Expectation-Maximization

Léon Bottou

NEC Labs America

COS 424 - 3/9/2010

Agenda

Goals	Classification, clustering, regression, other.			
Representation	Parametric vs. kernels vs. nonparametric Probabilistic vs. nonprobabilistic Linear vs. nonlinear Deep vs. shallow			
Capacity Control	Explicit: architecture, feature selection Explicit: regularization, priors Implicit: approximate optimization Implicit: bayesian averaging, ensembles			
Operational Considerations	Loss functions Budget constraints Online vs. offline			
Computational Considerations	Exact algorithms for small datasets. Stochastic algorithms for big datasets. Parallel algorithms.			

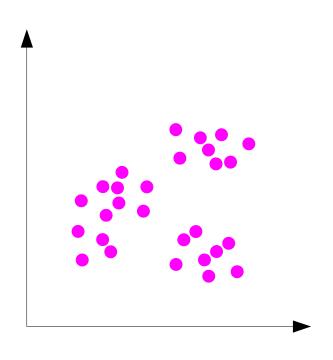
Expectation Maximization

- Convenient algorithm for certain Maximum Likelihood problems.
- Viable alternative to Newton or Conjugate Gradient algorithms.
- More fashionable than Newton or Conjugate Gradients.
- Lots of extensions: variational methods, stochastic EM.

Outline of the lecture

- 1. Gaussian mixtures.
- 2. More mixtures.
- 3. Data with missing values.

Simple Gaussian mixture



Clustering via density estimation.

- Pick a parametric model $\mathbb{P}_{\theta}(X)$.
- Maximize likelihood.

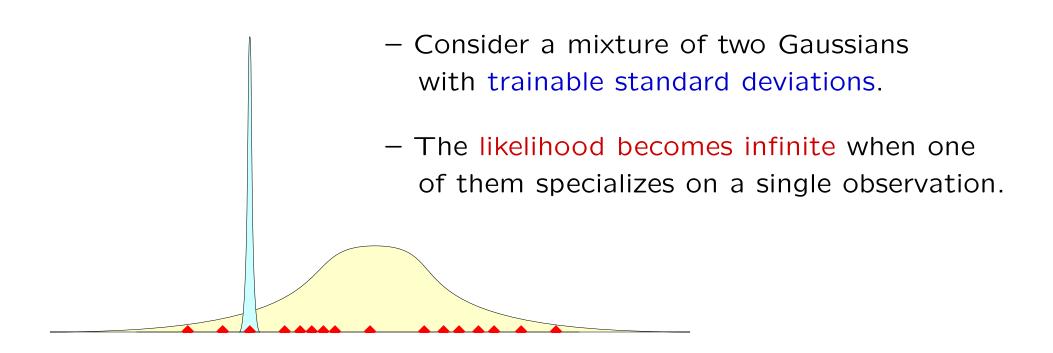
Parametric model

- There are K components
- To generate an observation:
 - a.) pick a component k
 - with probabilities $\lambda_1 \dots \lambda_K$ with $\sum_k \lambda_k = 1$.
 - b.) generate x from component kwith probability $\mathcal{N}(\mu_i, \sigma)$.

Simple GMM: Standard deviation σ known and constant.

- What happens when σ is a trainable parameter?
- Different σ_i for each mixture component?
- Covariance matrices Σ instead of scalar standard deviations ?

When Maximum Likelihood fails

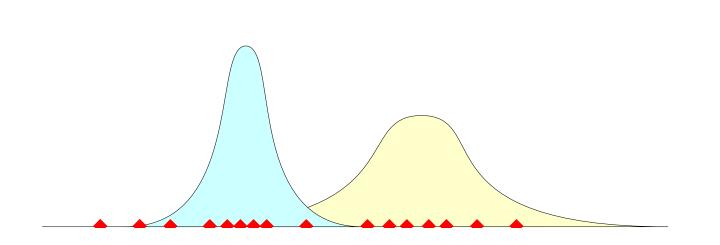


- MLE works for all discrete probabilistic models and for some continuous probabilistic models.
- This simple Gaussian mixture model is not one of them.
- People just ignore the problem and get away with it.

