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Agenda

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Summary

Expectation Maximization

– Convenient algorithm for certain Maximum Likelihood problems.

– Viable alternative to Newton or Conjugate Gradient algorithms.

– More fashionable than Newton or Conjugate Gradients.

– Lots of extensions: variational methods, stochastic EM.

Outline of the lecture

1. Gaussian mixtures.

2. More mixtures.

3. Data with missing values.
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Simple Gaussian mixture

Clustering via density estimation.

– Pick a parametric model Pθ(X).

– Maximize likelihood.

Parametric model

– There are K components

– To generate an observation:

a.) pick a component k

with probabilities λ1 . . . λK with
∑
k λk = 1.

b.) generate x from component k

with probability N (µi, σ).

Simple GMM: Standard deviation σ known and constant.

– What happens when σ is a trainable parameter?

– Different σi for each mixture component?

– Covariance matrices Σ instead of scalar standard deviations ?
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When Maximum Likelihood fails

– Consider a mixture of two Gaussians

with trainable standard deviations.

– The likelihood becomes infinite when one

of them specializes on a single observation.

– MLE works for all discrete probabilistic models

and for some continuous probabilistic models.

– This simple Gaussian mixture model is not one of them.

– People just ignore the problem and get away with it.
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Why ignoring the problem does work ?

Explanation 1 – The GMM likelihood has many local maxima.

�������

– Unlike discrete distributions, densities are not bounded.
A ceiling on the densities theoretically fixes the problem.
Equivalently: enforcing a minimal standard deviation that
prevents Gaussians to specialize on a single observation. . .

– The singularity lies in a narrow corner of the parameter space.
Optimization algorithms cannot find it!.
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Why ignoring the problem does work ?

Explanation 2 – There are no rules in the Wild West.

– We should not condition probabilities with respect to events with probability zero.

– With continuous probabilistic models, observations always have probability zero!
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Expectation Maximization for GMM

– We only observe the x1, x2, . . . .

– Some models would be very easy to optimize if we knew which

mixture components y1, y2, . . . generates them.

Decomposition

– For a given X, guess a distribution Q(Y |X).

– Regardless of our guess, logL(θ) = L(Q, θ) +D(Q, θ)

L(Q, θ) =

n∑
i=1

K∑
y=1

Q(y|xi) log
Pθ(xi|y)Pθ(y)

Q(y|xi)
Easy to maximize

D(Q, θ) =

n∑
i=1

K∑
y=1

Q(y|xi) log
Q(y|xi)
Pθ(y|xi)

KL divergence D(QY |X‖PY |X)
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Expectation-Maximization
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E-Step: qik ←
λk√
|Σk|

e−
1
2 (xi−µk)>Σ−1

k (xi−µk)
remark: normalization!.

M-Step: µk ←
∑
i qik xi∑
i qik

Σk ←
∑
i qik(xi − µk)(xi − µk)>∑

i qik
λk ←

∑
i qik∑
iy qiy
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Implementation remarks

Numerical issues

– The qik are often very small and underflow the machine precision.

– Instead compute log qik and work with q̂ik = qik e
−maxk(log qik).

Local maxima

– The likelihood is highly non convex.

– EM can get stuck in a mediocre local maximum.

– This happens in practice. Initialization matters.

– On the other hand, the global maximum is not attractive either.

Computing the log likelihood

– Computing the log likelihood is useful to monitor the progress of EM.

– The best moment is after the E-step and before the M-step.

– Since D = 0 it is sufficient to compute L −M.
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EM for GMM

Start.

(Illustration from Andrew Moore’s tutorial on GMM.)
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EM for GMM

After iteration #1.
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EM for GMM

After iteration #2.
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EM for GMM

After iteration #3.
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EM for GMM

After iteration #4.
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EM for GMM

After iteration #5.
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EM for GMM

After iteration #6.
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EM for GMM

After iteration #20.
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GMM for anomaly detection

1. Model P {X} with a GMM.

2. Declare anomaly when density fails below a threshold.
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GMM for classification

1. Model P {X | Y = y} for every class with a GMM.

2. Calulate Bayes optimal decision boundary.

3. Possibility to detect outliers and ambiguous patterns.
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GMM for regression

1. Model P {X, Y } with a GMM.

2. Compute f (x) = E [Y | X = x].
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The price of probabilistic models

Estimating densities is nearly impossible!

– A GMM with many components is very flexible model.

– Nearly as demanding as a general model.

Can you trust the GMM distributions?

– Maybe in very low dimension. . .

