes that represent the seven unknown transmitted bits.
The first four of those bits are information bits that encode the original
message, the other three are additional parity bits that can be computed
from the information bits using the parity check factor nodes. The three
parity check factor nodes are hard constraints that force the sum of the bits
connected to them to equal 0 modulo 2. There are also seven “soft” channel
evidence factor nodes that give the a priori probability that each of the
hidden codeword bits is equal to a one or zero, given the observed received
bits.

The goal will be to find the most likely values of the seven hidden trans-
mitted bits, given the channel evidence and the fact that they must be con-
sistent with the parity check constraints.

7

Fig. 4 A factor graph for the (N = 7, k = 4) Hamming code, which has seven
codeword bits, of which the left-most four are information bits, and the last three
are parity bits.

Such factor graphs were introduced into coding theory in 1981 by Tanner
[26], to describe and visualize the low-density parity-check (LDPC) codes and
the BP decoder for LDPC codes that had been introduced earlier by Gallager
in 1963 [27]. LDPC codes were given their name because each parity check is
only connected to a small number of codeword bits. LDPC codes and their
factor graphs are similar to the Hamming code in figure 4, except that the
number of codeword bits is usually on the order of a few thousand in practical
LDPC codes, and the codeword bits are not simply divided into information
bits and extra parity check bits. BP decoders of LDPC codes are very prac-
tically significant, because if they are properly designed, their performance
can closely approach the Shannon limit, and they can be implemented in
modern hardware [8,9].

4.2 Diagnosis

Our next example (see figure 5) is a toy factor graph representing a medical
diagnosis problem. The hidden variable nodes in this factor graph labeled
“T,” “L,” and “B” represent different possible diagnoses of some patient (e.g.
Tuberculosis, Lung Cancer or Bronchitis). The other variables may represent
some information about the patient (e.g. “S” represents how much the patient
smokes). The factor nodes encode the known statistical relationships between
diseases and other variables.

This factor graph is adapted from an example in [28] that originally used
a Bayes network, a graphical model that uses directed edges and that has the
advantage of explicitly encoding conditional probabilities. The name “Belief
Propagation” was in fact introduced by Pearl [22] for a version of the BP
algorithm working on Bayes networks. It is easy to convert between different
graphical models [25], and one reason that I am focusing here on standard
factor graphs is that BP algorithms are easier to describe on standard factor
graphs because they are undirected.

8

Fig. 5 A toy factor graph representing an “expert system” for a medical diagnosis
problem. The hidden variables represent the unknown possible diseases (e.g. “L”
represents lung cancer), or information about the patient such whether he is a
smoker (“S”) or test results. The factors represent known statistical relationships
(e.g. a smoker is more likely to have lung cancer). The goal is to obtain the best
estimate of the probabilities of possible diseases given the available information.

This example highlights an important point about probabilistic inference
algorithms—one is often interested in more detailed information than the
overall most probable configuration. For example, one might want an accurate
estimate of the marginal probability that the patient has a particular disease.
As we shall see, different BP algorithms are designed to give answers to
different types of questions—for the kind of marginal probabilities we want
here, we should use the “sum-product” version of BP, which we will describe
in more detail later in this paper.

4.3 Computer Vision

Our next example (see figure 6) is a cartoon factor graph depicting the way
factor graphs are used in low-level computer vision. The colored factor nodes
in this example represent image intensity pixels that would be captured by a
camera. The hidden variable nodes are some variables about the scene that
we would like to infer (for example, the depth from the camera associated
with each pixel). These hidden variables have some local probabilities given
the observations, but there are also correlations between them—for example,
if the depth has a certain value at one pixel, it is likely (but not guaranteed)
to have similar values at neighboring pixels.

Our goal, as usual, will be to find the most probable values of the hidden
scene variables given what our cameras observe.

9

"+%2&8$6,"&(3&CD9H&$3*"+&

& &
:0=&&&>&K<R<ST&

RY&

Fig. 6 An illustration of a factor graph equivalent to a pairwise Markov random
field (left) as is often used to representing a computer vision problem, and a depth
map returned by a BP algorithm [11] using stereo images (right). The variable
nodes in the factor graph could represent unknown depth values, for which there
exists some local evidence (the colored factor nodes), and which are statistically
correlated (depths at particular pixels tend to be similar to nearby pixels).

Graphical models called “pairwise Markov random fields,” which are
equivalent to factor graphs like that shown in figure 6, were introduced into
computer vision by Geman and Geman [23], and have become increasingly
popular in the last 25 years [10–12], although the models used in practice
are more complicated than the simplified cartoon shown in this figure. In a
factor graph equivalent to a pairwise Markov random field, each factor node
is connected to no more than two variable nodes.

One significant practical problem for BP algorithms is that the hidden
variables of interest in computer vision are typically continuous, and are
often severely quantized for the sake of efficiency when BP (or competing
algorithms like “graph cuts” [29]) are run. This means that one often sees
quantization artifacts in the results. The depth map on the right hand side
of figure 6 is the result of running a BP algorithm on a pairwise Markov
random field for stereo vision [11], and shows such artifacts.

Much recent research has focused on improving BP’s performance or ef-
ficiency for problems with continuous variables (see section 10), but never-
theless the fact that the Divide and Concur algorithm works naturally with
continuous quantities to any desired precision makes it an attractive potential
alternative to BP for computer vision applications.

It should be emphasized that factor graphs only give a principled way
of representing an optimization or probabilistic inference problem. You then
need to separately choose an algorithm to solve it.

Many different variants of message-passing algorithms exist, and of course
there are many other optimization algorithms (e.g. simulated annealing) that
can be used once the problem is represented as a factor graph. I focus here

10

on message-passing algorithms because they are often particularly powerful
and efficient.

One should be careful to cleanly separate the model of an optimization
or inference problem from the algorithm being used on that model. When
a clean separation is made, one can determine whether it is the model or
the optimization algorithm that needs improvement if one obtains an in-
adequate solution. For example, artifacts obtained using a particular stereo
vision model (that was in principle NP-hard to optimize) were for a long time
blamed on the inability of optimization algorithms to find the global opti-
mum. Eventually though, it was found that even the provably globally optima

found by BP-based algorithm were not completely adequate, demonstrating
that it was the model that needed to be improved [30].

5 Message-Passing Algorithms

Let’s turn now to the overall structure of message-passing algorithms, as they
operate on factor graphs. This overall structure is shared by different classes
of BP algorithms and by DC algorithms.

Figure 7 breaks the structure down into five steps. Message-passing al-
gorithms get their name from the fact that in each step, messages are sent
between nodes in the factor graph.

In the first step, the messages from variable nodes to factor nodes are
initialized. The initial messages could be random, but more often, one uses
non-informative messages from the hidden nodes, and messages that cor-
respond to the observations from the observed nodes. Messages should be
thought of as a variable telling its neighboring factors what it thinks its state
is, or what it thinks would be the cost for it to be in each of its possible states.
A non-informative message simply sets the costs of each possible state to be
equal.

The factor nodes take in all the messages from their neighboring variable
nodes, and in the second step, they compute messages that go back out to
neighboring hidden variable nodes. These messages take into account what
the variable nodes have told them, and the statistical relationships encoded
by a factor node. The messages tell the neighboring variables what state they
should be in, or what the costs will be for being in all their possible states.