Why ignoring the problem does work ?

Explanation 1 – The GMM likelihood has many local maxima.

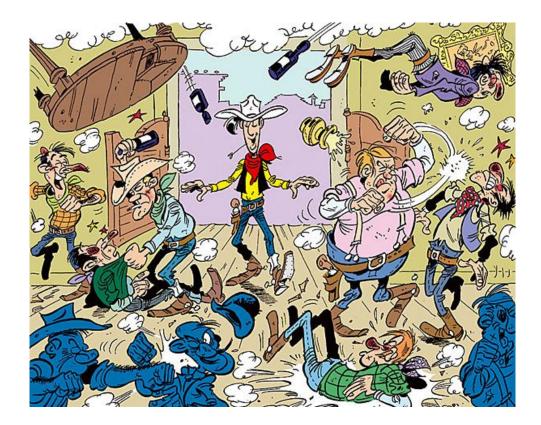
Ceiling



- Unlike discrete distributions, densities are not bounded.
 A ceiling on the densities theoretically fixes the problem.
 Equivalently: enforcing a minimal standard deviation that prevents Gaussians to specialize on a single observation...
- The singularity lies in a narrow corner of the parameter space.
 Optimization algorithms cannot find it!.

Why ignoring the problem does work ?

Explanation 2 – There are no rules in the Wild West.



- We should not condition probabilities with respect to events with probability zero.

- With continuous probabilistic models, observations always have probability zero!

Expectation Maximization for GMM

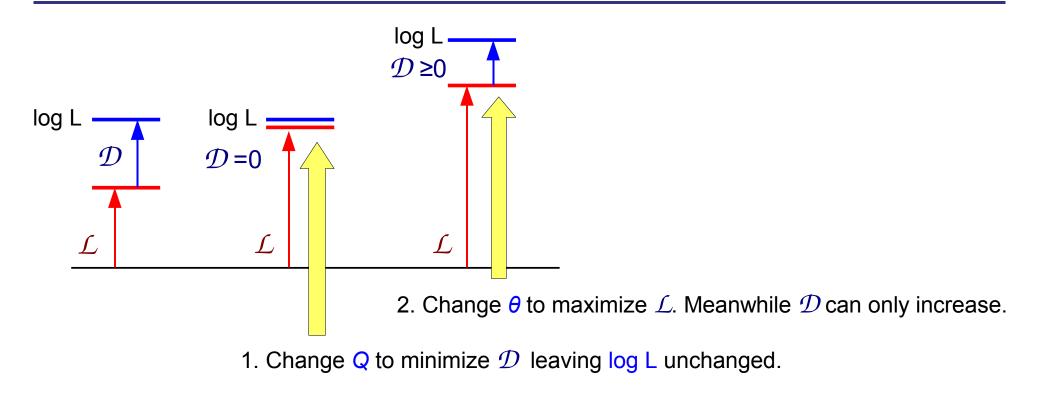
- We only observe the x_1, x_2, \ldots
- Some models would be very easy to optimize if we knew which mixture components y_1, y_2, \ldots generates them.

Decomposition

- For a given X, guess a distribution Q(Y|X).
- Regardless of our guess, $\log L(\theta) = \mathcal{L}(Q, \theta) + \mathcal{D}(Q, \theta)$

$$\begin{aligned} \mathcal{L}(Q,\theta) &= \sum_{i=1}^{n} \sum_{y=1}^{K} Q(y|x_i) \log \frac{P_{\theta}(x_i|y) P_{\theta}(y)}{Q(y|x_i)} & \text{Easy to maximize} \\ \mathcal{D}(Q,\theta) &= \sum_{i=1}^{n} \sum_{y=1}^{K} Q(y|x_i) \log \frac{Q(y|x_i)}{P_{\theta}(y|x_i)} & \text{KL divergence } D(Q_{Y|X} || P_{Y|X}) \end{aligned}$$

