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1 Introduction

The problem we are trying to address in this note is simple. Given a set of data points
X = {xi}N

1 , we wish to determine the underlying probability distribution p(x), that generates
this data. In general, the distribution p(x) could be any real-valued, scalar function with the
following constraints:

p(x) ≥ 0, ∀x and
∫ ∞

−∞
p(x)dx = 1

The framework of mixture modeling using Gaussians makes the following assumptions:

• The data was generated using a set of M probability distributions.

• Each of the individual probability distributions is a Gaussian:

x; θm ∼ N (x; µm,Σm) ∗

i.e., the probability of generating a data point x under the mth model is given according
to a Gaussian distribution with mean µm and covariance Σm.

• Each data point is generated according to the following algorithm:

1: for i = 1 to N do
2: m← index of one of the M models randomly selected

according to the prior probability vector π
3: Randomly generate xi according to the distribution N (xi; µm,Σm)
4: end for

Representing probabilistic systems as graphical models is rapidly becoming a useful tool in
Bayesian analysis. The graphical model corresponding to our formulation of the data generation
process is shown in fig. 1. We adopt the convention that circular nodes correspond to random
variables in the model, while rectangular nodes correspond to variables that parameterize the
distributions of these random variables. Circular nodes with double borders indicate observed
variables in our model (the data).

∗We use the notation N (x; µ,Σ) to denote the multivariate Gaussian distribution which is mathematically
defined as:

N (x; µ,Σ) = (2π)−d/2 |Σ|−1/2 exp

ȷ
−

1

2
(x − µ)T Σ−1(x − µ)

ff

where d is the dimensionality of x.
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Figure 1: Graphical model for maximum likelihood density estimation using a mixture of
Gaussians

In this model we have introduced an additional variable zi associated with each xi. The zi

variables are indicator variables that are multinomially distributed according to the parameter
vector π, and indicate which component generates the corresponding xi. It is easiest to think
of each zi as an M dimensional vector with a 1 in the element corresponding to the selected
mixture component, and 0’s in all other elements. The probability of the mth element being
1, is πm.

zi =
[
0 0 · · · 0 1 0 · · · 0 0

]T
︸ ︷︷ ︸

M elements

Since we do not know the corresponding zi for each xi (if we did, then we simply group the xi

according to their zi, and fit a single Gaussian to each group), these variables are called hidden
variables.

Our problem is now reduced to finding the values of the model parameters µm and Σm for
each of the M models, as well as the prior probability vector π, which when plugged into the
generative model, is most likely to generate the observed data distribution. In other words
we are interested in maximizing the likelihood L(θ) = p(X; θ) of generating the observed data
given the model parameters θ = {µm,Σm, πm}M

1 . This approach is called the Maximum
Likelihood (ML) framework since it finds the parameter settings that maximize the likelihood
of observing the data.

Although the ML approach is an intuitively appealing solution, we often find that maximizing
the expressions for likelihood w.r.t. the parameters θ are often analytically intractable. The
Expectation Maximization (EM) algorithm can be used to simplify the math considerably.

2 Estimating the Model Parameters using EM

Instead of attempting to maximize the likelihood of the observed data p(X; θ), we attempt in-
stead to maximize the likelihood of the joint distribution of X and Z = {zi}N

1 , p(X,Z; θ).
For the purposes of maximization we can also work with the logarithm of this quantity,
log p(X,Z; θ). This quantity is also known as the complete log-likelihood. Since we can-
not observe the values of the random variables zi we must work with the expectation of this
quantity w.r.t. some distribution Q(Z).
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The log of the complete data likelihood can be written as follows:

lc(θ) = log p(X,Z; θ)

= log
N∏

i

p(xi, zi; θ)

= log
N∏

i

M∏

m

[p(xi|zim = 1; θ)p(zim = 1)]zim

=
N∑

i=1

M∑

m

zim log p(xi|zim = 1; θ) + zim log πm

Since we have assumed that each of the individual models is a Gaussian, the quantity p(xi|m, θ)
is simply the conditional probability of generating xi given that the mth model is chosen:

log p(xi|zim = 1; θ) =
1

(2π)d/2 |Σm|1/2
exp

{
−1

2
(xi − µm)T Σ−1

m (xi − µm)
}

(1)

Taking expectations w.r.t. Q(Z) we get:

⟨lc(θ)⟩Q(Z) =
N∑

i=1

M∑

m

⟨zim⟩ log p(xi|zim = 1; θ) + ⟨zim⟩ log πm (2)

2.1 The M step

The “M” step in EM takes the expected complete log-likelihood as defined in eq. (2) and
maximizes it w.r.t. the parameters that are to be estimated; in this case πm, µm, and Σm.