In the third step, the hidden variable nodes inspect all the incoming
messages, and compute a “belief” about what their state should be. In BP
algorithms, this belief takes the form of a cost, or a probability, associated
with each possible state of a variable. In the example shown in figure 7, the
three hidden variable nodes have respectively two, two, and three possible
states, so the beliefs are similarly vectors (represented by the columns of red
numbers) of the same lengths giving the costs of each state. Thus in a BP
algorithm, if a variable is continuous valued, the belief associated with it
must be a function of that continuous variable. In DC algorithms, the belief
(and the messages) are just a single number, representing the current best
guess for the state of that variable node.

The fourth step of a message passing algorithm is necessary for BP al-
gorithms but not for DC, and involves thresholding the beliefs to obtain a

11

0.7

0.3

1.4

1.2

0.4

0.5

1.2

0.7

0.3

1.4

1.2

0.4

0.5

1.2

 1 1

 0

1

2 3

45

Terminate

Fig. 7 The overall structure of message-passing algorithms. The algorithms iterate
between steps, indicated by numbers in rectangles. In step 1, messages from variable
nodes to factor nodes (in blue) are initialized to random or non-informative values.
In step 2, the factor nodes compute from the incoming messages new outgoing
messages (in red). In step 3, those messages are converted into beliefs, which in
BP are generally represented as a cost for each possible state (the red numbers).
In step 4, the beliefs are thresholded to their lowest cost state (represented by the
number inside the variable node), and a termination condition is checked. In step
5, the beliefs and incoming messages are used to compute new outgoing messages
from the variable nodes, and then one returns to step 2, and the cycle continues.

single best guess for a variable node. In our example, the beliefs represent
costs, and the lowest cost state is chosen for each variable node (for example,
the bottom right variable node has costs 0.7 for state 0, 0.3 for state 1, and
1.4 for state 2, so state 1 has the lowest cost for that variable).

After the fourth step is completed, one has obtained a guess for the overall
configuration of the factor graph, and one can use that guess to check for a
termination condition. For example, in BP-based decoders of LDPC codes,
one can check whether the guess is a legal codeword that satisfies all the
parity-check constraints. Or one can check whether the guess or the beliefs
have changed from previous iterations, or whether a maximum number of
iterations has been reached. If the termination condition is satisfied, one
outputs the current guess.

12

i

“belief” “messages”

bi(xi) =
∑

a∈N(i)

ma→i(xi) (

Fig. 8 The belief update rule for the min-sum BP algorithm says that the belief
at a variable node is simply the sum of incoming messages from neighboring factor
nodes.

Otherwise, in the fifth step, the variable nodes will compute new messages
to send back to the factor nodes, based on their beliefs and the messages that
they received. Then one goes back to the second step, and the cycle repeats.

Notice that all the factor nodes can compute their outgoing messages
in step 2 in parallel, and similarly all the variable nodes can compute their
outgoing messages in parallel in step 5. That makes these algorithms at-
tractive for parallel implementation, either in hardware or software, and has
contributed significantly to their popularity.

6 Message and Belief Update Rules

Message-passing algorithms differ in the details of and justifications for their
message-update rules. I will begin by presenting one particular BP algorithm,
the “min-sum” algorithm. This algorithm uses messages and beliefs that
represent the costs for each variable to be in its different possible states. One
sometimes sees the “min-sum” algorithm in a different guise, and referred
to as the “max-product” BP algorithm. “Max-product” BP is equivalent to
“min-sum” BP; the only (completely superficial) difference is that messages
and beliefs are represented as probabilities rather than costs.

I begin with the belief update rules for min-sum BP, which relate the
beliefs bi(xi) at the variable node i to the messages ma→i(xi) coming into
node i from neighboring factor nodes a (see figure 8). The rule is very simple:
the belief is the sum of all the messages:

bi(xi) =
∑

a∈N(i)

ma→i(xi). (4)

Here we use the notation xi to represent the possible states of variable node
i, and N(i) to be the set of factor nodes neighboring node i.

This rule is easy to understand if we think of the factor nodes as giving
independent information about different parts of the graph. For example, if
node i is a binary variable neighboring two factor nodes, and the first factor
thinks it will cost A more for node i to be in state 1 than state 0, and the

13

i

∏

mi→a(xi) =
∑

b∈N(i)\a

mb→i(xi) (
a

mi→a(xi) = bi(xi)−ma→i(xi) (

Fig. 9 The variable-to-factor message update rule in min-sum BP says that the
outgoing (blue) message is the sum of all the incoming (red) messages on edges
other than the edge of the outgoing message.

ai

j

k

ma→i(xi) = min
xj ,xk

[Ca(xi, xj , xk) + mj→a(xj) + mk→a(xk)]

Fig. 10 The factor-to-variable message update rule for a message from factor a to
variable i depends on the local cost function Ca, and the incoming variable-to-factor
messages on other edges.

second thinks it will cost B more to be in state 1, than it is natural to
conclude that overall it will cost A+B more to be in state 1, so long as the
two factor nodes are using information from independent parts of the graph.

Turning next to the message update rule for a message mi→a(xi) from a
variable i to a factor node a (see figure 9), we see that the message depends
on all messages coming into variable node i from neighboring factor nodes b
except for the one coming in from the target factor node a:

mi→a(xi) =
∑

b∈N(i)\a

mb→i(xi) (5)

Again, the message out about the costs of the possible states of node i is just
a sum of incoming messages from other parts of the graph. Note that if the
belief has already been computed, we can use it to more efficiently compute
the outgoing message:

mi→a(xi) = bi(xi)−ma→i(xi). (6)

To complete our collection of update rules, we need the rule updating
messages from factor to variable nodes. It’s a little more complicated than
the other rules, but still easy to understand. Let’s look at the case when the

14

factor node a is connected to three variable nodes i, j, and k (see figure 10).
The message update rule

ma→i(xi) = min
xj ,xk

[Ca(xi, xj , xk) +mj→a(xj) +mk→a(xk)] . (7)

The three terms in this equation can be understood as follows. The mes-
sage ma→i(xi) should have node a tell node i what its costs would be for
being in each of its possible states. For each choice of state for node i, we
will arrange the other nodes attached to i to be in their best states given
that choice (that is the explanation for the minimization over xj and xk).
One part of the cost is the cost associated with a itself (the Ca(xi, xj , xk)
term). The other parts of the cost are what it costs to place the xj and xk

variables in the states that xi would like them to be in, given by the incoming
messages mj→a(xj) and mk→a(xk).

If Xa is the set of all variables attached to factor node a, and Xa\xi is
all those variables except for xi, then the general update rule for messages
from factor nodes to variable nodes, generalizing equation (7), is

ma→i(xi) = min
Xa\xi

Ca(Xa) +
∑

j∈N(a)\i

mj→a(xj)

 (8)

The form of equation (8) gives the min-sum algorithm its name. If the
beliefs and messages represent probabilities instead of costs, we would obtain
an equivalent message update rule with the sums replaced by products, and
the minimization replaced by a maximization, so that equivalent algorithm
is called the “max-product” algorithm.

We have written these rules as equations, but in fact they are normally
used as iterative update rules. Only at a fixed point will they become equal-
ities.

7 Exactness of BP for Tree Factor Graphs

We have already given some intuitive explanations for the form of the min-
sum update rules, but a more rigorous justification for the rules is that on
a graph with no cycles, applying the min-sum rules will provably give the
lowest-cost configuration, using an amount of memory and time that only
scales linearly with the number of nodes in the factor graph. I will not prove
that fact here, and instead just give an example showing how that works.