Expectation-Maximization



E-Step:
$$q_{ik} \leftarrow \frac{\lambda_k}{\sqrt{|\Sigma_k|}} e^{-\frac{1}{2}(x_i - \mu_k)^\top \sum_k^{-1} (x_i - \mu_k)}$$
 remark: normalization!.
M-Step: $\mu_k \leftarrow \frac{\sum_i q_{ik} x_i}{\sum_i q_{ik}} \quad \Sigma_k \leftarrow \frac{\sum_i q_{ik} (x_i - \mu_k) (x_i - \mu_k)^\top}{\sum_i q_{ik}} \quad \lambda_k \leftarrow \frac{\sum_i q_{ik}}{\sum_{iy} q_{iy}}$

Numerical issues

- The q_{ik} are often very small and underflow the machine precision.
- Instead compute $\log q_{ik}$ and work with $\hat{q}_{ik} = q_{ik} e^{-\max_k (\log q_{ik})}$.

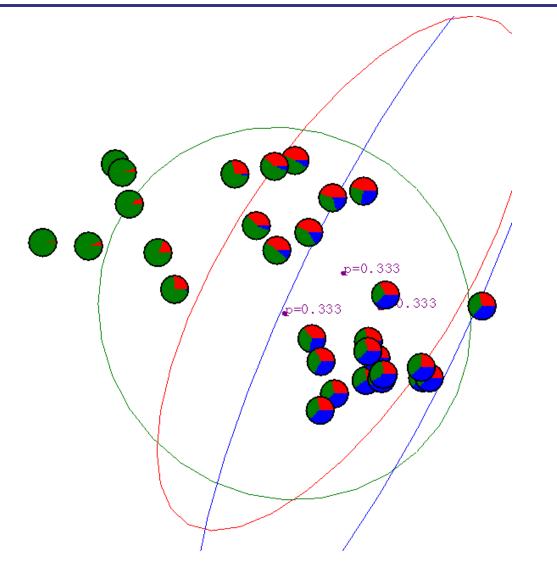
Local maxima

- The likelihood is highly non convex.
- EM can get stuck in a mediocre local maximum.
- This happens in practice. Initialization matters.
- On the other hand, the global maximum is not attractive either.

Computing the log likelihood

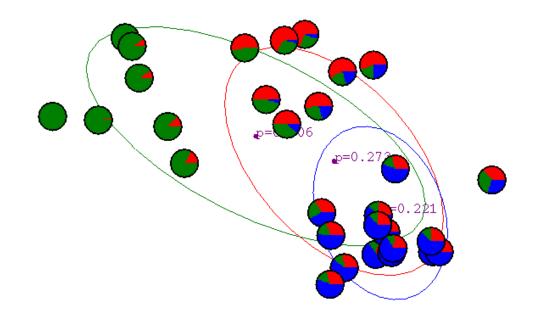
- Computing the log likelihood is useful to monitor the progress of EM.
- The best moment is after the E-step and before the M-step.
- Since $\mathcal{D} = 0$ it is sufficient to compute $\mathcal{L} \mathcal{M}$.

Start.

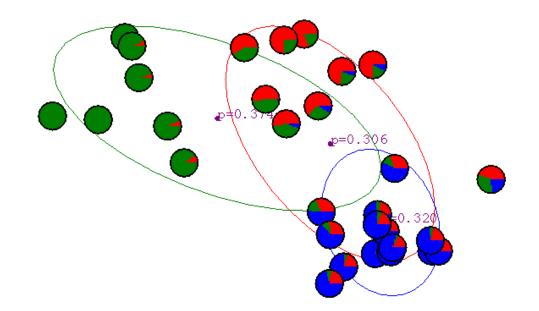


(Illustration from Andrew Moore's tutorial on GMM.)