Differentiating eq. (2) w.r.t. µm we get:

∂ ⟨lc(θ)⟩Q(Z)

∂µm

=
N∑

i=1

⟨zim⟩
∂

∂µm

log p(xi|zim = 1; θ) = 0 (3)

We can compute ∂
∂µm

log p(xi|zim = 1; θ) using eq. (1) as follows:

∂

∂µm

log p(xi|zim = 1; θ) =
∂

∂µm

log

{
1

(2π)d/2 |Σm|1/2
exp

{
−1

2
(xi − µm)T Σ−1

m (xi − µm)
}}

= −1
2

∂

∂µm

(xi − µm)T Σ−1
m (xi − µm)

= (xi − µm)T Σ−1
m

†

Substituting this result into eq. (3), we get:

N∑

i=1

⟨zim⟩ (xi − µm)T Σ−1
m = 0

†Where we have used the relation ∂
∂xxT Ax = xT (A + AT )
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giving us the update equation:

µm =
∑N

i=1 ⟨zim⟩xi∑N
i=1 ⟨zim⟩

(4)

Differentiating eq. (2) w.r.t. Σ−1
m we get:

∂ ⟨lc(θ)⟩Q(Z)

∂Σ−1
m

=
N∑

i=1

⟨zim⟩
∂

∂Σ−1
m

log p(xi|zim = 1; θ) = 0 (5)

We can compute ∂
∂Σ−1

m
log p(xi|zim = 1; θ) using eq. (1) as follows:

∂

∂Σ−1
m

log p(xi|zim = 1; θ) =
∂

∂Σ−1
m

log

{
1

(2π)d/2 |Σm|1/2
exp

{
−1

2
(xi − µm)T Σ−1

m (xi − µm)
}}

=
∂

∂Σ−1
m

{
1
2

log
∣∣Σ−1

m

∣∣− 1
2

(xi − µm)T Σ−1
m (xi − µm)

}

=
1
2
Σm −

1
2

(xi − µm) (xi − µm)T ‡

Substituting this result into eq. (5), we get:

N∑

i=1

⟨zim⟩
(

1
2
Σm −

1
2

(xi − µm) (xi − µm)T
)

= 0

giving us the update equation:

Σm =
∑N

i=1 ⟨zim⟩ (xi − µm) (xi − µm)T

∑N
i=1 ⟨zim⟩

(6)

In order to maximize the expected log-likelihood in eq. (2) w.r.t. πm, we have to keep in mind
that the maximization has the constraint that

∑M
m πm = 1. In order to enforce this constraint

we use the Lagrange multiplier λ, and augment eq. (2) as follows:

L′ (θ) = ⟨lc(θ)⟩Q(Z) − λ

(
M∑

m

πm − 1

)
(7)

We now differentiate this new expression w.r.t. each πm giving us:

∂

∂πm
⟨lc(θ)⟩Q(Z) − λ = 0 for 1 ≤ m ≤M

Using eq. (2) we get:

1
πm

N∑

i=1

⟨zim⟩ − λ = 0

or equivalently
N∑

i=1

⟨zim⟩ − λπm = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for 1 ≤ m ≤M (8)

‡Where we have used the relation ∂
∂X log |X| =

`
X−1

´T
and ∂

∂AxT Ax = xxT

4



Summing eq. (8) over all M models we get:

M∑

m

N∑

i=1

⟨zim⟩ − λ
M∑

m

πm = 0

But since
∑M

m πm = 1 we get:

λ =
M∑

m

N∑

i=1

⟨zim⟩ = N (9)

Substituting this result back into eq. (8) we get the following update equation:

πm =
∑N

i=1 ⟨zim⟩
N

(10)

which preserves the constraint that
∑M

m πm = 1.

2.2 The E step

Now that we have derived the update equations that maximize the expected complete log-
likelihood ⟨log p(X,Z; θ)⟩, we wish to ensure that we are indeed also maximizing the incomplete
log-likelihood p(X; θ) (which is the quantity that we are truly interested in maximizing).

As we mentioned earlier in section 2, we are guaranteed to maximize the incomplete log-
likelihood only when the expectation is taken w.r.t. the posterior distribution of Z, namely
p(Z|X; θ). Hence each of the expectations ⟨zim⟩ that appear in the update equations derived
in the previous section (section 2.1), should be computed as follows:

⟨zim⟩p(Z|X;θ) = 1 · p(zim = 1|xi; θ) + 0 · p(zim = 0|xi; θ)

= p(zim = 1|xi; θ)

=
p(xi|zim = 1; θ)p(zim = 1)

∑M
k=1 p(xi|zik = 1; θ)p(zik = 1)

=
p(xi|zim = 1; θ)πm∑M
k=1 p(xi|zik = 1; θ)πk

3 Summary

To summarize, given a set of data points X, if we wish to estimate the underlying probability
distribution using EM to fit M Gaussians, we apply Algorithm 1, iterating until convergence
of the model parameters.