Consider the tree factor graph shown in figure 11. Suppose that we want
to compute the best state for variable node 1 in the optimal configuration.
We can get that by computing b1(x1), and thresholding it to the lowest cost
state. By equation (4), that belief will be given by b1(x1) = mA→1(x1).
Now, we can replace mA→1(x1) by using the min-sum update rule (8). If we
continually replace messages with cost functions and other messages using
the message update rules, we find:

b1(x1) = mA→1(x1)

15

A B C

1 2 3 4

Fig. 11 A factor graph with no cycles used to illustrate the fact that min-sum BP
finds an optimal configuration for such factor graphs.

= min
x2

[CA(x1, x2) +m2→A(x2)]

= min
x2

[CA(x1, x2) +mB→2(x2)]

= min
x2,x3,x4

[CA(x1, x2) + CB(x2, x3, x4) +m3→B(x3) +m4→B(x4)]

= min
x2,x3,x4

[CA(x1, x2) + CB(x2, x3, x4) +mC→4(x4)]

= min
x2,x3,x4

[CA(x1, x2) + CB(x2, x3, x4) + CC(x4)]

In the end, we see that b1(x1) gives the exact minimal overall cost for each
possible state of the first node, and a similar result would hold starting with
any other node.

It should be clear from this example that the min-sum algorithm is a
“dynamic programming” algorithm [31] when run on trees, and only needs
an amount of computation and memory that scales linearly with the number
of nodes in the factor graph.

As we have seen, the min-sum or max-product algorithm finds, for a factor
graph with no cycles, the lowest-cost or highest-probability configuration of
the system. A small modification of the max-product algorithm can be used
to obtain exact marginal probabilites pi(xi) for the variable nodes being in
each of their possible states, averaged over all possible configurations of the
system. That modification, which simply replaces the “max” in the factor-to-
variable message-update rule with a sum, gives the “sum-product” version of
BP. The beliefs in sum-product BP are precisely equal to the desired marginal
probabilities so long as the factor graph has no cycles.

The min-sum or max-product algorithm is also sometimes known as the
“Viterbi” algorithm [32], and it has had enormous practical importance.
Many problems, including decoding “convolutional” error-correcting codes,
for which it was originally introduced, naturally can be represented using
chain-like factor graphs, where the different variables in the chain represent
states of the system at different times.

Forney [33] made clear the significance of the Viterbi algorithm as a effi-
cient way of finding optimal state sequences for a wide range of such problems,
and he also introduced an important graphical visualization of the algorithm,

16

Fig. 12 An illustration from Forney’s paper [33] on the Viterbi algorithm, showing
a state diagram for a four-state shift-register process (a), and the corresponding
trellis diagram given evidence for the state of the process from time 0 to time k
(b).

the “trellis” diagram (see figure 12). Trellis diagrams can be used to effec-
tively track the values of messages as a BP algorithm proceeds forward in
time, or equivalently along the variables in a chain factor graph [24]. Each
edge in the trellis corresponds to a choice for a value of a one or more vari-
ables in the factor graph. For sufficiently simple error-correcting codes, one
can obtain optimal decoders from their trellis diagrams; and the important
issue often becomes how to represent a code so as to obtain a minimal trellis
diagram. [34].

I will not pursue this important subject further, except to make some
comments to connect threads from different fields. First, a physicist might
recognize that the BP algorithm on chains operates very similarly to the
transfer matrix approach used to exactly solve one-dimensional models in sta-
tistical physics. Second, I strongly recommend to the reader Knuth’s remark-
able recent tutorial [35] on binary decision diagrams [37] and zero-suppressed
binary decision diagrams [38], which are generalizations of trellis diagrams
that allow many different types of exact computations to be made for gen-

eral factor graphs over discrete variables, using as little memory and time as
possible. Knuth shows (among many other things) that there is a “sweeping
generalization” to algorithms on binary decision diagrams that compute op-
timal configurations (min-sum), or marginal probabilities (sum-product), or
the partition function (transfer matrix)—all these algorithms obey a general
form which can be exploited to exactly compute other quantities of inter-
est. Knuth’s observation echoes and expands upon earlier work of Aji and

17

McEliece [36], which generalizes BP to a class of message-passing algorithms
they call the “generalized distributive law.”

8 Approaches Based on Free Energies

The min-sum and sum-product algorithms are perfectly well defined on factor
graphs with cycles, but they are no longer necessarily exact. Nevertheless,
they often give good approximate answers. Some insight into why this should
be so was obtained when my colleagues Bill Freeman and Yair Weiss and
I showed [25,39] that the fixed points obtained by sum-product BP were
identical to the stationary points of a variational free energy, the so-called
“Bethe free energy.” If we use ba(Xa) to denote a multi-node belief over all
the variable nodes attached to the factor node a (intended to approximate
the multi-node marginal probability pa(Xa)) then the Bethe free energy FB

is given by FB = UB − SB , where the Bethe average energy UB is

UB =
∑

a

∑

Xa

ba(Xa)Ca(Xa) (9)

and the Bethe entropy SB is

SB = −
∑

a

∑

Xa

ba(Xa) ln ba(Xa) +
∑

i

(di − 1)
∑

xi

bi(xi) ln bi(xi). (10)

Here, di is the number of factor nodes neighboring variable node i.
The Bethe Free energy FB is a functional of the beliefs ba(Xa) and bi(xi),

which must satisfy the normalization conditions (for all a and i):

∑

Xa

ba(Xa) =
∑

xi

bi(xi) = 1 (11)

and the marginalization conditions for variable nodes i neighboring factor
nodes a:

bi(xi) =
∑

Xa\xi

ba(Xa). (12)

where Xa\xi denotes all variables attached to factor node a except xi.
The marginalization condition turns out to be fundamental: the Lagrange

multipliers that enforce it when minimizing the Bethe Free energy turn out
to equal linear combinations of the fixed-point messages in sum-product BP.

The Bethe average energy UB is actually exactly equal to the true average
energy of the system given correct beliefs, but the Bethe entropy SB is only an
approximation. Improving that approximation, using larger regions of nodes
to compute the entropy, gives better “Kikuchi” [40] or “region graph” free
energies, and corresponding “generalized belief propagation” algorithms that
gave more accurate marginal probabilities than the sum-product algorithm
[39].

Building on these ideas, Chertkov and Chernyak developed another sig-
nificant approach to improving BP, that begins with sum-product BP or

18

the equivalent Bethe approximation as a zeroth order approximation, and
obtains a “loop” series that systematically improves on that approximation
[41].

Given the fact that spin glasses and related models can be described using
factor graphs, it was perhaps unsurprising that the well developed statisti-
cal physics of disordered system, and in particular the “replica” and “cavity
field” methods [42] would be related to BP message-passing algorithms [19].
From this perspective, it is clear that the sum-product BP equations only
describe a single minimum of the free energy of the system, and ignore any
fracturing of phase space such as often occurs in disordered systems. An
important and surprising breakthrough exploiting this insight was the devel-
opment of another improved message-passing algorithm called “survey prop-
agation,” based on heuristic ideas that try to take phase-space fracturing into
account [43]. Survey propagation has been shown to solve NP-hard random
satisfiability problems very effectively, even very close to the satisfiability
threshold where they are particularly difficult [44].

