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A review of multivariate
distributions for count data derived
from the Poisson distribution
David I. Inouye,1 Eunho Yang,2 Genevera I. Allen3,4 and Pradeep Ravikumar5*

The Poisson distribution has been widely studied and used for modeling uni-
variate count-valued data. However, multivariate generalizations of the Pois-
son distribution that permit dependencies have been far less popular. Yet,
real-world, high-dimensional, count-valued data found in word counts, geno-
mics, and crime statistics, for example, exhibit rich dependencies and motivate
the need for multivariate distributions that can appropriately model this data.
We review multivariate distributions derived from the univariate Poisson,
categorizing these models into three main classes: (1) where the marginal dis-
tributions are Poisson, (2) where the joint distribution is a mixture of inde-
pendent multivariate Poisson distributions, and (3) where the node-conditional
distributions are derived from the Poisson. We discuss the development of
multiple instances of these classes and compare the models in terms of inter-
pretability and theory. Then, we empirically compare multiple models from
each class on three real-world datasets that have varying data characteristics
from different domains, namely traffic accident data, biological next genera-
tion sequencing data, and text data. These empirical experiments develop
intuition about the comparative advantages and disadvantages of each class of
multivariate distribution that was derived from the Poisson. Finally, we sug-
gest new research directions as explored in the subsequent Discussion section.
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How to cite this article:
WIREs Comput Stat 2017, 9:e1398. doi: 10.1002/wics.1398

Keywords: Poisson, Multivariate, Graphical models, Copulas, High dimensional

INTRODUCTION

Multivariate count-valued data has become
increasingly prevalent in modern big data set-

tings. Variables in such data are rarely independent
and instead exhibit complex positive and negative
dependencies. We highlight three examples of multi-
variate count-valued data that exhibit rich depen-
dencies: text analysis, genomics, and crime statistics.
In text analysis, a standard way to represent docu-
ments is to merely count the number of occurrences
of each word in the vocabulary and create a word-
count vector for each document. This representation
is often known as the bag-of-words representation,
in which the word order and syntax are ignored.
The vocabulary size—i.e., the number of variables
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in the data—is usually much greater than 1000
unique words, and thus, a high-dimensional multi-
variate distribution is required. Also, words are
clearly not independent. For example, if the word
‘Poisson’ appears in a document, then the word
‘probability’ is more likely to also appear, signifying
a positive dependency. Similarly, if the word ‘art’
appears, then the word ‘probability’ is less likely to
also appear, signifying a negative dependency. In
genomics, RNA-sequencing technologies are used to
measure gene and isoform expression levels. These
technologies yield counts of reads mapped back to
DNA locations, which even after normalization
yield non-negative data that is highly skewed with
many exact zeros. These genomics data are both
high dimensional, with the number of genes measur-
ing in the tens of thousands, and strongly dependent
as genes work together in pathways and complex
systems to produce particular phenotypes. In crime
analysis, counts of crimes in different counties are
clearly multidimensional, with dependencies between
crime counts. For example, the counts of crime in
adjacent counties are likely to be correlated with
one another, indicating a positive dependency.
While positive dependencies are probably more
prevalent in crime statistics, negative dependencies
might be very interesting. For example, a negative
dependency between adjacent counties may suggest
that a criminal gang has moved from one county to
the other.

These examples motivate the need for a high-
dimensional, count-valued distribution that permits
rich dependencies between variables. In general, a
good class of probabilistic models is a fundamental
building block for many tasks in data analysis. Esti-
mating such models from data could help answer
exploratory questions such as: Which genomic path-
ways are altered in a disease, e.g., by analyzing geno-
mic networks? Or which county seems to have the
strongest effect, with respect to crime, on other coun-
ties? A probabilistic model could also be used in
Bayesian classification to determine questions such
as: Does this Twitter post display positive or negative
sentiment about a particular product (fitting one
model on positive posts and one model on negative
posts)?

The classical model for a count-valued
random variable is the univariate Poisson distribu-
tion, whose probability mass function for
x 2 {0, 1, 2, …} is:

ℙPoiss xjλð Þ= λxexp −λð Þ=x!; ð1Þ

where λ is the standard mean parameter for the Poisson
distribution. A trivial extension of this to a multivariate
distribution would be to assume independence between
variables and take the product of node-wise univariate
Poisson distributions, but such a model would be ill
suited for many examples of multivariate count-valued
data that require rich dependence structures. We
review multivariate probability models that are derived
from the univariate Poisson distribution and permit
nontrivial dependencies between variables. We catego-
rize these models into three main classes based on their
primary modeling assumption. The first class assumes
that the univariate marginal distributions are derived
from the Poisson. The second class is derived as a mix-
ture of independent multivariate Poisson distributions.
The third class assumes that the univariate conditional
distributions are derived from the Poisson
distribution—this last class of models can also be stud-
ied in the context of probabilistic graphical models. An
illustration of each of these three main model classes
can be seen in Figure 1. While these models might have
been classified by primary application area or perfor-
mance on a particular task, a classification based on
modeling assumptions helps emphasize the core
abstractions for each model class. In addition, this cate-
gorization may help practitioners from different disci-
plines learn from the models that have worked well in
different areas. We discuss multiple instances of these
classes in the later sections and highlight the strengths
and weaknesses of each class. We then provide a short
discussion on the differences between classes in terms
of interpretability and theory. Using two different
empirical measures, we empirically compare multiple
models from each class on three real-world datasets
that have varying data characteristics from different
domains, namely traffic accident data, biological next
generation sequencing data, and text data. These
experiments develop intuition about the comparative
advantages and disadvantages of the models and sug-
gest new research directions as explored in the subse-
quent Discussion section.

Notation
ℝ denotes the set of real numbers, ℝ+ denotes the
non-negative real numbers, and ℝ++ denotes the posi-
tive real numbers. Similarly, ℤ denotes the set of inte-
gers. Matrices are denoted as capital letters
(e.g., X, Φ), vectors are denoted as boldface lower-
case letters (e.g., x, ϕ), and scalar values are nonbold
lowercase letters (e.g., x, ϕ).
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MARGINAL POISSON
GENERALIZATIONS

The models in this section generalize the univariate
Poisson to a multivariate distribution with the property
that the marginal distributions of each variable are
Poisson. This is analogous to the fact that the marginal
distributions of the multivariate Gaussian distribution
are univariate Gaussian distributions and thus seems
like a natural constraint when extending the univariate
Poisson to the multivariate case. Several historical
attempts at achieving this marginal property have inci-
dentally developed the same class of models, with dif-
ferent derivations.1–4 This marginal Poisson property
can also be achieved via the more general framework
of copulas.5–7

Multivariate Poisson Distribution
The formulation of the multivariate Poissona distri-
bution goes back to M’Kendrick2 where the author
used differential equations to derive the bivariate
Poisson process. An equivalent but more readable
interpretation to arrive at the bivariate Poisson distri-
bution would be to use the summation of independ-
ent Poisson variables as follows1: let y1, y2, and z be
univariate Poisson variables with parameters λ1, λ2,
and λ0, respectively. Then, by setting x1 = y1 + z and
x2 = y2 + z, (x1, x2) follows the bivariate Poisson dis-
tribution, and its joint probability mass is defined as:

ℙBiPoi x1,x2 jλ1,λ2,λ0ð Þ = exp −λ1−λ2−λ0ð Þ

�λx11
x1!

λx22
2!

Xmin x1,x2ð Þ

z= 0

x1
z

� �
x2
z

� �
z!

λ0
λ1λ2

� �z

: ð2Þ

As the sum of independent Poissons is also Poisson
(whose parameter is the sum of those of two compo-
nents), the marginal distribution of x1 (similarly x2)
is still a Poisson with the rate of λ1 + λ0. It can be
easily seen that the covariance of x1 and x2 is λ0, and
as a result, the correlation coefficient is somewhere

between 0 and min
ffiffiffiffiffiffiffiffiffiffi
λ1 + λ0

pffiffiffiffiffiffiffiffiffiffi
λ2 + λ0

p ,
ffiffiffiffiffiffiffiffiffiffi
λ2 + λ0

pffiffiffiffiffiffiffiffiffiffi
λ1 + λ0

p
n o

.
8 Independently,

Wicksell4 derived the bivariate Poisson as the limit of
a bivariate binomial distribution. Campbell1 shows
that the models in M’Kendrick2 and Wicksell4 can
identically be derived from the sums of three inde-
pendent Poisson variables.

This approach to directly extend the Poisson
distribution can be generalized further to handle the
multivariate case x2ℤd

+ , in which each variable xi is
the sum of individual Poisson yi and the common
Poisson x0 as before. The joint probability for a mul-
tivariate Poisson is developed in Teicher3 and further
considered by other works9–12:

ℙMulPoi x;λð Þ= exp −
Xd
i = 0

λi

 ! Yd
i =1

λxii
xi!

 !

�
Xminixi

z= 0

Yd
i = 1

xi
z

� � !
z!

λ0Yd
i =1

λi

0BBBB@
1CCCCA

z

: ð3Þ

Several studies have shown that this formulation of
the multivariate Poisson can also be derived as a lim-
iting distribution of a multivariate binomial distribu-
tion when the success probabilities are small and the
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FIGURE 1 | (Left) The first class of Poisson generalizations is based on the assumption that the univariate marginals are derived from the
Poisson. (Middle) The second class is based on the idea of mixing independent multivariate Poissons into a joint multivariate distribution. (Right)
The third class is based on the assumption that the univariate conditional distributions are derived from the Poisson.
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number of trials is large.13–15 As in the bivariate case,
the marginal distribution of xi is Poisson with param-
eter λi + λ0. As λ0 controls the covariance between all
variables, an extremely limited set of correlations
between variables is permitted.