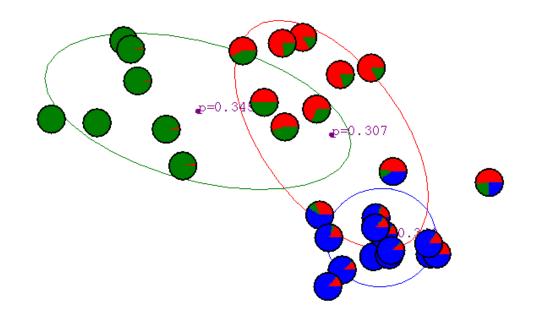
After iteration #1.



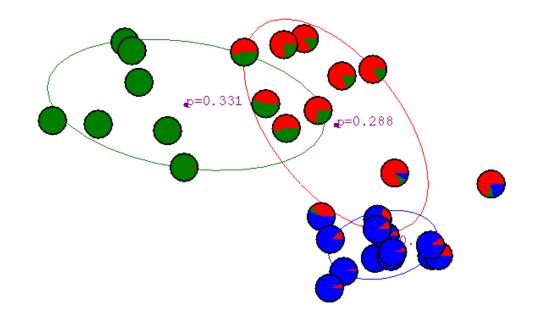
After iteration #2.



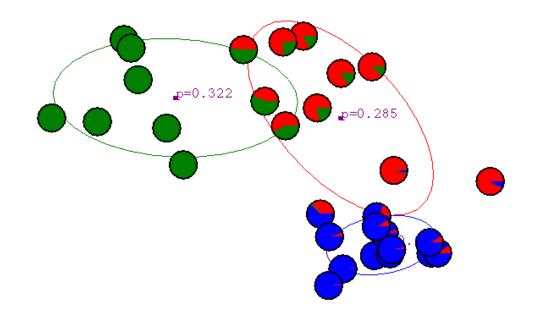
After iteration #3.



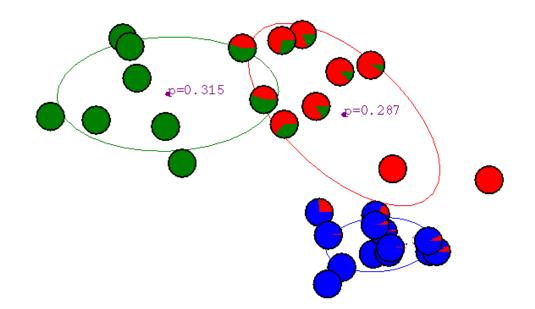
After iteration #4.



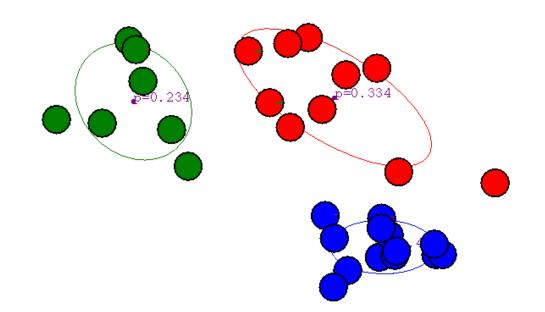
After iteration #5.



After iteration #6.