On the other hand, one can take the point of view that the Bethe free
energy that underlies sum-product BP would be more convenient to work
with if it was always convex as a function of the beliefs, as it is when the
factor graph is a tree. Wainwright, Jaakkola, and Willsky [45] derived new
message-passing algorithms by replacing the Bethe entropy approximation
with concave entropies to obtain “convexified” free energies which are guar-
anteed to have a unique global minimum. They showed that their approach
could be used to find upper bounds on the log partition function (or lower
bounds on the Helmholz free energy) of the system.

9 Min-sum Algorithms Based on “Splitting”

Wainwright, Jaakkola, and Willsky also introduced related “tree-reweighted”
BP algorithms, in both sum-product [46] and max-product [47] form, and
proved several powerful theorems about them. These algorithms were origi-
nally introduced in the context of pairwise Markov random fields rather than
standard factor graphs. I prefer therefore to consider instead the insightful
recent formulation of Ruozzi and Tatikonda [48], which generalizes the tree-
reweighted max-product algorithm in a way that directly connects to the
min-sum BP algorithm on standard factor graphs.

Ruozzi and Tatikonda start from the idea that it is easy to create equiv-
alent factor graphs for the same overall cost function by “splitting” either
factor or variable nodes. For example, as illustrated in figure 13, we can split
the factor node b into two factor nodes b1 and b2, each of which has the same
neighboring nodes as b and gets exactly half of the cost associated with the
original node b. Doing this gives us a factor graph that models exactly the
same original cost function as the original cost function, but notice that the
min-sum algorithm associated with new factor graph is different from the
original one.

Let’s assume that we initialize all messages from the same variable node
but to different split copies of a factor node to be equal to each other, and
similarly for messages from different split copies of a factor node. In that

19

1 2

3

a c

4b

a c

1 2

3

4

b1

b2

Fig. 13 One can obtain a new factor graph modeling exactly the same cost function
by splitting a factor node into two identical factor nodes, each taking half the cost
of the original, and connected to the same variable nodes.

case, the messages to and from split copies of a factor node will continue
to maintain that symmetry, and can be identified with the messages to and
from the factor node in the original factor graph. So in fact, we can translate
the message-passing algorithm on the factor graph with split factor nodes
into an induced message-passing algorithm on the original factor graph. If
each variable node i is split ki times, and each factor node a is split ka times,
it is easy to verify that the new induced message update rules are

mi→a(xi) = (ka − 1)ma→i(xi) +
∑

b∈N(i)\a

kbmb→i(xi) (13)

and

ma→i(xi) = min
Xa\xi

Ca(Xa)

ka
+ (ki − 1)mi→a(xi) +

∑

j∈N(a)\i

kjmj→a(xk)

 .

(14)
Notice that the message mi→a(xi) now depends directly on the message
ma→i(xi) coming in the opposite direction on the same edge. This results
from splitting: a message to one of the copies of a depends on the messages
from the other copies of a.

Even though the message update rules (13) and (14) were originally de-
rived using splitting factors ka and ki that were positive integers, they are
also perfectly well-defined for any real values of ka and ki, including real
values that are less than 1. Ruozzi and Tatikonda show that if ka and ki are
chosen appropriately (e.g. for a regular graph where each variable node has
degree d, choose ki = 1, and ka to be a positive real less than 1/d), then one
can prove some remarkable theorems about the resulting message-passing
algorithm.

In particular, if a fixed point of the message-passing update rules is
reached, and the resulting single node beliefs each have a unique lowest cost
state for that node, then the overall state obtained by combining those single-
node states is provably a global optimum! This is a surprising theorem, be-
cause it holds for arbitrary factor graphs, even those with cycles. Moreover,
with the same choice of splitting constants, one can devise simple schedules

20

that provably converge. Of course, the condition that each single-node belief
must have a unique lowest cost state at the fixed point (no ties are allowed) is
an important loophole that will often prevent a “splitting” message-passing
algorithm from giving the globally optimal solution for an NP-hard problem
in a difficult regime.

10 BP for Factor Graphs with Continuous Variables

Because BP messages and beliefs track the cost of every possible state of
a variable, it is much easier in practice to apply BP to problems where
the variables all have a small number of possible states. Nevertheless, the
BP update rules are well-defined for continuous variables; it is just that the
messages and beliefs must be full functions of the variables. There are certain
circumstances when these functions can still be computed with efficiently.

First, suppose one tries to parameterize a message or belief function that
represents a probability as a Gaussian (or equivalently as a quadratic if we
use costs instead of probabilities); in this case one would only need to store
its mean and variance. It turns out that there are a variety of important local
cost functions such that locally, the max-product and sum-product BP algo-
rithms preserve a Gaussian form [21]. The famous Kalman filtering problem
is constructed from local cost functions that all have preserve Gaussians, and
moreover the factor graph is a chain, so that a Gaussain BP algorithm pa-
rameterizing messages using means and variances is exact, and is equivalent
to the Kalman smoothing algorithm [21,49].

For graphs with cycles, a BP algorithm may not converge, and in general
its fixed points will no longer exact, even if the local cost functions preserve
the Gaussian form of messages. However, in the important special case of
a pairwise Markov random field that represents a Gaussian distribution of
many variables, Weiss and Freeman [50] and Rusmevichientong and Van Roy
[51] proved that if the BP algorithm converges, the calculated means (but not
the variances) are exact. The conditions under which Gaussian BP converges
[52], and how to fix its convergence properties [53], has been the subject of
much recent work.

For certain problems, one can sometimes show that min-sum BP will pre-
serve other functional forms. For example Gamarnik, Shah, and Wei recently
showed that for the min-cost network flow problem, the messages preserve
a piecewise linear form [54], and proved that min-sum BP converges to the
optimal solution.

If one does not have local cost functions that preserve any nice form for
the messages, dealing with continuous variables becomes very difficult. Nev-
ertheless, one can begin with the assumption that messages have some nice
form (for example Gaussians), then proceed by computing the outgoing mes-
sages using the sum-product or max-product BP update rules, and convert
the results back into Gaussians by retaining only their means and variances.
A systematic way to do this is provided by the popular “Expectation Prop-
agation” algorithm [55].

“Non-parametric BP” is a similar but more accurate method that uses
mixtures of Gaussians, and efficient sampling techniques [56]. Finally, the

21

“Particle Belief Propagation” approach [57] builds on the “Particle Filter”
sampling technique [56] first developed for temporal processes. However, the
drawback of relying on sampling is that it becomes increasingly computa-
tionally intensive to obtain more precise results.

As you can see, there are lots of options for dealing with continuous vari-
ables in the context of BP, which is not really surprising, because continuous
variables are ubiquitous in inference and optimization problems that we care
about. For an extensive review, with an emphasis on Gaussian BP for signal
processing applications, see [58].

Consider however, the most simple and naive approach imaginable: in-
stead of keeping track of the costs of every possible value of a variable, why
don’t we just use our single best current guess for the value as a message? It
might seem unlikely that such an approach can give good results, but in fact
with sufficient ingenuity it can; such an approach underlies the Divide and
Concur algorithm, which we turn to now.

11 Divide and Concur

The DC algorithm was introduced by Gravel and Elser [4], and builds upon
considerable earlier work done by Elser with his students on the use of
“difference-map” dynamics in iterative projection algorithms [59]. As I did
with the min-sum BP algorithms, I will begin by explaining how to imple-
ment DC, and then discuss its justifications.