Mahamunulu16 first proposed a more general
extension of the multivariate Poisson distribution
that permits a full covariance structure. This distribu-
tion has been studied further by many studies.13,17–20

While the form of this general multivariate Poisson
distribution is too complicated to spell out for d > 3,
its distribution can be specified by a multivariate
reduction scheme. Specifically, let yi for i = 1,
…, (2d − 1) be independently Poisson distributed
with parameter λi. Now, define A = [A1, A2,

… Ad] where Ai is a d ×
d
i

� �
matrix consisting of

ones and zeros, where each column of Ai has exactly
i ones with no duplicate columns. Hence, A1 is the
d × d identity matrix, and Ad is a column vector of
all ones. Then, x = Ay is a d -dimensional multivari-
ate Poisson-distributed random vector with a full
covariance structure. Note that the simpler multivari-
ate Poisson distribution with constant covariance in
Eq. 0.3 is a special case of this general form, where
A = [A1, Ad].

The multivariate Poisson distribution has not
been widely used for real data applications. This is
likely due to two major limitations of this distribu-
tion. First, the multivariate Poisson distribution only
permits positive dependencies; this can easily be seen
because the distribution arises as the sum of inde-
pendent Poisson random variables, and hence, covar-
iances are governed by the positive rate parameters
λi. The assumption of positive dependencies is likely
unrealistic for most real count-valued data examples.
Second, the computation of probabilities and infer-
ence of parameters is especially cumbersome for the
multivariate Poisson distribution; these are only com-
putationally tractable for small d and hence not read-
ily applicable in high-dimensional settings. Kano
and Kawamura17 proposed multivariate recursion
schemes for computing probabilities, but these
schemes are only stable and computationally feasible
for small d, thus complicating likelihood-based infer-
ence procedures. Karlis18 more recently proposed a
latent variable-based EM algorithm for parameter
inference of the general multivariate Poisson distribu-
tion. This approach treats every pairwise interaction
as a latent variable and conducts inference over both
the observed and hidden parameters. While this
method is more tractable than recursion schemes, it

still requires inference over
d
2

� �
latent variables and

is hence not feasible in high-dimensional settings.
Overall, the multivariate Poisson distribution intro-
duced above is appealing in that its marginal distri-
butions are Poisson; yet, there are many modeling
drawbacks, including severe restriction on the types
of dependencies permitted (e.g., only positive rela-
tionships), a complicated and intractable form in
high dimensions, and challenging inference
procedures.

Copula Approaches
A much more general way to construct valid multi-
variate Poisson distributions with Poisson marginals
is by pairing a copula distribution with Poisson mar-
ginal distributions. For continuous multivariate dis-
tributions, the use of copula distributions is founded
on the celebrated Sklar’s theorem: any continuous
joint distribution can be decomposed into a copula
and the marginal distributions, and conversely, any
combination of a copula and marginal distributions
gives a valid continuous joint distribution.21 The key
advantage of such models for continuous distribu-
tions is that copulas fully specify the dependence
structure, hence separating the modeling of marginal
distributions from the modeling of dependencies.
While copula distributions paired with continuous
marginal distributions enjoy wide popularity (see
e.g., Ref 22 in finance applications), copula models
paired with discrete marginal distributions, such as
the Poisson, are more challenging both for theoretical
and computational reasons.23–25 However, several
simplifications and recent advances have attempted
to overcome these challenges.24–26

Copula Definition and Examples
A copula is defined by a joint cumulative distribution
function (CDF), C(u) : [0, 1]d ! [0, 1], with uniform
marginal distributions. As a concrete example, the
Gaussian copula (see left subfigure of Figure 2 for an
example) is derived from the multivariate normal dis-
tribution and is one of the most popular multivariate
copulas because of its flexibility in the multidimen-
sional case; the Gaussian copula is defined simply as:

CGauss
R u1,u2,…,udð Þ=HR H−1 u1ð Þ,…,H−1 udð Þ� �

;

where H− 1(�) denotes the standard normal inverse
CDF, and HR(�) denotes the joint CDF of a N 0,Rð Þ
random vector, where R is a correlation matrix.
A similar multivariate copula can be derived from
the multivariate Student’s t distribution if extreme
values are important to model.27
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The Archimedean copulas are another family of
copulas that have a single parameter that defines the
global dependence between all variables.28 One prop-
erty of Archimedean copulas is that they admit an
explicit form, unlike the Gaussian copula. Unfortu-
nately, the Archimedean copulas do not directly
allow for a rich dependence structure like the Gaus-
sian because they only have one dependence parame-
ter rather than a parameter for each pair of variables.

Pair copula constructions (PCCs)29 for copulas,
or vine copulas, allow combinations of different bivari-
ate copulas to form a joint multivariate copula. PCCs
define multivariate copulas that have an expressive
dependency structure, like the Gaussian copula, but
may also model asymmetric or tail dependencies avail-
able in Archimedean and t copulas. Pair copulas only
use univariate CDFs, conditional CDFs, and bivariate
copulas to construct a multivariate copula distribution
and hence can use combinations of the Archimedean
copulas described previously. The multivariate distri-
butions can be factorized in a variety of ways using
bivariate copulas to flexibly model dependencies.
Vines, or graphical tree-like structures, denote the pos-
sible factorizations that are feasible for PCCs.30

Copula Models for Discrete Data
As per Sklar’s theorem, any copula distribution can
be combined with marginal distribution CDFs,

Fi xið Þf gdi = 1, to create a joint distribution:

G x1,x2,…,xd jθ,F1,…,Fdð Þ
=Cθ u1 = F1 x1ð Þ,…,ud =Fd xdð Þð Þ:

If sampling from the given copula is possible, this form
admits simple direct sampling from the joint

distribution (defined by the CDFG(�)) by first sampling
from the copula u � Copula(θ) and then transforming
u to the target space using the inverse CDFs of the mar-
ginal distributions: x = F−1

1 u1ð Þ,…,F−1
d udð Þ� �

.
A valid multivariate discrete joint distribution

can be derived by pairing a copula distribution with
Poisson marginal distributions. For example, a valid
joint CDF with Poisson marginals is given by

G x1,x2,…,xd jθð Þ =Cθ F1 x1 jλ1ð Þ,…,Fd xd jλdð Þð Þ;

where Fi(xi | λi) is the Poisson CDF with mean
parameter λi, and θ denotes the copula parameters.
If we pair a Gaussian copula with Poisson marginal
distributions, we create a valid joint distribution
that has been widely used for generating samples of
multivariate count data7,31,32; an example of the
Gaussian copula paired with Poisson marginals to
form a discrete joint distribution can be seen in
Figure 2.

Nikoloulopoulos5 present an excellent survey
of copulas to be paired with discrete marginals by
defining several desired properties of a copula
(quoted from Ref 5):

1. Wide range of dependence, allowing both posi-
tive and negative dependence.

2. Flexible dependence, meaning that the number
of bivariate marginals is (approximately) equal
to the number of dependence parameters.

3. Computationally feasible CDF for likelihood
estimation.

4. Closure property under marginalization, mean-
ing that lower-order marginals belong to the
same parametric family.

Gaussion copula density (r = 0.50) Copula-Poisson joint dist.Marginal Poissons
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FIGURE 2 | A copula distribution (left)—which is defined over the unit hypercube and has uniform marginal distributions—paired with
univariate Poisson marginal distributions for each variable (middle) defines a valid discrete joint distribution with Poisson marginals (right).
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5. No joint constraints for the dependence para-
meters, meaning that the use of covariate
functions for the dependence parameters is
straightforward.

Each copula model satisfies some of these properties
but not all of them. For example, Gaussian copulas
satisfy properties (1), (2), and (4) but not (3) because
the Gaussian CDF is not known in closed form nor
(5) because the correlation parameter matrix is con-
strained to be in the set of positive definite matrices.
Nikoloulopoulos5 recommends Gaussian copulas for
general models and vine copulas if modeling depend-
ence in the tails or asymmetry is needed.

Theoretical Properties of Copulas Derived from
Discrete Distributions
From a theoretical perspective, a multivariate discrete
distribution can be viewed as a continuous copula
distribution paired with discrete marginals, but the
derived copula distributions are not unique and,
hence, are unidentifiable.23 Note that this is in con-
trast to continuous multivariate distributions where
the derived copulas are uniquely defined.33 Because
of this nonuniqueness property, Genest and Nešle-
hová23 caution against performing inference on and
interpreting dependencies of copulas derived from
discrete distributions. A further consequence of non-
uniqueness is that when copula distributions are
paired with discrete marginal distributions, the copu-
las no longer fully specify the dependence structure,
as with continuous marginals.23 In other words, the
dependencies of the joint distribution will depend in
part on which marginal distributions are employed.
In practice, this often means that the range of depen-
dencies permitted with certain copula and discrete
marginal distribution pairs is much more limited than
the copula distribution would otherwise model.
However, several studies have suggested that this
nonuniqueness property does not have major practi-
cal ramifications.5,34

We discuss a few common approaches used for
the estimation of continuous copulas with discrete
marginals.

Continuous Extension for Parameter
Estimation
For the estimation of continuous copulas from data,
a two-stage procedure, called Inference Function for
Marginals (IFM)35 is commonly used in which the
marginal distributions are estimated first and then
used to map the data onto the unit hypercube using
the CDFs of the inferred marginal distributions.
While this is straightforward for continuous

marginals, this procedure is less obvious for discrete
marginal distributions when using a continuous cop-
ula. One idea is to use the continuous extension
(CE) of integer variables to the continuous domain36

by forming a new ‘jitter’ continuous random varia-
ble ex:

ex = x+ u−1ð Þ;

where u is a random variable defined on the unit
interval. It is clear that this new random variable is
continuous, and ex ≤ x. An obvious choice for the dis-
tribution of u is the uniform distribution. With this
idea, inference can be performed using a surrogate
likelihood by randomly projecting each discrete data
point into the continuous domain and averaging over
the random projections, as performed in Refs 37,38.
Madsen39 and Madsen and Fang40 use the CE idea
as well but generate multiple jittered samplesex 1ð Þ,ex 1ð Þ,…,ex mð Þg
n

for each original observation x to

estimate the discrete likelihood rather than merely
generating one jittered sample ex for each original
observation x as in Refs 37,38. Nikoloulopoulos24

finds that CE-based methods significantly underesti-
mate the correlation structure because the CE jitter
transform operates independently for each variable
instead of considering the correlation structure
between the variables.