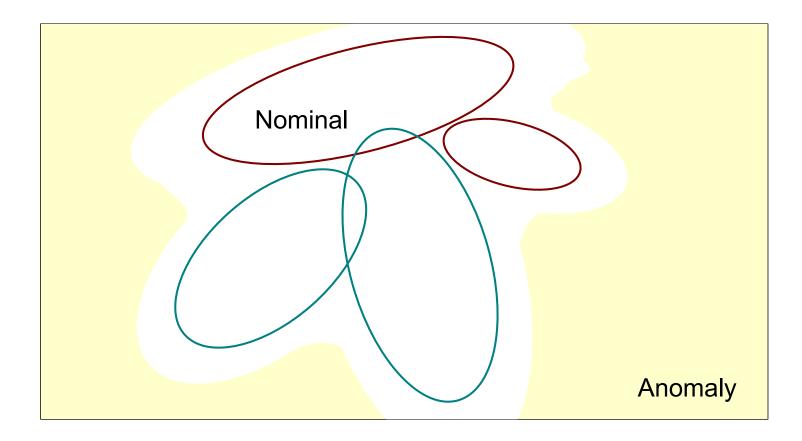


After iteration #2C



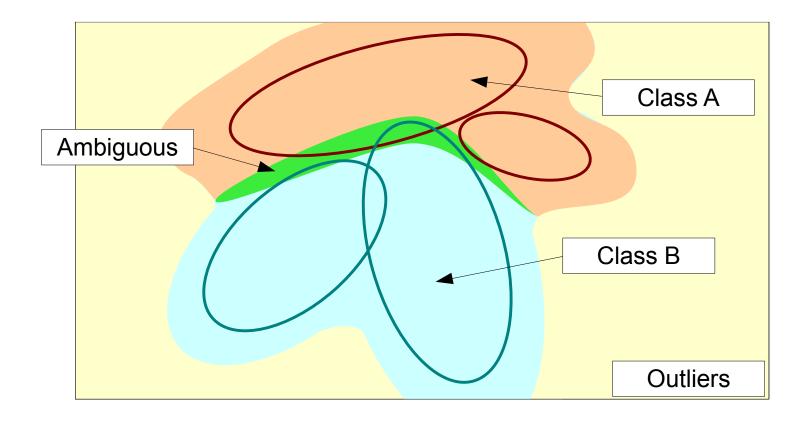
GMM for anomaly detection

- 1. Model $\mathbb{P}\{X\}$ with a GMM.
- 2. Declare anomaly when density fails below a threshold.



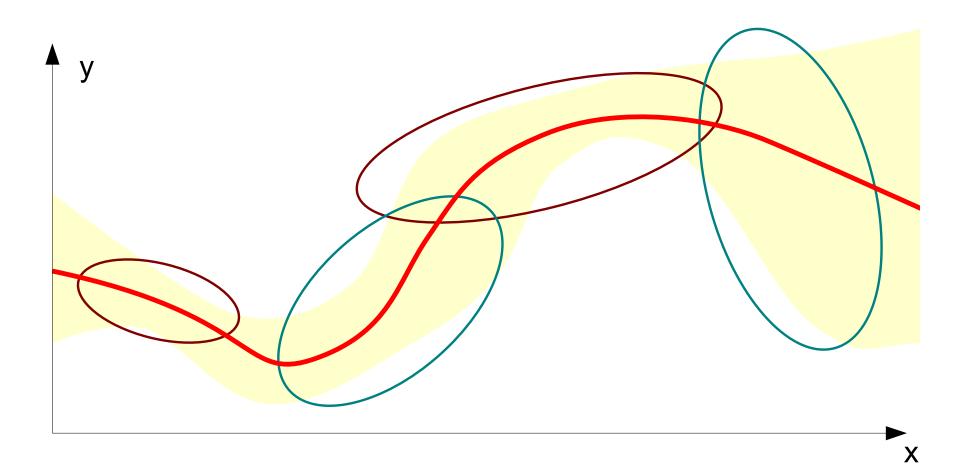
GMM for classification

- 1. Model $\mathbb{P} \{ X \mid Y = y \}$ for every class with a GMM.
- 2. Calulate Bayes optimal decision boundary.
- 3. Possibility to detect outliers and ambiguous patterns.



GMM for regression

- 1. Model $\mathbb{P}\{X,Y\}$ with a GMM.
- 2. Compute $f(x) = \mathbb{E}[Y \mid X = x]$.



The price of probabilistic models

Estimating densities is nearly impossible!

- A GMM with many components is very flexible model.
- Nearly as demanding as a general model.

Can you trust the GMM distributions?

- Maybe in very low dimension...
- Maybe when the data is abundant...

Can you trust decisions based on the GMM distribution?

- They are often more reliable than the GMM distributions themselves.
- Use cross-validation to check!

Alternatives?

- Directly learn the decision function!
- Use cross-validation to check!.

We can make mixtures of anything.