Like BP, DC can be used to solve optimization and inference problems,
but it is easier to begin by considering its application to constraint satis-

faction problems. In a constraint satisfaction problem, we are looking for a
configuration of variables such that all constraints are satisfied. In the lan-
guage of factor graphs, all “cost” functions are “hard”: their only possible
values are zero (the constraint is satisfied) or infinite (the constraint is not
satisfied).

To explain the DC algorithm it is standard to introduce “replicas” or
“copies” of each variable; we introduce one replica of each variable for each
constraint it is involved in. (These “replicas” have nothing to do with the
“replica method” used for averaging over disorder in statistical physics [19],
or the copies used in Ruozzi and Tatikonda’s “splitting” method previously
described [48].) Of course, the different replicas of the same variable even-
tually have to equal each other, but temporarily we can allow them to be
unequal while they satisfy different constraints. Essentially we are lifting our
original problem to a higher dimensional space where it is easier to solve.

In figure 14, I show a small example of a “constraint graph,” which is use-
ful for visualizing the DC algorithm. A constraint graph is like a factor graph,
except that the factor nodes have been replaced with constraint nodes that
represent hard constraints. These constraint nodes can represent arbitrary
and possibly non-linear constraints on the neighboring variables.

Note that the variables in a constraint graph should always be thought
of as real (continuous) numbers. However, problems with discrete variables
can easily be handled by simply adding the appropriate constraints to the
constraint graph.

22

1 2

3

4

x3x4 = 0

x2 = (x4)
2

-1 0

2

46

35

x1 ≥ x2 + x3

Fig. 14 A constraint graph with three hidden variables, one observed variable,
and three hard constraints. The little blue “beads” placed on the edges represent
replicas of the neighboring variable node, which can temporarily take different
values, but must be equal at a solution.

Our example constraint graph explicitly represents the replicas of variable
as little “beads” on the edges between constraint and variable nodes. Next
to each replica bead there is a real number that is the current value of the
replica. Notice that the replicas are associated with the edges of the constraint
graph, just as BP messages are associated with the edges of factor graphs.

The DC algorithm is built from two “projections” on the replica values.
The “Divide” projection does the most natural thing imaginable to satisfy
the constraints: it moves the replica values from their current values to the
nearest values that satisfy all the constraints. The “Concur” projection also
is completely natural: it averages the replica values that belong to the same
variable.

Let us use our example constraint graph, with its replica values, to illus-
trate how a “Divide projection” works. In the top left, we have a constraint
x1 ≥ x2 + x3, and the current replica values are 5 for the replica of x1, 3 for
the replica of x2, and 6 for the replica of x3. We know that x1 is an observed
variable, so we leave it fixed, but otherwise we want to move the replicas of x2

and x3 as little as possible, but make them satisfy the constraint x1 ≥ x2+x3.
When I say “move as little as possible,” of course I must specify a metric.

The choice of metric is a crucial issue, but for the moment, let’s just use a
standard Euclidean metric.

Using this metric, the Divide projection would satisfy its constraint by
moving the replicas of x2 and x3 to the values 1 and 4 respectively. At the
same time, and in parallel, we can project the replicas around the other
constraints (x3x4 = 0 and x2 = (x4)

2) to their nearest values which satisfy
those constraints. Note that each replica is connected to only one constraint,
so that all these local Divide projections can be done fully in parallel. The
overall Divide projection of all the replicas is simply the concatenation of all
the local projections.

Figure 15 shows the results of applying the Divide projection to the con-
straint graph from figure 14. It is usually easy to write a subroutine to com-

23

1 2

3

4

x3x4 = 0

x2 = (x4)
2

0 0

0

44

15

x1 ≥ x2 + x3

Fig. 15 State of the replicas of the constraint graph in figure 14 after applying a
Divide projection.

1 2

3

4

x3x4 = 0

x2 = (x4)
2

x1 ≥ x2 + x3

=

==

Fig. 16 A “normal” version of the constraint graph from figure 14, where the vari-
able nodes are replaced with constraint nodes that impose equality on neighboring
replicas.

pute each local divide projection at a particular constraint node, so the DC
algorithm divides the overall problem of simultaneously satisfying all the
constraints into a lot of small problems of projecting to the nearest solution
of a single constraint.

The Concur projection can also be thought of as making the smallest move
that satisfies a constraint; now the constraint is that different replicas of the
same variable must be equal, and the smallest move is to move all the replicas
to the average. Thus we could as well have drawn our constraint graph in the
form shown in figure 16, where we have replaced the hidden variable nodes
with constraints that impose equality on the neighboring replicas, and now
the Divide and Concur projections would work in exactly the same way.

Forney introduced such so-called “normal” versions of standard factor
graphs [24], which, while being equivalent to the standard version, have sev-

24

!

!"

!#

!"$!"#

Fig. 17 A toy “normal” constraint graph used to illustrate replica dynamics.

eral advantages compared with standard factor graphs in terms of the insight
they give. For example, using normal factor graphs, one sees that BP in fact
has only one message update rule, just applied to different types of factors.
Normal factor graphs are also well-suited for hierarchical modeling (it is easy
to create a super-factor by enclosing a group of factors in a box), and they
are compatible with standard block diagrams [21].

Returning to the DC algorithm, the simplest way to combine the Divide
and Concur projections would be just to alternate between them—the so-
called “alternating projections” algorithm. However, that is often a bad idea,
as explained in the next section.

12 Traps in Alternating Projections

Let us denote the vector of all the values of the replicas in a constraint graph
at iteration t by rt, and the replica values obtained by applying the Divide
projection to rt to be PD(rt). Then the alternating-projections algorithm
would iteratively apply the Divide projection PD and the Concur projection
PC ; that is it would obtain rt+1 using the rule

rt+1 = PC(PD(rt)). (15)

The problem with alternating projections is that the algorithm can be
trapped in a simple cycle, where the replica vector first satisfies the Divide
constraints but not the Concur constraints, and then satisfies the Concur
constraints but not the Divide constraints, and then goes right back to where
it was before satisfying the Divide constraints.

Consider the somewhat contrived “normal” constraint graph [60] shown in
figure 17. This constraint graph has two replicas, denoted rx and ry, and two
constraints: an equality constraint on the right corresponding to a variable
node, and a constraint that the two replicas are either at point A, which is at
(rx = 0, ry = 0) or at point B, which is at (rx = 3, ry = 1). We can consider
the Divide projection to move the replica vector to the nearest of points A
and B, and the Concur projection to set rx and ry to their mean value.

The only solution that satisfies all the constraints is the point A, where
rx = ry = 0. But let’s see what happens when we start at some point near B
like point D in figure 18. The Divide projection takes us to the nearest point

25

A

B

A

B

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

C

D

terated projection strategy. If one iteratively projects to the nea
Fig. 18 An example of a trap resulting from alternating projections. If one alter-
nately projects to the nearest point that satisfies the constraint to be at A or B,
and then the nearest point where the replica values are equal (the diagonal line),
one may be trapped in a short cycle (B to C to B and so on) and never find the
true solution at A.

of A or B, which is B, then the Concur projection takes us to the nearest
point on the diagonal line, which is C, then we go back to B, and so on. We
never find the true solution at A.