Distributional Transform for Parameter
Estimation
In a somewhat different direction, Rüschendorf26

proposed the use of a generalization of the CDF dis-
tribution function F(�) for the case with discrete vari-
ables, which they term a distributional transform

(DT), denoted by eF �ð Þ:

eF x,vð Þ≡ F xð Þ+ vℙ xð Þ =ℙ X < xð Þ + vℙ X = xð Þ;

where v � Uniform(0, 1). Note that in the continu-
ous case, ℙ(X = x) = 0, and thus, this reduces to the
standard CDF for continuous distributions. One way
of thinking of this modified CDF is that the random
variable v adds a random jump when there are dis-
continuities in the original CDF. If the distribution is
discrete (or more generally, if there are discontinu-
ities in the original CDF), this transformation enables
the simple proof of a theorem akin to Sklar’s theorem
for discrete distributions.26

Kazianka41 and Kazianka and Pilz42 propose
using the DT from Ref 26 to develop a simple and
intuitive approximation for the likelihood.
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Essentially, they simply take the expected jump value
of E vð Þ = 0:5 (where v � Uniform(0, 1)) and thus
transform the discrete data to the continuous domain
through the following:

ui ≡ Fi xi−1ð Þ +0:5ℙ xið Þ= 0:5 Fi xi−1ð Þ+ Fi xið Þð Þ;

which can be seen as simply taking the average of the
CDF values at xi − 1 and xi. Then, they use a contin-
uous copula such as the Gaussian copula. Note that
this is much simpler to compute than the simulated
likelihood (SL) method in Ref 24 or the CE methods
in Refs 37–40, which require averaging over many
different random initializations.

SL for Parameter Estimation
Finally, Nikoloulopoulos24 proposes a method to
directly approximate the maximum likelihood esti-
mate (MLE) by estimating a discretized Gaussian
copula. Essentially, unlike the CE and DT methods,
which attempt to transform discrete variables to con-
tinuous variables, the MLE for a Gaussian copula
with discrete marginal distributions F1, F2, …, Fd
can be formulated as estimating multivariate normal
rectangular probabilities:

ℙ xjγ,Rð Þ =
ðϕ−1 F1 x1 jγ1ð Þ½ �

ϕ−1 F1 x1 −1 jγ1ð Þ½ �
� � �
ðϕ−1 Fd xd jγdð Þ½ �

ϕ−1 F1 xd −1 jγdð Þ½ �

ΦR z1,…,zdð Þdz1…dzd ; ð4Þ

where γ is the marginal distribution parameters,
ϕ− 1(�) is the univariate standard normal inverse
CDF, and ΦR(� � �) is the multivariate normal density
with correlation matrix R. Nikoloulopoulos24 pro-
poses to approximate the multivariate normal rectan-
gular probabilities via fast simulation algorithms
discussed in Ref 43. Because this method directly
approximates the MLE via simulated algorithms, this
method is called SL. Nikoloulopoulos25 compares the
DT and SL methods for small sample sizes and find
that the DT method tends to overestimate the corre-
lation structure. However, because of the computa-
tional simplicity, Nikoloulopoulos25 provides some
heuristics of when the DT method might work well
compared to the more accurate but more computa-
tionally expensive SL method.

Vine Copulas for Discrete Distributions
Panagiotelis et al.44 provide conditions under which
a multivariate discrete distribution can be decom-
posed as a vine PCC copula paired with discrete mar-
ginals. In addition, Panagiotelis et al.44 show that the

likelihood computation for vine PCCs with discrete
marginals is quadratic as opposed to exponential, as
would be the case for general multivariate copulas
such as the Gaussian copula with discrete marginals.
However, computation in truly high-dimensional set-
tings remains a challenge as 2d(d − 1) bivariate cop-
ula evaluations are required to calculate the
probability mass function (PMF) or likelihood of a d-
variate PCC using the algorithm proposed by Pana-
giotelis et al.44. These bivariate copula evaluations,
however, can be coupled with some of the previously
discussed computational techniques, such as CE, DT,
and SL, for further computational improvements.
Finally, while vine PCCs offer a very flexible model-
ing approach, this comes with the added challenge of
selecting the vine construction and bivariate
copulas,45 which has not been well studied for dis-
crete distributions. Overall, Nikoloulopoulos5 recom-
mends using vine PCCs for the complex modeling of
discrete data with tail dependencies and asymmetric
dependencies.

Summary of Marginal Poisson
Generalizations
We have reviewed the historical development of the
multivariate Poisson, which has Poisson marginals,
and then reviewed many of the recent developments
of using the much more general copula framework to
derive Poisson generalizations with Poisson margin-
als. The original multivariate Poisson models based
on latent Poisson variables are limited to positive
dependencies and require computationally expensive
algorithms to fit. However, the estimation of copula
distributions paired with Poisson marginals—
although theoretically has some caveats—can be per-
formed efficiently in practice. Simple approximations,
such as the expectation under the DT, can provide
nearly trivial transformations that move the discrete
variables to the continuous domain in which all the
tools of continuous copulas can be exploited. More
complex transformations, such as the SL method24

can be used if the sample size is small, or high accu-
racy is needed.

POISSON MIXTURE
GENERALIZATIONS

Instead of directly extending univariate Poissons to
the multivariate case, a separate line of work pro-
poses to indirectly extend the Poisson based on the
mixture of independent Poissons. Mixture models are
often considered to provide more flexibility by allow-
ing the parameter to vary according to a mixing
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distribution. One important property of mixture
models is that they can model overdispersion. Over-
dispersion occurs when the variance of the data is
larger than the mean of the data—unlike in a Poisson
distribution in which the mean and variance are
equal. One way of quantifying dispersion is the dis-
persion index:

δ=
σ2

μ
: ð5Þ

If δ > 1, then the distribution is overdispersed,
whereas if δ < 1, then the distribution is underdis-
persed. In real-world data, as will be seen in the
experimental section, overdispersion is more com-
mon than underdispersion. Mixture models also ena-
ble dependencies between the variables, as will be
described in the following paragraphs.

Suppose we are modeling a univariate random
variable x with a density of f(x | θ). Rather than assum-
ing θ is fixed, we let θ itself be a random variable fol-
lowing some mixing distribution. More formally, a
generalmixture distribution can be defined as46:

ℙ xjg �ð Þð Þ =
ð
Θ
f xjθð Þg θð Þdθ; ð6Þ

where the parameter θ is assumed to come from the
mixing distribution g(θ), and Θ is the domain of θ.

For the Poisson case, let λ2ℝd
+ + be a d-

dimensional vector whose i-th element λi is the
parameter of the Poisson distribution for xi. Now,
given some mixing distribution g(λ), the family of
Poisson mixture distributions is defined as

ℙMixedPoi xð Þ =
ð
ℝd

+ +

g λð Þ
Yd
i = 1

ℙPoiss xi jλið Þdλ; ð7Þ

where the domain of the joint distribution is any
count-valued assignment (i.e., xi 2 ℤ+, 8 i). While
the probability density function (Eq. (7)) has a com-
plicated form involving a multidimensional integral
(a complex, high-dimensional integral when d is
large), the mean and variance are known to be
expressed succinctly as

E xð Þ=E λð Þ; ð8Þ

Var xð Þ=E λð Þ+Var λð Þ: ð9Þ

Note that Eq. (9) implies that the variance of a mix-
ture is always larger than the variance of a single dis-
tribution. The higher-order moments of x are also

easily represented by those of λ. Besides the moments,
other interesting properties (convolutions, identifia-
bility, etc.) of Poisson mixture distributions are
extensively reviewed and studied in Ref 46.

One key benefit of Poisson mixtures is that they
permit both positive as well as negative dependencies
simply by properly defining g(λ). The intuition
behind these dependencies can be more clearly under-
stood when we consider the sample generation proc-
ess. Suppose we have the distribution g(λ) in two
dimensions (i.e., d = 2) with a strong positive
dependency between λ1 and λ2. Then, given a sample
(λ1, λ2) from g(λ), x1 and x2 are likely to also be posi-
tively correlated.

In an early application of the model, Arbous
and Kerrich47 constrain the Poisson parameters as
the different scales of the common gamma variable λ:
for i = 1, …, d, the time interval ti is given, and λi is
set to tiλ. Hence, g(λ) is a univariate gamma distribu-
tion specified by λ 2 ℝ++, which only allows a simple
dependency structure. As another early attempt,
Steyn48 choose the multivariate normal distribution
for the mixing distribution g(λ) to provide more flexi-
bility on the correlation structure. However, the nor-
mal distribution poses problems because λ must
reside in ℝ++, while the normal distribution is defined
on ℝ.

One of the most popular choices for g(λ) is the
log-normal distribution because of its rich covariance
structure and natural positivity constraintb:

N log λjμ,Σð Þ = 1

Πd
i = 1λi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞdjΣj

q
exp −

1
2

logλ−μð ÞTΣ −1 logλ−μð Þ
� �

: ð10Þ

The log-normal distribution above is parameterized
by μ and Σ, which are the mean and the covariance
of (logλ1, logλ2, …, logλd), respectively. Setting the
random variable xi to follow the Poisson distribution
with parameter λi, we have the multivariate Poisson
log-normal distribution49 from Eq. (7):

ℙPoiLogN xjμ,Σð Þ=
ð
ℝd

+

N log λjμ,Σð Þ
Yd
i =1

ℙPoiss xi jλið Þdλ:

ð11Þ

While the joint distribution (Eq. (11)) does not have
a closed-form expression, and hence, as d increases,
it becomes computationally cumbersome to work
with, its moments are available in closed form as a
special case of Eq. (9):
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αi ≡E xið Þ= exp μi +
1
2
σii

� �
;

Var xið Þ = αi + α2i exp σiið Þ−1ð Þ;
Cov xi,xj

� �
= αiαj exp σij

� �
−1

� �
: ð12Þ

The correlation and the degree of overdispersion
(defined as the variance divided by the mean) of the
marginal distributions are strictly coupled by α and
σ. Also, possible Spearman’s ρ correlation values for
this distribution are limited if the mean value αi is
small. To briefly explore this phenomenon, we simu-
lated a two-dimensional Poisson log-normal model
with log-normal parameters μ¼ ½0;0� and

Σ = 2log γð Þ 1 �0:999
�0:999 1

	 

;

which corresponds to a mean vector of [γ, γ] per
Eq. (12) and the strongest positive and negative cor-
relation possible between the two variables. We sim-
ulated one million samples from this distribution and
found that when fixing γ = 2, Spearman’s ρ values
are between −0.53 and 0.58. When fixing γ = 10,
Spearman’s ρ values are between −0.73 and 0.81.
Thus, for small mean values, the log-normal mixture
is limited in modeling strong dependencies, but for
large mean values, the log-normal mixture can model
stronger dependencies. Besides the examples provided
here, various Poisson mixture models from different
mixing distributions are available, although limited
in the applied statistical literature due to their com-
plexities. See Ref 46 and the references therein for
more examples of Poisson mixtures. Karlis and
Xekalaki46 also provide the general properties of
mixtures as well as the specific properties of Poisson
mixtures, such as moments, convolutions, and the
posterior.

