Naive Bayes









Density Estimation Problem

.+ Ply|x) = P(y|x!x°,...x9) joint (d+1)-dim distribution
.. actually we cannot estimate this joint

. if each feature has 10 buckets, and we have
100 features (very reasonable assumptions)

. then the joint distribution has 10!% cells -
Impossible



how to get around estimating the joint P(x'!,x?,...,x9y) ?

- SOLUTION : assume feature independence

- then PG xe,...xAly) = P y)* PG| y)*...P(xd]y)
- estimate each feature density, usually easy

- the Independence assumption rare

y holds perfectly,

but the model kind-of-works if it approx. holds

. it is called NAIVE BAYES
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- P(x1x2,...xd|y) = P(x1|yV*P(x2|y)*...P(xd|y)

- d+1 joint distribution problem =»> d problems of
simple conditional distributions

- each P(xj|y) estimated separately, independent
of the other features

- assumes features are independent

- assumption doesn't really hold, but Naive Bayes
still works in many cases



how to estimate the simple distributions

- want to estimate P(¥|y) = density of feature |
values for class y

- usually easy, since ¥ is unidimensional

- OPTION1-MODEL: apply an imposed model,
calculate Max-Likelihood parameters for the
model
- gaussian (normal), bernoulli, binomial, exponential etc

- mixture of distributions

- for many models, there are closed form equation
stat give the max-likellihood params
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- want to estimate P(X|y) = density of feature |
values for class y
- usually easy, since ¥ is unidimensional

- OPTION1-MODEL: apply an imposed model,
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how to estimate the simple distributions

- want to estimate P(¥|y) = density of feature |
values for class y

- usually easy, since ¥ is unidimensional

- OPTIONZ2-HISTOGRAM: bucket/cluster/bin and
count feature value in each bucket/bin

datapoint count
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feature values




Naive Bayes problem 1. constant feature

- if ¥ is constant, some estimates could be unusable

- example: the variance of the gaussian fit is 0, and the
probability of a single value is 1

- solution: CONTROL THE PARAMETERS (like
variance) to not allow values close to zero

- If 2<g then 2=¢

= solution : SMOOTHING

- generally a good idea for all probability estimates

= solution: FEATURE SELECTION

- discussed later in the course



Naive Bayes Problem 2: “zero probability”
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- in the case of histograms (bins), estimate of zero

ble

NS, and not so many data

- especially true for text documents, when features
are word occurrences

- there are many words, and most of them do not
appear in most documents

- probability estimate by count often gives O probability

- solution : SMOOTHING the estimate



Smoothing: Laplace

- N possibilities / cases

- 11, o, 13, ..., tn observed counts for each case
-M=1t+1t+ t3+ ..+ tn number of observations
- direct estimate P() =t / M

- Laplace estimate P() = (t + 1) / (M+N)

- note that Laplace P(i) still sum to 1



Smoothing: Foreground and Background

- N possibilities / cases

- t1, t2, t3, ... , tN observed counts for each case
-M=11 + t2 + t3 + ... + tN number of observations
- direct (foreground) estimate P() = ti / M

- Background estimate in a larger setting
- each experiment | has Nj, M, tij etc
- QM = (& tij ) / & Mj ) background probability

- note that Laplace P() still sum to 1

- smoothed estimate Prob() = AP(G) + (1-N)Q()

- note that smoothed estimates still sum to 1



Naive Bayes overview

- Training

- Pix]y) = P(xtxe,...xdly) = P(x!
- estimate separately each P(¥

- store the model

- Testing

- for datapoint x app

P(x|y) = P(x!x2,...x3]y) = P(x|y)*

- Uuse

- pred

Bayes Rule P(y|x) = Px|y)*

ct y that maximizes P(x|y)*

y)*P(x? | y)*...P(xd]y)
y) from training

y the estimates to compute

P(x? | y)*...PKxd]y)

P(y) / P(x)
P(y)