13 Difference-Map Dynamics

To make progress, we need a way to turn pairs of points in replica space
where the Divide constraints and Concur constraints come close, but do not
intersect (like points B and C in figure 18) into repellers in the dynamics
rather than traps. The “Difference-Map” (DM) dynamics does that [59]. We
first consider a particular version of DM, where the replica update rule is

rt+1 = PC(rt + 2[PD(rt)− rt]))− [PD(rt)− rt]. (16)

To parse this complicated looking equation, it is useful to think of the
difference-map dynamics as breaking up into a three-step process [60]. The
expression [PD(rt) − rt] represents the change to the current values of the
replicas resulting from the Divide projection. In the first step, the values of
the replicas move twice the desired amount indicated by the Divide projec-
tion. We can refer to these new values of the replicas as the “overshot” values
rovert = rt+2[PD(rt)−rt]. Next the Concur projection is applied to the over-
shot values to obtain the “concurred” values of the replicas rconct = PC(r

over
t).

26

r1

r2

r3

r∗

rover

1A

B

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

t rt PD(rt) r
over
t r

conc
t

1 (2, 2) (3, 1) (4, 0) (2, 2)
2 (1, 3) (3, 1) (5,−1) (2, 2)
3 (0, 4) (0, 0) (0,−4) (−2,−2)
4 (−2, 2) (0, 0) (2,−2) (0, 0)
5 (−2, 2)

. An example showing how DM dynamics avoids traps. If we start at the point , an iterated projections dynamics would be trapped be

Fig. 19 An example showing how DM dynamics avoids traps. If we start at the
point r1, an alternating projections dynamics would be trapped between point B
and r1, and never find the solution at A. DM dynamics will instead be repelled
from the trap and move to r2 (via the three sub-steps denoted with dashed lines
rover1 , rconc

1 = r1, and r2), then move to r3, and then end at the fixed point r4 = r∗,
which corresponds to the solution at A.

Finally the overshoot (that is, the extra motion in the first step) is subtracted
from the result of the Concur projection to obtain the replica value for the
next iteration rt+1 = rconct − [PD(rt)− rt].

In figure 19 we return to our previous example to illustrate that the DM
dynamics do not get stuck in a trap. Suppose that we now start initially
at point r1 = (2, 2). The Divide projection would take us to point B, but
the overshoot takes us twice as far to rover1 = (4, 0). The Concur projection
takes us back to rconc1 = (2, 2). Finally, the amount by which we overshot is
subtracted so that r2 = (1, 3). The next full iteration takes us to r3 = (0, 4)
(sub-steps are tabulated in figure 19). Now however, we are closer to A then
to B. Therefore, the next overshoot takes us to rover3 = (0,−4), from which
we would move to rconc3 = (−2,−2), and r4 = (−2, 2). Finally, at r4 we have
reached a fixed point in the dynamics, because r5 = r4.

It can be proven that if a fixed point r∗ in the DM dynamics is reached
such that rt+1 = rt = r∗, then that fixed point must correspond to a solution
rsol that can be obtained using rsol = PD(r∗). Thus, applying one more
Divide projection to our fixed point, we arrive at our solution at (0, 0).

Of course, the DM dynamics is not a panacea. It is possible for example
for the replica vector to fall into a more complicated cycle and fail to find a
fixed point. More generically, it is believed that when DM fails to converge,
it typically follows chaotic dynamics. Empirically, though, it is now clear
that the DM dynamics can effectively solve a great variety of problems (e.g.
graph coloring, solving diophantine equations, Sudoku, spin glass ground
states, phase retrieval, random satisfiability, sphere packing, heteropolymer
folding) that would be insoluble with the more naive alternating projections
approach [59,61].

27

It is natural to wonder to what extent the DM equation (16) can be mod-
ified, to perhaps improve convergence; for example can that funny-looking 2
that defines how much one overshoots be changed into a parameter? It turns
out the value 2 is a good choice: smaller values and you don’t always escape
from a trap, larger ones and you start shooting away at an exponentially
growing rate, which can cause problems.

However, you might also notice that equation (16) does not treat the
Divide and Concur projections symmetrically. What if we swap the roles
of PC and PD? It turns out that works fine, typically about as well as the
original version. So is there a parameterized version of DM that lets us move
smoothly from the original version given by equation (16) to the version with
PC and PD swapped? Such a parameterization has indeed been devised [4,
59]. For many problems a parameter value that gives a version of DM part-
way between the original and the swapped version, but still rather close to
either the original or swapped version, works best [61].

14 DC as a Message-passing Algorithm

Nevertheless, the standard DM dynamics given by equation (16) has an im-
portant conceptual advantage—it makes it easier to see that DC is a message-
passing algorithm closely analogous to BP [60]. Recall that each iteration of
the standard DM dynamics can be interpreted as a three-step process: first
overshoot, then concur, then correct.

The overshoot computation is done using the Divide projection at the
constraint nodes. One can interpret the replica values before the overshoot
as “messages” from the variable nodes to the factor nodes, and the resulting
overshot values as messages from the factor nodes to the variable nodes.

The second step is to concur the overshot replica values, and make them
equal at each variable node. This exactly parallels the BP step where one
computes a belief at each variable from the incoming messages.

Finally, the third step is to correct the concurred replica values neighbor-
ing variable nodes by subtracting the original overshoot. This parallels the
BP step (see equation (6)) where one computes the messages from variable
nodes to factor nodes by subtracting the incoming message from the belief.

To summarize, although the details of the update rules are different, the
DC overshot replica values correspond to BP messages from factor nodes
to variable nodes, the DC concurred replica values correspond to BP beliefs,
and the DC corrected replica values correspond to BP messages from variable
nodes to factor nodes [60].

15 DC for Optimization

We have seen how to use DC to solve constraint satisfaction problems; now
I will show that optimization problems can be converted into constraint sat-
isfaction problems. In some cases, this is relatively easy; if we know some
conditions on the optimum configuration (e.g. the stationarity conditions)
we can impose those as constraints.

28

1 2 1.4

, x2, x, x4) +Cb(
0

0

0

1

1

0

1

2

0

1

1.2

0.6

1.7

3.2

1.9

, x4) +

0

0

0

1

1

1

0

1

2

0

1

2

0.4

0.3

2.4

1.9

0.2

4.9

, x3) + Cc(

(x1 , x3) +Ca(

0 !

, x2, x

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

!

!

!

0

0

0

0

1 2

3

a c

4
b

C

Cc

b

Fig. 20 A constraint graph derived from the factor graph shown in figure 2. The
red circles represent new cost variable nodes corresponding to the soft cost functions
in the original factor graph. The red square represents a global constraint on the
maximum summed cost.

Another possibility, which may be less elegant but which is always avail-
able, is to introduce “cost variables” corresponding to the cost functions of a
factor graph. Consider for example the factor graph that we first introduce
in figure 2, and the constraint graph derived from it shown in figure 20. For
each soft local cost, we introduce a new variable corresponding to that cost,
and modify the soft factor into a corresponding hard constraint. For example,
for the constraint b in the constraint graph illustrated, we require that if x2

and x4 equal 0, then the cost variable Cb must equal 1.2.

All the cost variables can then be tied together in a new global hard
constraint, which says that the sum of the cost variables must be less than
some desired maximum cost. If we like, we can continually tighten the desired
maximum cost in an outer loop on the algorithm.

This technique, which can generally convert an optimization problem into
a constraint satisfaction problem to which DC can be applied, has been used
to develop DC decoders for LDPC codes [60,61], and DC algorithms that
optimize heteropolymer energy functions [62].

29

16 Advantages and Disadvantages of DC Compared with BP

As an optimization or constraint satisfaction algorithm, DC presents several
notable advantages compared with BP algorithms. First of all, as we have
emphasized, DC has no difficulties dealing with continuous variables.