While this review focuses on modeling multi-
variate, count-valued responses without any extra
information, several extensions of multivariate Pois-
son log-normal models have been proposed to pro-
vide more general correlation structures when
covariates are available.50–55 These works formulate
the mean parameter of log-normal mixing distribu-
tion, logμi, as a linear model on given covariates in
the Bayesian framework.

In order to alleviate the computational burden
of using log-normal distributions as an infinite mix-
ing density as above, Karlis and Meligkotsidou56

proposed an EM-type estimation for a finite mixture
of k > 1 Poisson distributions, which still preserves
similar properties, such as both positive and negative

dependencies as well as closed form moments. While
Karlis and Meligkotsidou56 consider mixing multi-
variate Poissons with positive dependencies, the sim-
plified form—where the component distributions are
independent Poisson distributions—is much simpler
to implement using an expectation-maximization
(EM) algorithm. This simple finite mixture distribu-
tion can be viewed as a middle ground between a sin-
gle Poisson and a nonparametric estimation method
where a Poisson is located at every training
point—i.e., the number of mixtures is equal to the
number of training data points (k = n).

The gamma distribution is another common
mixing distribution for the Poisson because it is the
conjugate distribution for the Poisson mean parame-
ter λ. For the univariate case, if the mixing distribu-
tion is gamma, then the resulting univariate
distribution is the well-known negative binomial dis-
tribution. The negative binomial distribution can
handle overdispersion in count-valued data when the
variance is larger than the mean. Unlike the Poisson
log-normal mixture, the univariate gamma-Poisson
mixture density—i.e., the negative binomial
density—is known in closed form:

ℙ xjr,pð Þ = Γ r+ xð Þ
Γ rð ÞΓ x + 1ð Þp

r 1−pð Þx :

As r ! ∞, the negative binomial distribution
approaches the Poisson distribution. Thus, this can
be seen as a generalization of the Poisson distribu-
tion. Note that the variance of this distribution is
always larger than the Poisson distribution with the
same mean value.

In a similar vein of placing a gamma prior distri-
bution on the mean parameter λ, a log-gamma
prior distribution can be placed on the log mean
parameter θ = log (λ). Bradley et al.57 recently
leveraged the log-gamma conjugacy to the Poisson
log-mean parameter θ by introducing the Poisson
log-gamma hierarchical mixture distribution. They
particularly discuss the multivariate log-gamma distri-
bution that can have a flexible dependency structure
similar to the multivariate log-normal distribution
and illustrate some modeling advantages over the log-
normal mixture model.

Summary of Mixture Model Generalizations
Overall, mixture models are particularly helpful if
there is overdispersion in the data, which is often the
case for real-world data as seen in the experiments
section, while also allowing for variable dependencies
to be modeled implicitly through the mixing
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distribution. If the data exhibits overdispersion, then
the log-normal or log-gamma distributions57 give
somewhat flexible dependency structures. The princi-
pal caveat with the complex mixture of Poisson dis-
tributions is computational; exact inference of the
parameters is typically computationally difficult due
to the presence of latent mixing variables. However,
simpler models such as the finite mixture using sim-
ple EM may provide good results in practice (see
Comparison section).

CONDITIONAL POISSON
GENERALIZATIONS

While the multivariate Poisson formulation in
Eq. (3), as well as the distribution formed by pair-
ing a copula with Poisson marginals, assumes that
univariate marginal distributions are derived from
the Poisson, a different line of work generalizes the
univariate Poisson by assuming that the univariate
node-conditional distributions are derived from the
Poisson.58–63 Like the assumption of Poisson mar-
ginals in previous sections, this conditional Poisson
assumption seems a different yet natural extension
of the univariate Poisson distribution. The multivar-
iate Gaussian can be seen to satisfy such a condi-
tional property as the node-conditional distributions
of a multivariate Gaussian are univariate Gaussian.
One benefit of these conditional models is that
they can be seen as undirected graphical models or
Markov Random Fields, and they have a simple
parametric form. In addition, estimating these
models generally reduces to estimating simple node-
wise regressions, and some of these estimators have
theoretical guarantees on estimating the global
graphical model structure even under high-
dimensional sampling regimes, where the number of
variables (d) is potentially even larger than the
number of samples (n).

Background on Exponential Family
Distributions
We briefly describe exponential family distributions
and graphical models, which form the basis for the
conditional Poisson models. Many commonly used
distributions fall into this family, including Gaussian,
Bernoulli, exponential, gamma, and Poisson, among
others. The exponential family is specified by a vector
of sufficient statistics, denoted by T(x)≡[T1(x),
T2(x), …, Tm(x)], the log base measure B(x), and the
domain of the random variable D. With this nota-
tion, the generic exponential family is defined as:

ℙExpFam xjηð Þ = exp
Xm
i = 1

ηiTi xð Þ +B xð Þ−A ηð Þ
 !

A ηð Þ= log
ð
D
exp

Xm
i =1

ηiTi xð Þ +B xð Þ
 !

dμ xð Þ;

where η is called the natural or canonical parameters
of the distribution, μ is the Lebesgue or counting
measure depending on whether D is continuous or
discrete, respectively, and A(η) is called the log parti-
tion function or log normalization constant because
it normalizes the distribution over the domain D.
Note that the sufficient statistics Ti xð Þf gmi = 1 can be
any arbitrary function of x; for example, Ti(x) = x1x2
could be used to model an interaction between x1
and x2. The log partition function A(η) will be a key
quantity when discussing the following models: A(η)
must be finite for the distribution to be valid so that
the realizable domain of parameters is given by
η2D : A ηð Þ< ∞f g. Thus, for instance, if the realiza-

ble domain only allows positive or negative interac-
tion terms, then the set of allowed dependencies
would be severely restricted.

Let us now consider the exponential family
form of the univariate Poisson:

ℙPoiss xjλð Þ= λxexp −λð Þ=x!
= exp log λxð Þ− log x!ð Þ−λð Þ
= exp

�
log λð Þ|fflffl{zfflffl}

η

x|{z}
T xð Þ

+ − log x!ð Þð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
B xð Þ

−λ:,

and therefore

ℙPoiss xjηð Þ= exp ηx− log x!ð Þ−exp ηð Þð Þ; ð13Þ

where η ≡ log(λ) is the natural parameter of the Pois-
son, T(x) = x is the Poisson sufficient statistic, − log
(x !) is the Poisson log base measure, and A(η) = exp
(η) is the Poisson log partition function. Note that for
the general exponential family distribution, the log
partition function may not have a closed form.

Background on Graphical Models
The graphical model over x, given some graph G—a
set of nodes and edges—is a set of distributions on
x that satisfy the Markov independence assumptions
with respect to G.

64 In particular, an undirected
graphical model provides a compact way to represent
conditional independence among random variables—
the Markov properties of the graph. Conditional
independence relaxes the notion of full independence
by defining which variables are independent given
that the other variables are fixed or known.
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More formally, let V be a set of d nodes corre-
sponding to the d random variables in x, let E be the
set of undirected edges connecting nodes in V, and let
G = (V, E) be the corresponding undirected graph. By
the Hammersley-Clifford theorem,65 any such distri-
bution has the following form:

ℙ xjηð Þ= exp
X
C2C

ηCTC xCð Þ−A ηð Þ
 !

ð14Þ

where C is a set of cliques (fully-connected sub-
graphs) of G, and TC(xC) are the clique-wise sufficient
statistics. For example, if C = 1,2,3f g2 C, then there
would be a term η1,2,3T1,2,3(x1, x2, x3) that involves
the first, second, and third random variables in x.
Hence, a graphical model can be understood as an
exponential family distribution with the form given
in Eq. (14). An important special case—which will be
the focus in this paper—is a pairwise graphical
model, where C consists of merely V and ℰ,
i.e., jCj = 1,2f g,8C2C, so that we have

ℙ xjηð Þ= exp
X
i2V

ηiTi xið Þ+
X
i, jð Þ2ℰ

ηijTij xi,xj
� �

−A ηð Þ
0@ 1A:

As graphical models provide direct interpretations on
the Markov independence assumptions, for the
Poisson-based graphical models in this section, we
can easily investigate the conditional independence
relationships between random variables rather than
marginal correlations.

As an example, we will consider the Gaussian
graphical model formulation of the standard multi-
variate normal distribution (for simplicity, we will
assume the mean vector is zero, i.e., μ = 0):

Standard Form , Graphical Model Form

Σ = −
1
2
Θ−1 , Θ = −

1
2
Σ −1 ð15Þ

ℙ xjΣð Þ/ exp −
1
2
xTΣ −1x

� �
, ℙ xjΘð Þ/ exp xTΘx

� �
= exp

X
i

θiix2i +
X
i6¼j

θijxixj

 !
: ð16Þ

Note how Eq. (16) is related to Eq. (14) by setting
ηi = θii, ηij = θij, Ti xið Þ = x2i , Tij(xi, xj) = xixj, and
ℰ = {(i, j) : i 6¼ j, θij 6¼ 0}—i.e., the edges in the graph
correspond to the non-zeros in Θ. In addition, this

example shows that the marginal moments—i.e., the
covariance matrix Σ—are quite different from the
graphical model parameters—i.e., the negative of the
inverse covariance matrix Θ = − 1

2Σ
−1. In general, for

graphical models, such as the Poisson graphical mod-
els (PGMs) defined in the next section, the transfor-
mation from the covariance to the graphical model
parameter (Eq. (15)) is not known in closed form; in
fact, this transformation is often very difficult to
compute for non-Gaussian models.66 For more infor-
mation about graphical models and exponential
families, see Refs 66,67.

