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Density Estimation Problem

• P(y|x) = P(y|x1,x2,…,xd) joint (d+1)-dim distribution 
• … actually we cannot estimate this joint  
• if each feature has 10 buckets, and we have 

100 features (very reasonable assumptions) 
• then the joint distribution has 10100 cells - 

impossible



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• SOLUTION: model/restrict the joint, instead of 
estimating any possible such joint distribution 
- fore example with a well known parametrized form 
- such as multi-dim gaussian distribution 
- estimate the parameters of the imposed model 

• called Gaussian Discriminant Analysis (when 
the model imposed is gaussian) 
- easy to implement due to math tools facilitating 

gaussian parameters estimation (mean, covariance) 
- multidim implies “covariance” matrix instead of 

simple variance 
- doesnt fit data in many cases 



Gaussian Fit

- Idea: fit a parametrized 
distribution to histogram 
(density or counts) 
!

- The gaussian (normal) density 
is controlled by mean and 
variance  
!
!
!

- the best fit is the one that 
maximizes likelihood of the 
data
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Lets impose a nice  probabilistic model

• Multi-variate normal 
distribution  
!

!

!

- plotted Σ=identity (or 
independent variables) 

!

!

!

!

!
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Lets impose a nice  probabilistic model

• Multi-variate normal 
distribution 
!

!

- plotted Σ=variance only 
or independent variables 

!

!

!

!
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Lets impose a nice  probabilistic model

• Multi-variate normal 
distribution 
!

!

!

- plotted Σ≠identity  
- dependent variables 
!

!

!

!

!



Lets impose a nice  probabilistic model

• Multi-variate normal 
distribution 
!

!

-  Σ≠identity=>dependent 
variables 

!

!

!

!

!



GDA Setup

• multi normal density estimation for each y 
(common Σ) 
!

!

!

!

• log likelihood



GDA parameter solution

• max likelihood for GDA has close form solution! 
• can be derived using differentials 
- estimate mean for each class 
- estimate covariance for entire training set 
- or separately for each class 

- no need for Gradient Descent or other optimizers



GDA visual classification

• if common Σ, the 
two gaussians are 
identical except 
for the mean 
!

• the separation is 
a line of 
equidistant points 
to the two means