Bernoulli mixture

Example: Represent a text document by D binary variables indicating the presence or absence of word $t = 1 \dots D$.

- Base model: model each word independently with a Bernoulli.
- Mixture model: see next slide.

Non homogeneous mixtures

It is sometimes useful to mix different kinds of distributions.

Example: model how long a patient survives after a treatment.

- One component with thin tails for the common case.
- One component with thick tails for patients cured by the treatment.

Bernoulli mixture

Consider *D* binary variables $\mathbf{x} = (x_1, \dots, x_D)$. Each x_i independently follows a Bernoulli distribution $B(\mu_i)$.

$$P_{\mu}(\mathbf{x}) = \prod_{i=1}^{D} \mu_i^{x_i} (1 - \mu_i)^{1 - x_i}$$

Mean μ Covariance diag $[\mu_i(1-\mu_i)]$

Now let's consider a mixture of such distributions.

The parameters are $\theta = (\lambda_1, \mu_1, \dots, \lambda_k, \mu_k)$ with $\sum_k \lambda_k = 1$.

 $P_{\theta}(\mathbf{x}) = \sum_{k=1}^{K} \lambda_k P_{\mu_k}(\mathbf{x}_i)$ Mean $\sum_k \lambda_k \mu_k$ Covariance no longer diagonal!

Since the covariance matrix is no longer diagonal, the mixture models dependencies between the x_i .

EM for Bernoulli mixture

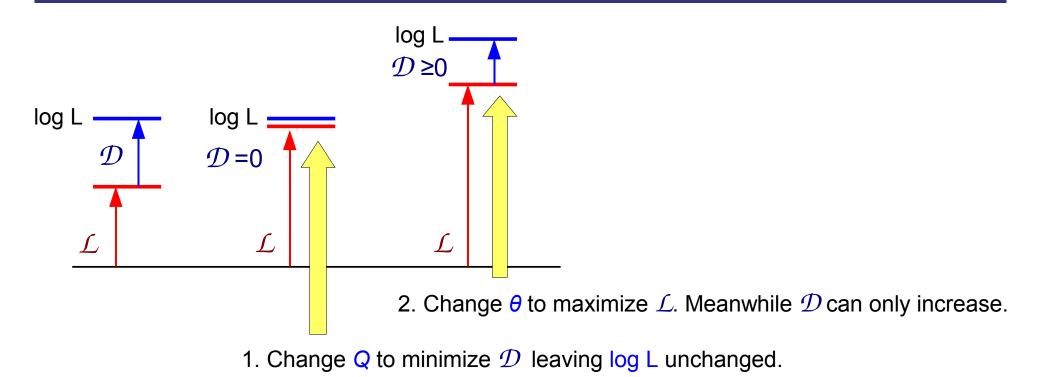
We are given a dataset $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_n$. The log likelihood is $\log L(\theta) = \sum_{i=1}^n \log \sum_{i=1}^k \lambda_k P_{\mu_k}(\mathbf{x}_i)$

Let's derive an EM algorithm.

Variable $Y = y_1, \ldots, y_n$ says which component generates X. Maximizing the likelihood would be easy if we were observing the Y. So let's just guess Y with distribution $Q(Y = y | X = x_i) \propto q_{iy}$.

Decomposition: $\log L(\theta) = \mathcal{L}(Q, \theta) + \mathcal{D}(Q, \theta)$, with the usual definitions (slide 8.)

EM for a Bernoulli mixture



E-Step: $q_{ik} \leftarrow \lambda_k P_{\mu_k}(\mathbf{x}_i)$ remark: normalization!.