Poisson Graphical Model
The first to consider multivariate extensions con-
structed by assuming that conditional distributions are
univariate exponential family distributions, such as
and including the Poisson distribution, was Besag58.
In particular, suppose all node-conditional
distributions—the conditional distribution of a node
conditioned on the rest of the nodes—are univariate
Poisson. Then, there is a unique joint distribution con-
sistent with these node-conditional distributions under
some conditions, and moreover, this joint distribution
is a graphical model distribution that factors according
to a graph specified by the node-conditional distribu-
tions. In fact, this approach can be uniformly applica-
ble for any exponential family beyond the Poisson
distribution and can be extended to more general
graphical model settings61,63 beyond the pairwise set-
ting in Ref 58. The particular instance of the univariate
Poisson as the exponential family underlying the node-
conditional distributions is called a PGM.c

Specifically, suppose that for every i 2 {1, …, d},
the node-conditional distribution is specified by univar-
iate Poisson distribution in exponential family form as
specified in Eq. (13):

ℙ xi jx− ið Þ = exp ψ x− ið Þxi− log xi!ð Þ−exp ψ x− ið Þð Þf g; ð17Þ
where x− i is the set of all xj except xi, and the func-
tion ψ (x− i) is any function that depends on the rest
of all the random variables except xi. Furthermore,
suppose that the corresponding joint distribution on
x factors according to the set of cliques C of a graph
G. Yang et al.63 then show that such a joint distribu-
tion consistent with the above node-conditional dis-
tributions exists and, moreover, necessarily has
the form

ℙ xjηð Þ = exp
X
C2C

ηC
Y
i2C

xi−
Xd
i = 1

log xi!ð Þ−A ηð Þ
( )

; ð18Þ
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where the function A(η) is the log-partition function
on all parameters η = ηCf gC2C. The pairwise PGM, as
a special case, is defined as follows:

ℙPGM xjηð Þ = exp
Xd
i = 1

ηixi +
X
i, jð Þ2ℰ

ηijxixj

8<:
−
Xd
i = 1

log xi!ð Þ−APGM ηð Þ
)
; ð19Þ

where ℰ is the set of edges of the graphical model,
and η = {η1, η2, …, ηd} [ {ηij, 8 (i, j) 2 ℰ}. For nota-
tional simplicity and development of extensions to
PGM, we will gather the node parameters ηi into a
vector θ = [η1, η2, …, ηd] 2 ℝd and gather the edge
parameters into a symmetric matrix Φ 2 ℝd × d such
that ϕij = ϕji = ηij/2, 8 (i, j) 2 ℰ and ϕij =0,8 i, jð Þ �2ℰ.
Note that for PGM, Φ has zeros along the diagonal.
With this notation, the pairwise PGM can be equiva-
lently represented in a compact vectorized form as:

ℙPGM xjθ,Φð Þ= exp θTx + xTΦx
�

−
Xd
i =1

log xi!ð Þ−APGM θ,Φð Þg; ð20Þ

Parameter estimation in a PGM is naturally sug-
gested by its construction: all of the PGM parameters
in Eq. (20) can be estimated by considering the node-
conditional distributions for each node separately
and solving an ℓ1-regularized Poisson regression for
each variable. In contrast to the previous approaches
in the sections above, this parameter estimation
approach is not only simple but is also guaranteed to
be consistent even under high-dimensional sampling
regimes and under some other mild conditions,
including a sparse graph structural assumption (see
Yang et al.61,63 for more details on the analysis). As
in Poisson log-normal models, the parameters of
PGM can be made to depend on covariates to allow
for more flexible correlations.68

In spite of its simple parameter estimation
method, the major drawback with this vanilla PGM
distribution is that it only permits negative condi-
tional dependencies between variables:

Proposition 1. (Ref 58) Consider the PGM distribu-
tion in Eq. (20). Then, for any parameters θ and Φ,
APGM(θ, Φ) < + ∞ only if the pairwise parameters
are nonpositive: ϕij ≤ 0, 8 (i, j) 2 ℰ.

Intuitively, if any entry in Φ, say Φij, is positive,
the term Φijxixj in Eq. (20) would grow

quadratically, whereas the log base measure terms
− log(xi !) − log(xj !) only decrease as O(xi logxi +
xj log xj), so A(θ, Φ) ! ∞ as xi, xj ! ∞. Thus, even
though the PGM is a natural extension of the univar-
iate Poisson distribution (from the node-conditional
viewpoint), it entails a highly restrictive parameter
space, with severely limited applicability. Thus, mul-
tiple PGM extensions attempt to relax this negativity
restriction to permit positive dependencies, as
described next.

Extensions of PGMs
To circumvent the severe limitations of the PGM dis-
tribution, which particularly only permits negative
conditional dependencies, several extensions to PGM
that permit a richer dependence structure have been
proposed.

Truncated PGM
Because the negativity constraint is due in part to the
infinite domain of count variables, a natural solution
would be to truncate the domain of variables. It was
Kaiser and Cressie69 who first introduced an
approach to truncate the Poisson distribution in the
context of graphical models. Their idea was simply
to use a Winsorized Poisson distribution for node-
conditional distributions: x is a Winsorized Poisson if
z = I z0 <Rð Þz0 + I z0 ≥Rð ÞR, where z0 is Poisson, I �ð Þ is
an indicator function, and R is a fixed positive con-
stant denoting the truncation level. However, Yang
et al.62 showed that Winsorized node-conditional dis-
tributions actually do not lead to a consistent joint
distribution.

As an alternative way of truncation, Yang
et al.62 instead keep the same parametric form as
PGM (Eq. (20)) but merely truncate the domain to
non-negative integers less than or equal to R—
i.e., DTPGM = 0,1,…,Rf g—so that the joint distribu-
tion takes the form63:

ℙTPGM xð Þ= exp

θTx + xTΦx−

X
i

log xi!ð Þ

−ATPGM θ,Φð Þ
�
: ð21Þ

As Yang et al.62 show, the node-conditional distribu-
tions of this graphical model distribution belong to
an exponential family that is Poisson-like but with
the domain bounded by R. Thus, the key difference
from the vanilla PGM (Eq. (20)) is that the domain is
finite, and hence, the log partition function ATPGM(�)
only involves a finite number of summations. Thus,
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no restrictions are imposed on the parameters for the
normalizability of the distribution.

Yang et al.62 discuss several major drawbacks
to TPGM. First, the domain needs to be bounded a
priori, so R should ideally be set larger than any
unseen observation. Second, the effective range of
parameter space for a nondegenerate distribution is
still limited: as the truncation value R increases, the
effective values of pairwise parameters become
increasingly negative or close to zero; otherwise, the
distribution can be degenerate, placing most of its
probability mass at 0 or R.

Quadratic PGM and Sublinear PGM
Yang et al.62 also investigate the possibility of PGMs
that (1) allow both positive and negative dependen-
cies as well as (2) allow the domain to range over all
non-negative integers. As described previously, a key
reason for the negative constraint on the pairwise
parameters ϕij in Eq. (20) is that the log base measureP

ilog(xi!) scales more slowly than the quadratic
pairwise term xTΦx where x2ℤd

+ . Yang et al.62 thus
propose two possible solutions: increase the base
measure or decrease the quadratic pairwise term.

First, if we modify the base measure of Poisson
distribution with ‘Gaussian-esque’ quadratic functions
(note that for the linear sufficient statistics with positive
dependencies, the base measures should be quadratic
at the very least62), then the joint distribution, which
they call a quadratic PGM, is normalizable while
allowing both positive and negative dependencies62:

ℙQPGM xð Þ = exp θTx + xTΦx−AQPGM θ,Φð Þ� �
: ð22Þ

Essentially, QPGM has the same form as the Gaussian
distribution but where its domain is the set of non-
negative integers. The key differences from PGM are
that Φ can have negative values along the diagonal,
and the Poisson base measure

P
i − log(xi !) is

replaced by the quadratic term
X

i
ϕiix

2
i . Note that a

sufficient condition for the distribution to be normal-
izable is given by:

xTΦx < −ckxk22 8x2ℤd
+ ; ð23Þ

for some constant c > 0, which in turn can be satisfied
if Φ is negative definite. One significant drawback of
QPGM is that the tail is Gaussian-esque and thin
rather than Poisson-esque and thicker as in PGM.

Another possible modification is to use sub-
linear sufficient statistics in order to preserve the
Poisson base measure and possibly heavier tails.

Consider the following univariate distribution over
count-valued variables:

ℙ zð Þ/ exp θT z;R0,Rð Þ− log z!f g; ð24Þ

which has the same base measure log z ! as the Pois-
son but with the following sublinear sufficient
statistics:

T z;R0,Rð Þ =
z if z ≤ R0

−
1

2 R−R0ð Þ z2 +
R

R−R0
x−

R2
0

2 R−R0ð Þ if R0 < z ≤ R

R +R0

2
if z ≥ R :

8>>><>>>:
ð25Þ

For values of x upto R0, T(x) increases linearly, while
after R0, its slope decreases linearly, and finally after
R, T(x) becomes constant. The joint graphical model,
which they call a sublinear PGM (SPGM), specified
by the node-conditional distributions belonging to
the family in Eq. (24), has the following form:

ℙSPGM xð Þ = exp θTT xð Þ+T xð ÞTΦT xð Þ
n

−
X
i

log xi!ð Þ−ASPGM θ,ΦjR0,Rð Þ
o
; ð26Þ

where

ASPGM θ,ΦjR0,Rð Þ = log
X
x2ℤ +

exp θTT xð Þ�
+T xð ÞTΦT xð Þ−

X
i

log xi!ð Þg; ð27Þ

and T(x) is the entry-wise application of the function
in Eq. (25). SPGM is always normalizable for
ϕij 2 ℝ 8 i 6¼ j.

