Gaussian Discriminant Analysis

material thanks to Andrew Ng @Stanford

Course Map / module3

module 3: generative methods

Gaussian Discriminant Analysis

- $P(y|x) = P(y|x^1,x^2,...,x^d)$ joint (d+1)-dim distribution
- ... actually we cannot estimate this joint
- if each feature has 10 buckets, and we have 100 features (very reasonable assumptions)
- then the joint distribution has 10¹⁰⁰ cells impossible

how to get around estimating the joint $P(x^1,x^2,...,x^d|y)$?

- SOLUTION: model/restrict the joint, instead of estimating any possible such joint distribution
 - fore example with a well known parametrized form
 - such as multi-dim gaussian distribution
 - estimate the parameters of the imposed model
- called Gaussian Discriminant Analysis (when the model imposed is gaussian)
 - easy to implement due to math tools facilitating gaussian parameters estimation (mean, covariance)
 - multidim implies "covariance" matrix instead of simple variance
 - doesnt fit data in many cases

Gaussian Fit

- Idea: fit a parametrized distribution to histogram (density or counts)
- The gaussian (normal) density is controlled by mean and variance

$$P(x|\mu,\sigma^2) = normal(x,\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- the best fit is the one that maximizes likelihood of the data

$$\log L = \log \prod_{i=1}^{m} P(x|\mu, \sigma^2) = \sum_{i=1}^{m} \log P(x|\mu, \sigma^2)$$

- Multi-variate normal $\theta = (\mu, \Sigma)$ distribution

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

plotted Σ=identity (or independent variables)

$$\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

 Multi-variate normal distribution

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

- plotted Σ=variance only or independent variables

• Multi-variate normal distribution

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

- plotted $\Sigma \neq$ identity
- dependent variables

$$\Sigma = \left[\begin{array}{cc} 1 & 0.8\\ 0.8 & 1 \end{array} \right]$$

 Multi-variate normal distribution

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

- Σ≠identity=>dependent variables

GDA Setup

- multi normal density estimation for each y (common $\boldsymbol{\Sigma}$)

$$p(x|y=0) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_0)^T \Sigma^{-1}(x-\mu_0)\right)$$
$$p(x|y=1) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_1)^T \Sigma^{-1}(x-\mu_1)\right)$$

log likelihood

$$\ell(\phi, \mu_0, \mu_1, \Sigma) = \log \prod_{i=1}^m p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$$

=
$$\log \prod_{i=1}^m p(x^{(i)} | y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi)$$

m

GDA parameter solution

- max likelihood for GDA has close form solution!
- can be derived using differentials
 - estimate mean for each class
 - estimate covariance for entire training set
 - or separately for each class
 - no need for Gradient Descent or other optimizers

$$\phi = \frac{1}{m} \sum_{i=1}^{m} 1\{y^{(i)} = 1\}$$

$$\mu_0 = \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}x^{(i)}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}}$$

$$\mu_1 = \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}x^{(i)}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_{y^{(i)}})(x^{(i)} - \mu_{y^{(i)}})^T$$

GDA visual classification

- if common Σ, the two gaussians are identical except for the mean
- the separation is

 a line of
 equidistant points
 to the two means