– Maybe when the data is abundant. . .

Can you trust decisions based on the GMM distribution?

– They are often more reliable than the GMM distributions themselves.

– Use cross-validation to check!

Alternatives?

– Directly learn the decision function!

– Use cross-validation to check!.
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More mixture models

We can make mixtures of anything.

Bernoulli mixture

Example: Represent a text document by D binary variables

indicating the presence or absence of word t = 1 . . . D.

– Base model: model each word independently with a Bernoulli.

– Mixture model: see next slide.

Non homogeneous mixtures

It is sometimes useful to mix different kinds of distributions.

Example: model how long a patient survives after a treatment.

– One component with thin tails for the common case.

– One component with thick tails for patients cured by the treatment.
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Bernoulli mixture

Consider D binary variables x = (x1, . . . , xD).

Each xi independently follows a Bernoulli distribution B(µi).

Pµ(x) =

D∏
i=1

µ
xi
i (1− µi)1−xi Mean µ

Covariance diag[µi(1− µi)]

Now let’s consider a mixture of such distributions.

The parameters are θ = (λ1,µ1, . . . λk,µk) with
∑
k λk = 1.

Pθ(x) =

K∑
k=1

λkPµk(xi)
Mean

∑
k λkµk

Covariance no longer diagonal!

Since the covariance matrix is no longer diagonal,

the mixture models dependencies between the xi.
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EM for Bernoulli mixture

We are given a dataset x = x1, . . . ,xn.

The log likelihood is logL(θ) =

n∑
i=1

log

k∑
i=1

λkPµk(xi)

Let’s derive an EM algorithm.

Variable Y = y1, . . . , yn says which component generates X.

Maximizing the likelihood would be easy if we were observing the Y .

So let’s just guess Y with distribution Q(Y = y|X = xi) ∝ qiy.

Decomposition: logL(θ) = L(Q, θ) +D(Q, θ),

with the usual definitions (slide 8.)
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EM for a Bernoulli mixture
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E-Step: qik ← λk Pµk(xi) remark: normalization!.

M-Step: µk ←
∑
i qik xi∑
i qik

λk ←
∑
i qik∑
iy qiy
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Data with missing values

“Fitting my probabilistic model would be so easy without missing values.”

mpg cyl disp hp weight accel year name
15.0 8 350.0 165.0 3693 11.5 70 buick skylark 320

18.0 8 318.0 150.0 3436 11.0 70 plymouth satellite

15.0 8 429.0 198.0 4341 10.0 70 ford galaxie 500

14.0 8 454.0 n/a 4354 9.0 70 chevrolet impala

15.0 8 390.0 190.0 3850 8.5 70 amc ambassador dpl

n/a 8 340.0 n/a n/a 8.0 70 plymouth cuda 340

18.0 4 121.0 112.0 2933 14.5 72 volvo 145e

22.0 4 121.0 76.00 2511 18.0 n/a volkswagen 411

21.0 4 120.0 87.00 2979 19.5 72 peugeot 504

26.0 n/a 96.0 69.00 2189 18.0 72 renault 12

22.0 4 122.0 86.00 n/a 16.0 72 ford pinto

28.0 4 97.0 92.00 2288 17.0 72 datsun 510

n/a 8 440.0 215.0 4735 n/a 73 chrysler new yorker
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EM for missing values

“Fitting my probabilistic model would be so easy without missing values.”

This magic sentence suggests EM

– Let X = x1, x2, . . . , xn be the observed values on each row.

– Let Y = y1, y2, . . . , yn be the missing values on each row.

Decomposition

– Guess a distribution Qλ(Y |X).

– Regardless of our guess, logL(θ) = L(λ, θ) +D(λ, θ)

L(λ, θ) =

n∑
i=1

∑
y

Qλ(y|xi) log
Pθ(xi, y)

Qλ(y|xi)
Easy to maximize

D(λ, θ) =

n∑
i=1

∑
y

Qλ(y|xi) log
Qλ(y|xi)
Pθ(y|xi)

KL divergence D(QY |X‖PY |X)
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EM for missing values
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E-Step: Depends on the parametric expression of Qλ(Y |X).

M-Step: Depends on the parametric expression of Pθ(X, Y ).

This works when the missing value patterns are sufficiently random!
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Conclusion

Expectation Maximization
– EM is a very useful algorithm for probabilistic models.
– EM is an alternative to sophisticated optimization
– EM is simpler to implement.

Probabilistic Models
– More versatile than direct approaches.
– More demanding than direct approaches (assumptions, data, etc.)
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