62

The main difficulty in estimating the PGM var-
iants above with an infinite domain is the lack of
closed-form expressions for the log partition func-
tion, even only for the node-conditional distributions
that are needed for parameter estimation. Yang
et al.62 propose an approximate estimation proce-
dure that uses the univariate Poisson and Gaussian
log-partition functions as upper bounds for the node-
conditional log-partition functions for the QPGM
and SPGM models, respectively.

Poisson Square Root Graphical Model
In the similar vein as SPGM in the earlier section,
Inouye et al.60 consider the use of exponential
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families with square root-sufficient statistics. While
they consider general graphical model families, their
PGM variant called the square root graphical model
(SQR) can be written as:

ℙSQR xjθð Þ= exp θT
ffiffiffi
x

p
+
ffiffiffi
x

p TΦ
ffiffiffi
x

pn
−
X
i

log xi!ð Þ−ASQR θ,Φð Þ
o
; ð28Þ

where ϕii can be non-zero in contrast to the zero
diagonal of the parameter matrix in Eq. (20). As with
PGM, when there are no edges (i.e., ϕij = 0 8 i 6¼ j)
and θ = 0, this reduces to the independent Poisson
model. The node conditionals of this distribution
have the form:

ℙ xijx− ið Þ/ exp ϕiixi + θi +2ϕT
i, − i

ffiffiffiffiffiffiffi
x− i

p� � ffiffiffiffi
xi

p
− log xi!ð Þ

n o
;

ð29Þ

where ϕi,− i is the i-th column of Φ with the i-th entry
removed. This can be rewritten in the form of a two-
parameter exponential family:

ℙ xijη1,η2ð Þ = exp η1xi + η2
ffiffiffiffi
xi

p
− log xi!ð Þ−A η1,η2ð Þf g;

ð30Þ

where η1 = ϕii, η2 = θi + 2ϕ
T
i, − i

ffiffiffiffiffiffiffi
x− i

p
, and A(η1, η2) is

the log partition function. Note that a key difference
with the PGM variants in the previous section is
that the diagonal of ΦSQR can be non-zero, whereas
the diagonal of ΦPGM must be zero. Because the

interaction term
ffiffiffi
x

p TΦ
ffiffiffi
x

p
is asymptotically linear

rather than quadratic, the Poisson SQR graphical

model does not suffer from the degenerate distribu-
tions of TPGM as well as the fixed-length PGM
(FLPGM) discussed in the next section while still
allowing both positive and negative dependencies.

To show that SQR graphical models can eas-
ily be normalized, Inouye et al.60 first define
radial-conditional distributions. The radial-
conditional distribution assumes that the unit direc-
tion is fixed, but the length of the vector is
unknown. The difference between the standard 1D
node-conditional distributions and the 1D radial-
conditional distributions is illustrated in Figure 3.
Suppose we condition on the unit direction v = x

kxk1
of the sufficient statistics, but the scaling of this unit
direction z = kxk1 is unknown. With this notation,
Inouye et al.60 define the radial-conditional distribu-
tion as:

ℙ x = zvjv,θ,Φð Þ/ exp θT
ffiffiffiffiffi
zv

p
+
ffiffiffiffiffi
zv

p TΦ
ffiffiffiffiffi
zv

pn
−
X
i

log zvið Þ!ð Þg

/ exp θTv
� � ffiffiffi

z
p

+
ffiffiffi
v

p TΦ
ffiffiffi
v

p� �
z−
X
i

log zvið Þ!ð Þ
( )

:

Similar to the node-conditional distribution, the
radial-conditional distribution can be rewritten as a
two-parameter exponential family:

ℙ zjv,θ,Φð Þ=exp η1z + η2
ffiffiffi
z

p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
O zð Þ

+ eBv zð Þ|fflffl{zfflffl}
O −zlog zð Þð Þ

−Arad η1,η2ð Þ

0B@
1CA;

ð31Þ
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FIGURE 3 | Node-conditional distributions (left) are univariate probability distributions of one variable conditioned on the other variables,
while radial-conditional distributions are univariate probability distributions of the vector scaling conditioned on the vector direction. Both
conditional distributions are helpful in understanding square root (SQR) graphical models. (Illustration from Ref 60)
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where η1 =
ffiffiffi
v

p TΦ
ffiffiffi
v

p
, η2 = θ

Tv, and eBv zð Þ=
−
Xd

i =1
log zvið Þ!ð Þ. The only difference between

this exponential family and the node-conditional dis-
tribution is the different base measure—i.e.,

−
Xd

i =1
log zvið Þ!ð Þ 6¼ − log z!ð Þ. However, note that the

log base measure is still O(−zlog(z)), and thus, the
log base measure will overcome the linear term as
z ! ∞. Therefore, the radial-conditional distribution
is normalizable for any η1,η2 2ℝ.

With the radial-conditional distributions nota-
tion, Inouye et al.60 show that the log partition func-
tion for Poisson SQR graphical models is finite by
separating the summation into a nested radial direc-
tion and scalar summation. Let V = v : kvkf 1 = 1,v2
ℝdg be the set of unit vectors in the positive orthant.
The SQR log partition function ASQR(θ, Φ) can be
decomposed into nested summation over the unit
direction and the one-dimensional radial conditional:

ASQR θ,Φð Þ= log
ð

v2V

X
z2ℤ̂

exp η1 vjΦð Þz + η2 vjθð Þ ffiffiffi
z

p�
−
X
i

log zvi!ð Þgdv; ð32Þ

where η1 vjΦð Þ and η2 vjθð Þ are the radial-conditional
parameters as defined above, and ℤ̂ = z : zv2ℤd

+

� �
.

Note that ℤ̂�ℤ, and thus, the inner summation can
be replaced by the radial-conditional log partition
function. Therefore, because V is a bounded set, and
the radial-conditional log partition function is finite
for any η1 vjθð Þ and η2 vjΦð Þ, ASQR < ∞ and the Pois-
son SQR joint distribution is normalizable.

The main drawback of the Poisson SQR is that
for parameter estimation, the log partition function
A(η1, η2) of the node conditionals in Eq. (30) is not
known in closed form in general. Inouye et al.60 pro-
vide a closed-form estimate for the exponential SQR,
but a closed-form solution for the Poisson SQR
model seems unlikely to exist. Inouye et al.60 suggest
numerically approximating A(η1, η2) as it only
requires a one-dimensional summation.

Local PGM
Inspired by the neighborhood selection technique of
Meinshausen and Bühlmann70, Allen and Liu71,72

propose to estimate the network structure of count-
valued data by fitting a series of ℓ1-regularized Pois-
son regressions to estimate the node-neighborhoods.
Such an estimation method may yield interesting net-
work estimates, but as Allen and Liu72 note, these
estimates do not correspond to a consistent joint

density. Instead, the underlying model is defined in
terms of a series of local models where each variable
is conditionally Poisson given its node-neighbors; this
approach is thus termed the local PGM (LPGM).
Note that LPGM does not impose any restrictions on
the parameter space or types of dependencies; if the
parameter space of each local model was constrained
to be non-positive, then the LPGM reduces to the
vanilla PGM as previously discussed. Hence, the
LPGM is less interesting as a candidate multivariate
model for count-valued data, but many may still find
its simple and interpretable network estimates
appealing. Recently, several studies have proposed to
adopt this estimation strategy for alternative network
types.73,74

Fixed-Length Poisson MRFs
In a somewhat different direction, Inouye et al.59

propose a distribution that has the same parametric
form as the original PGM but allows positive depen-
dencies by decomposing the joint distribution into
two distributions. The first distribution is the mar-
ginal distribution over the length of the vector
denoted ℙ(L)—i.e., the distribution of the ℓ1-norm of
the vector or the total sum of counts. The second dis-
tribution, the FLPGM, is the conditional distribution
of PGM given the fact that the vector length L is
known or fixed, denoted ℙFLPGM(x | kxk1 = L). Note
that this allows the marginal distribution on length
and the distribution given the length to be specified
independently.d The restriction to negative dependen-
cies is removed because the second distribution, given
the vector length ℙFLPGM(x | kxk1 = L), has a finite
domain DFLPGM = x : x2ℤd

+ ,kxk1 =L
� �

and is thus
trivially normalizable—similar to the normalizability
of the finite-domain TPGM. More formally,59

defined the FLPGM as:

ℙ xjθ,Φ,λð Þ =ℙ Ljλð ÞℙFLPGM xjkxk1 =L,θ,Φð Þ; ð33Þ

ℙFLPGM xjkxk1 =L,θ,Φð Þ= exp θTx +xTΦx
�

−
X
i

log xi!ð Þ−AL θ,Φð Þg; ð34Þ

where λ is the parameter for the marginal length dis-
tribution, which could be Poisson, negative binomial,
or any other distribution on non-negative integers. In
addition, FLPGM could be used as a replacement for
the multinomial distribution because it has the same
domain as the multinomial and actually reduces to
the multinomial if there are no dependencies. Earlier,
Altham and Hankin75 developed an identical model
by generalizing an earlier bivariate generalization of
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the binomial.76 However, in Refs 75,76, the model
assumed that L was constant over all samples,
whereas Ref 59 allowed for L to vary for each sam-
ple according to some distributions ℙ(L).

One significant drawback is that FLPGM is not
amenable to the simple node-wise parameter estima-
tion method of the previous PGM models. Nonethe-
less, in Inouye et al.59, the parameters are
heuristically estimated with Poisson regressions simi-
lar to PGM, although the theoretical properties of
this heuristic estimate are unknown. Another draw-
back is that while FLPGM allows for positive depen-
dencies, the distribution can yet yield a degenerate
distribution for large values of L—similar to the
problem of TPGM where the mass is concentrated
near 0 or R. Thus, Inouye et al.59 introduce a
decreasing weighting function ω(L) that scales the
interaction term:

ℙFLPGM xjkxk1 =L,θ,Φ,ω �ð Þð Þ

= exp θTx +ω Lð ÞxTΦx−
X
i

log xi!ð Þ−AL θ,ω Lð ÞΦð Þ
( )

:

ð35Þ

While the log likelihood is not available in tractable
form, Inouye et al.59 approximate the log likelihood
using annealed importance sampling,77 which might
be applicable to the extensions covered previously
as well.