M-Step: $\boldsymbol{\mu}_k \leftarrow \frac{\sum_i q_{ik} \mathbf{x}_i}{\sum_i q_{ik}} \quad \lambda_k \leftarrow \frac{\sum_i q_{ik}}{\sum_{iy} q_{iy}}$

"Fitting my probabilistic model would be so easy without missing values."

mpg	cyl	disp	hp	weight	accel	year	name
15.0	8	350.0	165.0	3693	11.5	70	buick skylark 320
18.0	8	318.0	150.0	3436	11.0	70	plymouth satellite
15.0	8	429.0	198.0	4341	10.0	70	ford galaxie 500
14.0	8	454.0	n/a	4354	9.0	70	chevrolet impala
15.0	8	390.0	190.0	3850	8.5	70	amc ambassador dpl
n/a	8	340.0	n/a	n/a	8.0	70	plymouth cuda 340
18.0	4	121.0	112.0	2933	14.5	72	volvo 145e
22.0	4	121.0	76.00	2511	18.0	n/a	volkswagen 411
21.0	4	120.0	87.00	2979	19.5	72	peugeot 504
26.0	n/a	96.0	69.00	2189	18.0	72	renault 12
22.0	4	122.0	86.00	n/a	16.0	72	ford pinto
28.0	4	97.0	92.00	2288	17.0	72	datsun 510
n/a	8	440.0	215.0	4735	n/a	73	chrysler new yorker

"Fitting my probabilistic model would be so easy without missing values."

This magic sentence suggests EM

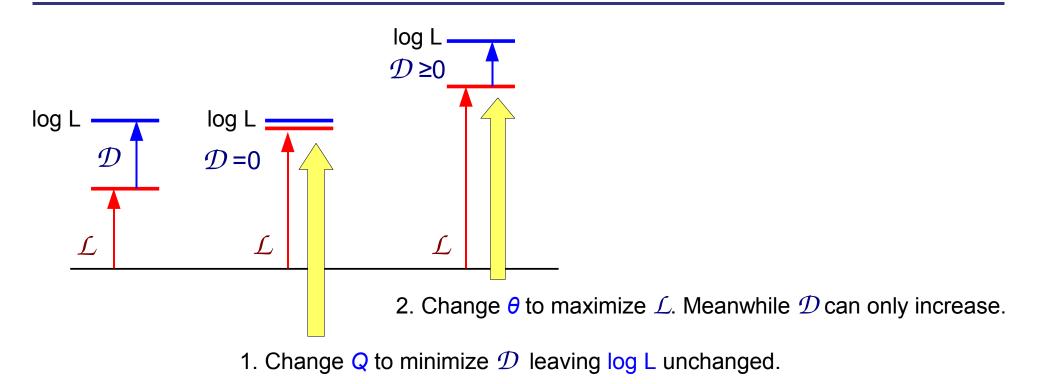
- Let $X = x_1, x_2, \ldots, x_n$ be the observed values on each row.
- Let $Y = y_1, y_2, \ldots, y_n$ be the missing values on each row.

Decomposition

- Guess a distribution $Q_{\lambda}(Y|X)$.
- Regardless of our guess, $\log L(\theta) = \mathcal{L}(\lambda, \theta) + \mathcal{D}(\lambda, \theta)$

$$\begin{split} \mathcal{L}(\lambda,\theta) &= \sum_{i=1}^{n} \sum_{y} Q_{\lambda}(y|x_{i}) \log \frac{P_{\theta}(x_{i},y)}{Q_{\lambda}(y|x_{i})} & \text{Easy to maximize} \\ \mathcal{D}(\lambda,\theta) &= \sum_{i=1}^{n} \sum_{y} Q_{\lambda}(y|x_{i}) \log \frac{Q_{\lambda}(y|x_{i})}{P_{\theta}(y|x_{i})} & \text{KL divergence } D(Q_{Y|X} \| P_{Y|X}) \end{split}$$

EM for missing values



- **E-Step:** Depends on the parametric expression of $Q_{\lambda}(Y|X)$.
- **M-Step:** Depends on the parametric expression of $P_{\theta}(X, Y)$.

This works when the missing value patterns are sufficiently random!

Conclusion

Expectation Maximization

- EM is a very useful algorithm for probabilistic models.
- EM is an alternative to sophisticated optimization
- EM is simpler to implement.

Probabilistic Models

- More versatile than direct approaches.
- More demanding than direct approaches (assumptions, data, etc.)