4 Why does this work? (A brief review of EM theory)

Knowing that log p(X; θ) is difficult to maximize analytically, we (seemingly arbitrarily) chose
to maximize the expected complete log-likelihood ⟨log p(X,Z; θ)⟩Q(Z) in the hope that this also
increases the incomplete log-likelihood log p(X; θ) (the quantity we are really interested in).
This section will justify this choice and prove that we are indeed maximizing log p(X; θ)

5



Initialize: all ⟨zim⟩, πm, µm, and Σm

1: repeat
2: for i = 1 to N do //The E step
3: for m = 1 to M do
4:

p(xi|zim = 1; θ) = (2π)−d/2 |Σm|−1/2 exp
{
−1

2
(xi − µm)T Σ−1

m (xi − µm)
}

⟨zim⟩ =
p(xi|zim = 1; θ)πm∑M
j p(xi|zij = 1; θ)πj

5: end for
6: end for
7: for m = 1 to M do //The M step
8:

Σm =
∑N

i=1 ⟨zim⟩ (xi − µm) (xi − µm)T

∑N
i=1 ⟨zim⟩

µm =
∑N

i=1 ⟨zim⟩xi∑N
i=1 ⟨zim⟩

πm =
∑N

i=1 ⟨zim⟩
N

9: end for
10: until model parameters converge

Algorithm 1: Estimate πm, µm,Σm for 1 ≤ m ≤M

Let us rewrite log p(X|θ) as follows:

log p(X; θ) = log
∫

p(X,Z; θ)dZ

= log
∫

Q(Z)
p(X,Z; θ)

Q(Z)
dZ (11)

≥
∫

Q(Z) log
p(X,Z; θ)

Q(Z)
dZ (Jensen’s inequality) (12)

=
∫

Q(Z) log p(X,Z; θ)dZ−
∫

Q(Z) log Q(Z)dZ (13)

Hence we have the following lower-bound to log p(X; θ):

log p(X; θ) ≥ ⟨log p(X,Z; θ)⟩Q(Z)︸ ︷︷ ︸
exp. comp. log-lik.

+ H [Q(Z)]︸ ︷︷ ︸
entropy of Q(Z)

= F(Q, θ) (14)

Since Q(Z) is an arbitrary distribution, it is independent of θ. Hence in order to maximize
the functional F(Q, θ) w.r.t. θ, it suffices to simply maximize ⟨log p(X,Z; θ)⟩Q(Z). (Hence the
M-step).

Does this maximization achieve our aim? Eq. (14) shows that the functional F(Q, θ) is a
lower bound to the quantity we are interested in. In which case, maximizing F(Q, θ) does not
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guarantee that we are improving log p(X; θ) at all! If however, we set Q(Z) = p(Z|X; θ) in
Eq. (12), then we see that the lower bound in fact becomes an equality.

∫
Q(Z) log

p(X,Z; θ)
Q(Z)

dZ =
∫

p(Z|X; θ) log
p(X,Z; θ)
p(Z|X; θ)

dZ

=
∫

p(Z|X; θ) log
p(Z|X; θ)p(X; θ)

p(Z|X; θ)
dZ

=
∫

p(Z|X; θ) log p(X; θ)dZ

= log p(X; θ)
∫

p(Z|X; θ)dZ

= log p(X; θ)

This means that when computing the expected complete log-likelihood ⟨log p(X,Z; θ)⟩Q(Z),
the expectation should be taken w.r.t. the true posterior p(Z|X; θ) of the hidden variables
(the E step).

5 Examples

Figures 2, 3 and 4 show the result of fitting 2, 3, and 4 Gaussians respectively to a set of
data points. In each figure the first plot shows the positions of the means and the relative
covariances of each Gaussian, while the second shows the resulting estimated distribution
obtained by marginalizing over the models as follows:

p(x; θ) =
M∑

m

p(x|zm = 1; θ)p(zm = 1)

Figure 5 demonstrates that one can model rather arbitrary non-gaussian distributions provided
we have a sufficient number of mixture components. The tradeoff here is that too few compo-
nents will fail to model the structure of the data, while too many will “overfit” the data. The
model selection problem in this context is determining an appropriate compromise.
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Figure 2: Fitting with 2 Gaussians
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Figure 3: Fitting with 3 Gaussians
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Figure 4: Fitting with 4 Gaussians
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Figure 5: A sufficient number of mixture components can model arbitrary distributions
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