Summary of Conditional Poisson
Generalizations
The conditional Poisson models benefit from the rich
literature in exponential families and undirected
graphical models, or Markov Random Fields. In
addition, the conditional Poisson models have a sim-
ple parametric form. The historical PGM—or the
auto-Poisson model58—only allowed negative depen-
dencies between variables. Multiple extensions have
sought to overcome this severe limitation by altering
the PGM so that the log partition function is finite
even with positive dependencies. One major draw-
back to the graphical model approach is that com-
puting the likelihood requires the approximation of
the joint log partition function A(θ, Φ); a related
problem is that the distribution moments and mar-
ginals are not known in closed form. Despite these
drawbacks, parameter estimation using composite
likelihood methods via ℓ1-penalized node-wise regres-
sions (in which the joint likelihood is not computed)
has solid theoretical properties under certain
conditions.

MODEL COMPARISON

We compare models by first discussing two structural
aspects of the models: (a) interpretability and (b) the
relative stringency and ease of verifying theoretical
assumptions and guarantees. We then present and
discuss an empirical comparison of the models on
three real-world datasets.

Comparison of Model Interpretation
Marginal models can be interpreted as weakly decou-
pling the univariate marginal distributions from the
dependency structure between the variables. How-
ever, in the discrete case, specifically for distributions
based on pairing copulas with Poisson marginals, the
dependency structure estimation is also dependent on
the marginal estimation, unlike for copulas paired
with continuous marginals.23 Conditional models or
graphical models, on the other hand, can be inter-
preted as specifying generative models for each varia-
ble given the variable’s neighborhood (i.e., the
conditional distribution). In addition, dependencies
in graphical models can be visualized and interpreted
via networks. Here, each variable is a node, and the
weighted edges in the network structure depict the
pair-wise conditional dependencies between vari-
ables. The simple network depiction for graphical
models may enable domain experts to interpret com-
plex dependency structures more easily compared to
other models. Overall, marginal models may be pre-
ferred if modeling the statistics of the data, particu-
larly the marginal statistics over individual variables,
is of primary importance, while conditional models
may be preferred if the prediction of some variables,
given others, is of primary importance. Mixture mod-
els may be more or less difficult to interpret depend-
ing on whether there is an application-specific
interpretation of the latent mixing variable. For
example, a finite mixture of two Poisson distributions
may model the crime statistics of a city that contains
downtown and suburban areas. On the other hand, a
finite mixture of Poisson distributions or a log-
normal Poisson mixture when modeling crash sever-
ity counts (as seen in the empirical comparison sec-
tion) seems more difficult to interpret; even if the
model empirically fits the data well, the hidden mix-
ture variable might not have an obvious application-
specific interpretation.

Comparison of Theoretical Considerations
The estimation of marginal models from data has
various theoretical problems, as evidenced by the
analysis of copulas paired with discrete marginals in
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Ref 23. The extent to which these theoretical pro-
blems cause any significant practical issues remains
unclear. In particular, the estimators of the marginal
distributions themselves typically have easily checked
assumptions as the empirical marginal distributions
can be inspected directly. On the other hand, the esti-
mation of conditional models is both computation-
ally tractable and comes with strong theoretical
guarantees even under high-dimensional regimes
where n < d.

63 However, the assumptions under
which the guarantees of the estimators hold are diffi-
cult to check in practice and could cause problems if
they are violated (e.g., outliers caused by unobserved
factors). The estimation of mixture models tends to
have limited theoretical guarantees. In particular,
finite Poisson mixture models have very weak
assumptions on the underlying distribution—
eventually becoming a nonparametric distribution if
k = O(n)—but the estimation problems in theory are
extremely difficult, with very few theoretical guaran-
tees for practical estimators. Yet, as seen in the next
section, empirically estimating a finite mixture model
using EM iterations performs well in practice.

Empirical Comparison
In this section, we seek to empirically compare mod-
els from the three classes presented to assess how
well they fit real-world count data.

Comparison Experimental Setup
We empirically compare models on selected datasets
from three diverse domains which, have different
data characteristics in terms of their mean count
values and dispersion indices (Eq. 0.5), as can be seen
in Table 1. The crash severity dataset is a small acci-
dent dataset from Ref 78 with three different count
variables corresponding to crash severity classes:
‘Property-only’, ‘Possible Injury’, and ‘Injury’. The
crash severity data exhibit high count values and

high overdispersion. We retrieve raw next generation
sequencing data for breast cancer (BRCA) using the
software TCGA2STAT79 and compute a simple log-
count transformation of the raw counts: blog(x+1)c,
a common preprocessing technique for RNA-Seq
data. The BRCA data exhibit medium counts and
medium overdispersion. We collect the word count
vectors from the Classic3 text corpus, which contains
abstracts from aerospace engineering, medical, and
information sciences journals.e The Classic3 dataset
exhibits low counts—including many zeros—and
medium overdispersion. In the Supporting informa-
tion, we also give results for a crime statistics dataset
and the 20 Newsgroup dataset, but they have similar
characteristics and perform similarly to the BRCA
and Classic3 datasets, respectively; thus, we omit
them for simplicity. We select variables (e.g., for
d = 10 or d = 100) by sorting the variables by mean
count value or sorting by variance in the case of the
BRCA dataset as highly variable genes are of more
interest in biology.

In order to understand how each model might
perform under varying data characteristics, we con-
sider the following two questions: (1) How well
does the model (i.e., the joint distribution) fit the
underlying data distribution? and (2) How well does
the model capture the dependency structure between
variables? To help answer these questions, we evalu-
ate the empirical fit of models using two metrics,
which only require samples from the model. The
first metric is based on a statistic called maximum
mean discrepancy (MMD),80 which estimates the
maximum moment difference over all possible
moments. The empirical MMD can be approxi-
mated as follows from two sets of samples X2
ℝn1 × d and Y 2ℝn2 × d:

dMMD G,X,Yð Þ= sup
f2G

1
n1

Xn1
i = 1

f xið Þ− 1
n2

Xn2
j = 1

f yj
� �

; ð36Þ

TABLE 1 | Dataset Statistics

(Per Variable )) Means Dispersion Indices Spearman’s ρ

Dataset d n Min Med Max Min Med Max Min Med Max

Crash Severity 3 275 3.4 3.8 9.7 6 9.3 16 0.61 0.73 0.79

BRCA 10 878 3.2 5 7.7 1.5 2.2 3.8 −0.2 0.25 0.95

100 878 1.1 4 9 0.63 1.7 4.6 −0.5 0.08 0.95

1000 878 0.51 3.5 11 0.26 1 4.6 −0.64 0.06 0.97

Classic3 10 3893 0.26 0.33 0.51 1.4 3.4 3.8 −0.17 0.12 0.82

100 3893 0.09 0.14 0.51 1.1 2.1 8.3 −0.17 0.02 0.82

1000 3893 0.02 0.03 0.51 0.98 1.7 8.5 −0.17 −0 0.82
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where G is the union of the RKHS spaces based on
the Gaussian kernel using 21 σ values log-spaced
between 0.01 and 100. In our experiments, we esti-
mate the MMD between the pairwise marginals of
model samples and the pairwise marginals of the
original observations:

DMMD
st =

dMMD G, x sð Þ� �
, x̂ sð Þ
h i� �

, s = tdMMD G, x sð Þ,x tð Þ� �
, x̂ sð Þ, x̂ tð Þ
h i� �

, otherwise

8<: :

ð37Þ
where x(s) is the vector of data for the s-th variable of
the true data, and x̂ sð Þ is the vector of data for the n-
th variable of samples from the estimated
model—i.e., x(s) are observations from the true
underlying distribution, and x̂ sð Þ are samples from the
estimated model distribution. In our experiments, we
use the fast approximation code for MMD from81

with 26 number of basis vectors for the FastMMD
approximation algorithm. The second metric merely
computes the absolute difference between pairwise
Spearman’s ρ values of model samples and Spear-
man’s ρ values of the original observations:

Dρ
st = jρ x sð Þ,x tð Þ

� �
−ρ x̂ sð Þ, x̂ tð Þ
� �

j, 8s, t : ð38Þ

The MMD metric is of more general interest because
it evaluates whether the models actually fit the empir-
ical data distribution, while the Spearman metric
may be more interesting for practitioners who prima-
rily care about the dependency structure, such as
biologists who specifically want to study gene depen-
dencies rather than gene distributions.

We empirically compare the model fits on these
real-world datasets for several types of models from
the three general classes presented. As a baseline, we
estimate an independent Poisson model (‘Ind Pois-
son’). We include Gaussian copulas and vine copulas,
both paired with Poisson marginals (‘Copula Poisson’
and ‘Vine Poisson’) to represent the marginal model
class. We estimate the copula-based models via the
two-stage IFM method35 via the DT.26 For the mix-
ture class, we include both a simple finite mixture of
independent Poissons (‘Mixture Poiss’) and a log-
normal mixture of Poissons (‘Log-Normal’). The finite
mixture was estimated using a simple EM algorithm;
the log-normal mixture model was estimated via
MCMC sampling using the code from Ref 55. For the
conditional model class, we estimate the simple PGM
(‘PGM’), which only allows negative dependencies,
and three variants that allow for positive dependen-
cies: the truncated PGM (‘Truncated PGM’), the

FLPGM with a Poisson distribution on the vector
length L = kxk1 (‘FLPGM Poisson’), and the Poisson
square root graphical model (‘Poisson SQR’). Using
composite likelihood methods of penalized ℓ1 node-
wise regressions, we estimate these models via code
from Refs 63,82,83, and the XMRFf R package. After
parameter estimation, we generate 1000 samples for
each method using different types of sampling for
each of the model classes.

To avoid overfitting to the data, we employ
threefold cross-validation and report the average
over the three folds. Because the conditional models
(PGM, TPGM, FLPGM, and Poisson SQR) can be
significantly different depending on the regularization
parameter—i.e., the weight for the ℓ1 regularization
term in the objective function for these models—we
select the regularization parameter of these models
by computing the metrics on a tuning split of the
training data. For the mixture model, we similarly
tune the number of components k by testing
k = {10, 20, 30, …, 100}. For the very high-
dimensional datasets where d = 1000, we use a regu-
larization parameter near the tuning parameters
found when d = 100 and fix k = 50 in order to avoid
the extra computation of selecting a parameter. More
sampling and implementation details for each model
are available in the Supporting information.