A second, less obvious, advantage is that DC, unlike BP, performs very
well even when the hidden variables have no good “local evidence.” BP al-
gorithms often converge to a fixed point with non-informative beliefs in the
absence of local evidence.

Consider, for example, the problem of packing hard spheres (or other
geometrical objects) as densely as possible into a finite volume such as the
interior of a cube, for which DC is the state-of-the-art algorithm [63]. Be-
cause there is no local evidence saying that any particular sphere should be
in a particular part of the volume, if one applied BP the messages sent from
variables representing sphere centers to the constraints would start off gen-
erally non-informative, simply “saying” that the cost of being anywhere in
the cube was equal. Those messages would be a fixed point of the dynamics:
the BP algorithm would get no traction. Even starting with random mes-
sages, a BP algorithm for this problem would nearly inevitably converge to
non-informative messages. DC on the other hand, is forced to make a single
guess for each message at all times. Even starting with some initial random
guesses for the positions of the sphere centers, it gradually works its way to
a solution that satisfies all the hard constraints.

A third advantage of DC is that it is much easier to introduce compli-
cated hard constraints, as might naturally arise in computer vision or control
problems.

A fourth advantage of DC is that it cannot be trapped at a fixed point
that is not a solution of the problem. BP, on the other hand, can converge
to non-solutions, such as the “trapping sets” that cause “error floors” in BP
decoders of some LDPC codes [64]. DC LDPC decoders do not get stuck
in traps, as we would expect, but unfortunately they often decode to code-
words that are less likely than the transmitted codeword, a failure mode not
seen in BP [60]. Working from the idea of combining the advantages of BP
and DC, my colleagues Yige Wang, Stark Draper and I recently proposed a
hybrid “difference-map BP” decoder that heuristically imports a difference-
map dynamics into a min-sum BP decoder. Difference-map BP has proven
to significantly improve error floor performance compared to standard BP
decoders, and also turns out to be closely related to the “splitting” BP algo-
rithm [60].

DC also has some disadvantages in comparison with BP. Most signifi-
cantly, it fundamentally only tracks a single value for each variable, so it
cannot compute marginal probabilities like the sum-product algorithm does,
or properly account for a probabilistic weighted sum over states.

DC also is often somewhat slow in converging to a solution. A related
issue is that the convergence rate of DC depends crucially on the metric
chosen. Even if we restrict ourselves to the natural Euclidean metric, it is
very important how one scales the different variables in a problem (e.g. for a
particular problem, it matters significantly whether one measures distances

30

for a particular variable in units of millimeters or kilometers, and costs in
units of dollars or cents). Currently, the best way to scale variables in DC is
somewhat of a mystery.

Finally, unlike many versions of BP, DC is not guaranteed to give cor-
rect answers for constraint graphs or factor graphs without cycles. It does,
however, have its own set of guarantees, which we turn to next.

17 Justifications for and History of DC

Let’s begin by considering when the alternating projections algorithm can be
guaranteed to find a satisfying solution to a constraint satisfaction problem.
Suppose that we have two constraints that we want to satisfy. In our case
we consider the collection of Divide constraints to be one constraint, and the
collection of Concur constraints to be the the other constraint. Each of the
two constraints can be considered to be sets of points in some space (in our
case consider that to be the space of replica vectors).

A set of points is defined to be convex if the segment of points connecting
any two points in the set is also contained in the set. It turns out (see the
monograph by Bauschke and Combettes [65] for a full mathematical treat-
ment of the topics discussed in this section) that if two sets of points are
convex, alternately projecting from a point in one set to the nearest point
in the other is guaranteed to converge a point in the intersection of the two
sets. In that case, the alternating projections algorithm is also known as the
“Projections onto Convex Sets” algorithm. It follows that if the sets of replica
vectors that satisfy the Divide and Concur constraints are each convex, than
the alternating projections algorithm will converge to a solution.

Notice however that the alternating projections algorithm is only guar-
anteed to be weakly convergent—the algorithm sometimes bounces from one
convex set to the other, getting ever closer to the intersection of the two
sets, but never actually reaching it in a finite number of iterations. Think for
example, of the case when the two convex sets are each a line that intersects
at a point.

Just as for alternating projections, one can prove that the DM projec-
tion dynamics also always converges to the intersection of two convex sets,
and in some cases (but not always) it accelerates convergence compared to
alternating projections. In fact, for some cases where alternating projections
converges only weakly, DM converges in a finite number of iterations. So for
the problem of finding the intersection of two convex sets, the DM is a handy
alternative algorithm to alternating projections: it also always converges to
a solution, and sometimes is much faster.

It is easy to show that the set of replica values satisfying the Concur con-
straints is automatically convex. It is also true that an intersection of convex
sets is convex, which means that if all the sets of replica values satisfying
the local Divide constraints are convex, the overall Divide constraint is also
convex.

Historically, the “difference-map” dynamics given by equation (16) were
first investigated in 1956 by Douglas and Rachford [66] as an improved iter-
ative method for solving partial differential equations, and extended into a

31

projection operator splitting method by Lions and Mercier in 1979 [67]. The
surprisingly successful application of the DM algorithm to the non-convex

phase retrieval problem [69] sparked the more recent investigations into why
DM dynamics should also be useful for non-convex problems [68], their ap-
plication to many other problems [59], and finally the formulation of the DC
algorithm [4], which makes clear that the approach can be applied to gen-
eral constraint satisfaction and optimization problems, albeit without the
guarantees that obtain when it is applied to convex problems.

To summarize, just as BP algorithms converge to exact solutions on tree
factor graphs but still can give very useful results for problems defined on
general graphs, the DC algorithm converges to exact solutions when the
constraint solution sets are convex, but can still give very useful results for
problems defined using general constraints.

Acknowledgements I thank Veit Elser for many helpful discussions about the
Divide and Concur algorithm, and Stark Draper, Yige Wang, Bill Freeman, and
Yair Weiss for enjoyable collaborations on the subjects discussed here.

References

1. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn. 1, 1–305 (2008)

2. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cam-
bridge, MA (2009)

3. Barber, D: Bayesian Reasoning and Machine Learning. Cambridge University
Press, Cambridge (2011)

4. Gravel, S., Elser, V.: Divide and concur: a general approach to constraint satis-
faction. Phys. Rev. E 78, 036706 (2008)

5. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

6. Russell, S., Norvig, P.: Artificial Intelligence, a Modern Approach, 3rd edition.
Prentice Hall, Upper Saddle River, NJ (2009)

7. Gallager, R.G.: Information Theory and Reliable Communication. John Wiley
and Sons, New York (1968)

8. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University
Press, Cambridge (2008)

9. Ryan, W.E., Lin, S.: Channel Codes: Classical and Modern. Cambridge Univer-
sity Press, Cambridge (2009)

10. Freeman, W.T., Pasztor, E.C., Charmichael, O.T.: Learning low-level vision.
Int. J. Comput. Vis. 40, 25–47 (2000)

11. Felzenszwalb, P.F., Huttnelocher, D.P.: Efficient belief propagation for early
vision. Int. J. Comput. Vis. 70, 41–54 (2006).

12. Sudderth, E.B., Freeman, W.T.: Signal and Image processing with belief prop-
agation. IEEE Signal Processing Magazine 25, 114–141 (2008).

13. Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. EEE 77, 257–286 (1989)

14. Jelinek, F.: Statistical Methods for Speech Recoginition. MIT Press, Cambridge
MA (1997)

15. Hershey, J.R., Rennie, S.J., Olsen, P.A., Kristjansson, T.T: Super-human
multi-talker speech recognition: a graphical modeling approach. Comp. Speech
and Language 24, 45–66 (2010)

16. Jurafsky, D., Martin, J.H: Speech and Language Processing. Prentice Hall,
Upper Saddle River, NJ (2000)

17. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, MA (1999)

32

18. Krauth, W.: Statistical Mechanics: Algorithms and Computations. Oxford Uni-
versity Press, Oxford (2006)

19. Mezard, M., Montanari, A: Information, Physics, and Computation. Oxford
University Press, Oxford (2009)

20. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-
product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)

21. Loeliger, H.-A.: An introduction to factor graphs. IEEE Signal Proc. Mag.,
28–41 (2004)

22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Francisco (1988)

23. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Trans. Pattern Analysis Machine Intelli-
gence 6, 721–741 (1984)

24. Forney, G.D.: Codes on graphs: normal realizations. IEEE Trans. Inf. Theory
47, 520–548 (2001)

25. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and
its generalizations. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intel-
ligence in the New Millenium, pp. 239–270. Morgan Kaufmann, San Francisco
(2003)

26. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf.
Theory 27, 533–547 (1981)

27. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge MA
(1963)

28. Lauritzen, S.L., Spiegelhalter D.J: Local computations with probabilities on
graphical structures and their application to expert systems. J. Royal Statistics
Society B 50, 157194 (1988)

29. Boykov, Y., Veksler, O., Zabih, R: Fast approximate energy minimisation via
graph cuts. IEEE Trans. Pattern Analysis Machine Intelligence 29, 1222-1239
(2001)

30. Meltzer, T., Yanover, C., Weiss, Y.: Globally optimal solutions for energy min-
imization in stereo vision using reweighted belief propagation. Int. Conference on
Computer Vision (2005)

31. Cormen, C.H., Leiserson, C.E., Rivest, R.L., Stein, C.: An Introduction to
Algorithms, Chapter 15, 3rd ed. MIT Press, Cambridge, MA (2009)

32. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically op-
timum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)

33. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973)
34. Vardy, A.: Trellis structure of codes. In: Pless, V.S., Huffman, W.C. (eds.)
Handbook of Coding Theory, Vol. 2, pp. 1989–2118. Elsevier, Amsterdam (1998)

35. Knuth, D.E.: The Art of Computer Programming, Vol. 4A Combinatorial Al-
gorithms. Addison-Wesley, New York (2011) section 7.1.4.

36. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Trans. Inf.
Theory 46, 325–343 (2000)

37. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation,
IEEE Trans. Computers 35, 677–691 (1986)

38. Minato, S.-E.: Zero-suppressed BDDs for set manipulation in combinato-
rial problems. Proc. 30th ACM/IEEE Design Automation Conference. 272–277
(1993)

39. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approxima-
tions and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51,
2282–2312 (2005)

40. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. 81, 988–1003
(1951)

41. Chertkov, M., Chernyak, M.: Loop series for discrete statistical models on
graphs. J. Stat. Mech. (2006) doi:10.1088/1742-5468/2006/06/P06009

42. Mézard, M., Parisi, G., Virasaro, M.A.: Spin Glass Theory and Beyond. World
Scientific, Singapore (1987)

43. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of ran-
dom satisfiability problems. Science 297, 812–815 (2002)

33

44. Braunstein, A., Mézard, M., Parisi, G: Survey propagation: an algorithm for
satisfiability. Random Structures and Algorithms 27, 201–226 (2005)

45. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: A new class of upper bounds on
the log partition function. IEEE Trans. Inf. Theory 51, 2313–2335 (2005)

46. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: Tree-based reparameterizatin
framework for analysis of sum-product and related algorithms. IEEE Trans. Inf.
Theory 45, 1120–1146 (2003)

47. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: MAP estimation via agree-
ment on (hyper)trees: message-passing and linear programming approaches. IEEE
Trans. Inf. Theory 51, 3697–3717 (2005)

48. Ruozzi, N., Tatikonda, S.: Convergent and correct message passing
schemes for optimization problems over graphical models. Available at
http://arxiv.org/abs/1002.3239 (2010)

49. Loeliger, H.-A.: Least squares and Kalman filtering on Forney graphs. In:
Blahut, R.E., Koetter, R. (eds.) Codes, Graphs, and Systems, pp. 113–135.
Kluwer (2002)

50. Weiss, Y., Freeman, W.T.: On the optimality of the max-product belief prop-
agation algorithm on arbitrary graphs. IEEE Trans. Inf. Theory 47, 736–744
(2001)

51. Rusmevichientong, P., Van Roy, B.: An analysis of belief propagation on the
turbo decoding graph with Gaussian densities. IEEE Trans. Inf. Theory 47, 745–
765 (2001)

52. Malioutov, D.M., Johnson, J.K., Willsky, A.S.: Walk-sums and belief prop-
agation in Gaussian graphical models. J. Machine Learning Res. 7, 2031–2064
(2006)

53. Johnson, J.K., Bickson, D., Dolev, D.: Fixing convergence of Gaussian belief
propagation. Proc. Int. Symposium Inform. Theory (2009)

54. Gamarnik, D., Shah, D., Wei, Y.: Belief propagation for min-cost network flow:
convergence and correctness. Proc. of the 2010 ACM-SIAM Symp. on Discrete
Algorithms (2010)

55. Minka, T.P. Expectation propagation for for approximate Bayesian inference.
Proc. of the 17th Conf. on Uncertainty in Artificial Intelligence, 362–369 (2001)

56. Sudderth, E.B., Ihler, A., Isard, M., Freeman, W.T., Willsky, A.S: Non-
parametric Belief Propagation, Comm. of the ACM 53, 95–103 (2010)

57. Ihler, A., McAllester, D: Particle Belief Propagation. Proc. of the 12th Int.
Conf. on Artifial Intelligence and Statistics (2009)

58. Loeliger, H.-A., Dauwels, J., Hu, J., Korl, S., Ping, L., Kschischang, F.: The
factor graph approach to model-based signal processing. Proc. of the IEEE 95,
1295–1322 (2007)

59. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc.
Nat. Acad. Sci. USA 104, 418–423 (2007)

60. Yedidia, J.S., Wang, Y., Draper, S.C: Divide and Concur and Difference-Map
BP decoders for LDPC codes. IEEE Trans. Inf. Theory 57, 786–802 (2011)

61. Gravel, S.: Using Symmetries to Solve Assymetric Problems. Ph.D. disserta-
tion, Cornell University, Ithica, NY (2009)

62. Elser, V., Rankenburg, I.: Deconstructing the energy landscape: constraint-
based algorithms for folding heteropolymers. Phys. Rev. E 73, 026702 (2006)

63. Kallus, Y., Elser, V., Gravel S.: Method for dense packing discovery. Phys. Rev.
E 82, 056707 (2010)

64. Richardson, T.: Error floors of LDPC codes. Proc. 41st Allerton Conf. Com-
mun. Contr., Comput. IL (2003)

65. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer (2011)

66. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction
problems in two or three space variables. Trans. Amer. Math. Soc. 82, 421–439
(1956)

67. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear
operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

68. Bauschke, H.H, Combettes, P.L., Luke, D.R: Phase retrieval, error reduction
algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc.
Amer. A 19 1334–1345 (2002)

34

69. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Optics 21, 2758–
2769 (1982)