Empirical Comparison Results
The full results for both the MMD and Spearman’s ρ
metrics for the crash severity, breast cancer RNA-Seq,
and Classic3 text datasets can be seen in Figures 4, 5,
and 6, respectively. The low-dimensional results
(d ≤ 10) give evidence across all the datasets that three
models outperform the others in their classesg:

The Gaussian copula paired with Poisson mar-
ginals model (‘Copula Poisson’) for the marginal
model class, the mixture of Poissons distribution
(‘Mixture Poiss’) for the mixture model class, and the
Poisson SQR distribution (‘Poisson SQR’) for the
conditional model class. Thus, we only include these
representative models along with an independent
Poisson baseline in the high-dimensional experiments
when d > 10. We discuss the results for specific data
characteristics as represented by each dataset.h

For the crash severity dataset with high counts
and high overdispersion (Figure 4), mixture models
(i.e., ‘Log-Normal’ and ‘Mixture Poiss’) perform the
best as expected as they can model overdispersion
well. However, if dependency structure is the only
object of interest, the Gaussian copula paired with
Poisson marginals (‘Copula Poisson’) performs well.
For the BRCA dataset with medium counts and
medium overdispersion (Figure 5), we note similar
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trends with two notable exceptions: (1) The Poisson
SQR model actually performs reasonably in low
dimensions, suggesting that it can model moderate
overdispersion, and (2) the high-dimensional
(d ≥ 100) Spearman’s ρ difference results show that
the Gaussian copula paired with Poisson marginals
(‘Copula Poisson’) performs significantly better than
the mixture model; this result suggests that copulas
paired with Poisson marginals are likely better for
modeling dependencies than mixture models. Finally,
for the Classic3 dataset with low counts and medium
overdispersion (Figure 6), the Poisson SQR model
seems to perform well in this low-count setting, espe-
cially in low dimensions, unlike in previous data set-
tings. While the simple independent mixture of
Poisson distributions still performs well, the Poisson
log-normal mixture distribution (‘Log-Normal’) per-
forms quite poorly in this setting with small counts
and many zeros. This poor performance of the Pois-
son log-normal mixture is somewhat surprising as
the dispersion indices are almost all greater than one,
as seen in Table 1. The differing results between low
counts and medium counts with similar overdisper-
sion demonstrate the importance of considering both
the overdispersion and the mean count values when
characterizing a dataset.

In summary, we note several overall trends. Mix-
ture models are important for overdispersion when
counts are medium or high. The Gaussian copula with

Poisson marginals joint distribution can estimate
dependency structure (per the Spearman metric) for a
wide range of data characteristics even when the distri-
bution does not fit the underlying data (per the MMD
metric). The Poisson SQR model performs well for
low count values with many zeros (i.e., sparse data)
and may be able to handle moderate overdispersion.

DISCUSSION

While this review analyzes each model class sepa-
rately, it would be quite interesting to consider com-
binations or synergies between the model classes.
Because negative binomial distributions can be
viewed as a gamma–Poisson mixture model, one sim-
ple idea is to consider pairing a copula with negative
binomial marginals or developing a negative bino-
mial SQR graphical model. As another example, we
could form a finite mixture of copula-based or graph-
ical model-based models. This might combine the
strengths of a mixture model in handling multiple
modes and overdispersion with the strengths of the
copula-based models and graphical models, which
can explicitly model dependencies.

We may also consider how one type of model
informs the other. For example, by the generalized
Sklar’s theorem,26 each conditional PGM actually
induces a copula—just as the Gaussian graphical
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FIGURE 4 | Crash severity dataset (high counts and high overdispersion): maximum mean discrepancy (left) and Spearman ρ’s difference
(right). As expected, for high overdispersion, mixture models (‘Log-Normal’ and ‘Mixture Poiss’) seem to perform the best.
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model induces the Gaussian copula. Studying the
copulas induced by graphical models seems to be a
relatively unexplored area. On the other hand, it may
be useful to consider fitting a Gaussian copula paired
with discrete marginals using the theoretically
grounded techniques from graphical models for
sparse dependency structure estimation, especially for
the small sample regimes in which d > n; this has
been studied for the case of continuous marginals in
Ref 84. Overall, bringing together and comparing
these diverse paradigms for probability models opens
up the door for many combinations and synergies.

CONCLUSION

We have reviewed three main approaches to con-
structing multivariate distributions derived from the
Poisson using three different assumptions: (1) the

marginal distributions are derived from the Poisson,
(2) the joint distribution is a mixture of independent
Poisson distributions, and (3) the node-conditional
distributions are derived from the Poisson. The first
class based on Poisson marginals, and particularly
the general approach of pairing copulas with Poisson
marginals, provides an elegant way to partiallyi

decouple the marginals from the dependency struc-
ture and gives strong empirical results despite some
theoretical issues related to nonuniqueness. While
advanced methods to estimate the joint distribution
of copulas paired with discrete marginals, such as
SL25 or vine copula constructions, provide more
accurate or more flexible copula models, respectively,
our empirical results suggest that a simple Gaussian
copula paired with Poisson marginals with the trivial
DT can perform quite well in practice. The second
class based on mixture models can be particularly
helpful for handling overdispersion that often occurs
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FIGURE 5 | BRCA RNA-Seq dataset (medium counts and medium overdispersion): maximum mean discrepancy (MMD) (top) and Spearman ρ’s
difference (bottom) with different number of variables: 10 (left), 100 (middle), 1000 (right). While mixtures (‘Log-Normal’ and ‘Mixture Poiss’)
perform well in terms of MMD, the Gaussian copula paired with Poisson marginals (‘Copula Poisson’) can model dependency structure well as
evidenced by the Spearman metric.

Advanced Review wires.wiley.com/compstats

20 of 25 © 2017 Wiley Per iodicals , Inc. Volume 9, May/June 2017



in real count data with the log-normal–Poisson mix-
ture and a finite mixture of independent Poisson dis-
tributions being prime examples. In addition,
mixture models have closed-form moments and, in
the case of a finite mixture, closed-form likelihood
calculations—something not generally true for the
other classes. The third class based on Poisson condi-
tionals can be represented as graphical models, thus
providing both compact and visually appealing repre-
sentations of joint distributions. Conditional models
benefit from strong theoretical guarantees about
model recovery given certain modeling assumptions.
However, checking conditional modeling assump-
tions may be impossible and may not always be satis-
fied for real-world count data. From our empirical
experiments, we found that (1) mixture models are
important for overdispersion when counts are
medium or high, (2) the Gaussian copula with Pois-
son marginals joint distribution can estimate depend-
ency structure for a wide range of data

characteristics even when the distribution does not fit
the underlying data, and (3) Poisson SQR models
perform well for low count values with many zeros
(i.e., sparse data) and can handle moderate overdis-
persion. Overall, in practice, we would recommend
comparing the three best-performing methods from
each class, namely the Gaussian copula model paired
with Poisson marginals, the finite mixture of inde-
pendent Poisson distributions, and the Poisson SQR
model. This initial comparison will likely highlight
some interesting properties of a given dataset and
suggest which class to pursue in more detail.

This review has highlighted several key
strengths and weaknesses of the main approaches to
constructing multivariate Poisson distributions. Yet,
there remain many open questions. For example,
what are the marginal distributions of the PGMs that
are defined in terms of their conditional distribu-
tions? Or conversely, what are the conditional distri-
butions of the copula models that are defined in

Classic3 (d = 10)

Classic3 (d = 10)

Classic3 (d = 100) Classic3 (d = 1000)

Classic3 (d = 100) Classic3 (d = 1000)

Histogram
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FIGURE 6 | Classic3 text dataset (low counts and medium overdispersion): maximum mean discrepancy (top) and Spearman ρ’s difference
(bottom) with different number of variables: 10 (left), 100 (middle), 1000 (right). The Poisson SQR model performs better on this low count dataset
than in previous settings.
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terms of their marginal distributions? Can novel
models be created at the intersection of these model
classes that could combine the strengths of different
classes as suggested in the Discussion section? Could
certain model classes be developed in an application
area that has been largely dominated by another
model class? For example, graphical models are well
known in the machine learning literature, while cop-
ula models are well known in the financial modeling
literature. Overall, multivariate Poisson models are
poised to increase in popularity given the wide poten-
tial applications for real-world, high-dimensional,
count-valued data in text analysis, genomics, spatial
statistics, economics, and epidemiology.

NOTES
a The label ‘multivariate Poisson’ was introduced in the
statistics community to refer to the particular model intro-
duced in this section, but other generalizations could also
be considered multivariate Poisson distributions.
b This is because if y 2 ℝ � Normal, then exp
(y) 2 ℝ+ + � LogNormal.

c Besag58 originally named these Poisson auto models,
focusing on pairwise graphical models, but here, we con-
sider the general graphical model setting.
d If the marginal distribution on the length is set to be the
same as the marginal distribution on length for the
PGM—i.e., if ℙ Lð Þ =

X
x:kxk1 =LℙPGM xð Þ, then the PGM

distribution is recovered.
e http://ir.dcs.gla.ac.uk/resources/test_collections/
f https://cran.r-project.org/web/packages/XMRF/index.html
g For the crash-severity dataset, the truncated Poisson
graphical model (‘Truncated PGM’) outperforms the Pois-
son SQR model under the pairwise MMD metric. After
inspection, however, we realized that the Truncated PGM
model performed better merely because outlier values were
truncated to the 99th percentile as described in the supple-
mentary material. This reduced the overfitting of outlier
values caused by the crash-severity dataset’s high
overdispersion.
h These basic trends are also corroborated by the two data-
sets in the supplementary material.
i In the discrete case, the dependency structure cannot be
perfectly decoupled from the marginal distributions, unlike
in the continuous case where the dependency structure and
marginals can be perfectly decoupled.
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