
The Naive Bayes Model, Maximum-Likelihood
Estimation, and the EM Algorithm

Michael Collins

1 Introduction

This note covers the following topics:

• The Naive Bayes model for classification (with text classification as a spe-
cific example).

• The derivation of maximum-likelihood (ML) estimates for the Naive Bayes
model, in the simple case where the underlying labels are observed in the
training data.

• The EM algorithm for parameter estimation in Naive Bayes models, in the
case where labels are missing from the training examples.

• The EM algorithm in general form, including a derivation of some of its
convergence properties.

We will use the Naive Bayes model throughout this note, as a simple model
where we can derive the EM algorithm. Later in the class we will consider EM
for parameter estimation of more complex models, for example hidden Markov
models and probabilistic context-free grammars.

2 The Naive Bayes Model for Classification

This section describes a model for binary classification, Naive Bayes. Naive Bayes
is a simple but important probabilistic model. It will be used as a running example
in this note. In particular, we will first consider maximum-likelihood estimation in
the case where the data is “fully observed”; we will then consider the expectation
maximization (EM) algorithm for the case where the data is “partially observed”,
in the sense that the labels for examples are missing.

1

The setting is as follows. Assume we have some training set (x(i), y(i)) for
i = 1 . . . n, where each x(i) is a vector, and each y(i) is in {1, 2, . . . , k}. Here k
is an integer specifying the number of classes in the problem. This is a multiclass
classification problem, where the task is to map each input vector x to a label y
that can take any one of k possible values. (For the special case of k = 2 we have
a binary classification problem.)

We will assume throughout that each vector x is in the set {−1,+1}d for some
integer d specifying the number of “features” in the model. In other words, each
component xj for j = 1 . . . d can take one of two possible values.

As one example motivating this setting, consider the problem of classifying
documents into k different categories (for example y = 1 might correspond to
a sports category, y = 2 might correspond to a music category, y = 3 might
correspond to a current affairs category, and so on). The label y(i) represents the
category of the i’th document in the collection. Each component x(i)

j for j = 1 . . . d
might represent the presence or absence of a particular word. For example we
might define x(i)

1 to be +1 if the i’th document contains the word Giants, or −1

otherwise; x(i)
2 to be +1 if the i’th document contains the word Obama, or −1

otherwise; and so on.
The Naive Bayes model is then derived as follows. We assume random vari-

ables Y and X1 . . . Xd corresponding to the label y and the vector components
x1, x2, . . . , xd. Our task will be to model the joint probability

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

for any label y paired with attribute values x1 . . . xd. A key idea in the NB model
is the following assumption:

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

= P (Y = y)
d∏
j=1

P (Xj = xj |Y = y) (1)

This equality is derived using independence assumptions, as follows. First, by the
chain rule, the following identity is exact (any joint distribution over Y,X1 . . . Xd

can be factored in this way):

P (Y = y,X1 = x1, X2 = x2, . . . Xd = xd)

= P (Y = y)× P (X1 = x1, X2 = x2, . . . Xd = xd|Y = y)

Next, we deal with the second term as follows:

P (X1 = x1, X2 = x2, . . . Xd = xd|Y = y)

2

=
d∏
j=1

P (Xj = xj |X1 = x1, X2 = x2, . . . Xj−1 = xj−1, Y = y)

=
d∏
j=1

P (Xj = xj |Y = y)

The first equality is again exact, by the chain rule. The second equality follows by
an independence assumption, namely that for all j = 1 . . . d, the value for the ran-
dom variable Xj is independent of all other attribute values, Xj′ for j′ 6= j, when
conditioned on the identity of the label Y . This is the Naive Bayes assumption. It
is naive, in the sense that it is a relatively strong assumption. It is, however, a very
useful assumption, in that it dramatically reduces the number of parameters in the
model, while still leading to a model that can be quite effective in practice.

Following Eq. 1, the NB model has two types of parameters: q(y) for y ∈
{1 . . . k}, with

P (Y = y) = q(y)

and qj(x|y) for j ∈ {1 . . . d}, x ∈ {−1,+1}, y ∈ {1 . . . k}, with

P (Xj = x|Y = y) = qj(x|y)

We then have

p(y, x1 . . . xd) = q(y)
d∏
j=1

qj(xj |y)

To summarize, we give the following definition:

Definition 1 (Naive Bayes (NB) Model) A NB model consists of an integer k spec-
ifying the number of possible labels, an integer d specifying the number of at-
tributes, and in addition the following parameters:

• A parameter
q(y)

for any y ∈ {1 . . . k}. The parameter q(y) can be interpreted as the proba-
bility of seeing the label y. We have the constraints q(y) ≥ 0 and

∑k
y=1 q(y) =

1.

• A parameter
qj(x|y)

for any j ∈ {1 . . . d}, x ∈ {−1,+1}, y ∈ {1 . . . k}. The value for qj(x|y)
can be interpreted as the probability of attribute j taking value x, con-
ditioned on the underlying label being y. We have the constraints that
qj(x|y) ≥ 0, and for all y, j,

∑
x∈{−1,+1} qj(x|y) = 1.

3

We then define the probability for any y, x1 . . . xd as

p(y, x1 . . . xd) = q(y)
d∏
j=1

qj(xj |y)

The next section describes how the parameters can be estimated from training
examples. Once the parameters have been estimated, given a new test example
x = 〈x1, x2, . . . , xd〉, the output of the NB classifier is

arg max
y∈{1...k}

p(y, x1 . . . xd) = arg max
y∈{1...k}

q(y)
d∏
j=1

qj(xj |y)

3 Maximum-Likelihood estimates for the Naive Bayes Model

We now consider how the parameters q(y) and qj(x|y) can be estimated from data.
In particular, we will describe the maximum-likelihood estimates. We first state the
form of the estimates, and then go into some detail about how the estimates are
derived.

Our training sample consists of examples (x(i), y(i)) for i = 1 . . . n. Recall
that each x(i) is a d-dimensional vector. We write x(i)

j for the value of the j’th

component of x(i); x(i)
j can take values −1 or +1.

Given these definitions, the maximum-likelihood estimates for q(y) for y ∈
{1 . . . k} take the following form:

q(y) =

∑n
i=1[[y(i) = y]]

n
=

count(y)

n
(2)

Here we define [[y(i) = y]] to be 1 if y(i) = y, 0 otherwise. Hence
∑n
i=1[[y(i) =

y]] = count(y) is simply the number of times that the label y is seen in the training
set.

Similarly, the ML estimates for the qj(x|y) parameters (for all y ∈ {1 . . . k},
for all x ∈ {−1,+1}, for all j ∈ {1 . . . d}) take the following form:

qj(x|y) =

∑n
i=1[[y(i) = y and x(i)

j = x]]∑n
i=1[[y(i) = y]]

=
countj(x|y)

count(y)
(3)

where

countj(x|y) =
n∑
i=1

[[y(i) = y and x(i)
j = x]]

This is a very natural estimate: we simply count the number of times label y is
seen in conjunction with xj taking value x; count the number of times the label y
is seen in total; then take the ratio of these two terms.

4

4 Deriving the Maximum-Likelihood Estimates

4.1 Definition of the ML Estimation Problem

We now describe how the ML estimates in Eqs. 2 and 3 are derived. Given the
training set (x(i), y(i)) for i = 1 . . . n, the log-likelihood function is

L(θ) =
n∑
i=1

log p(x(i), y(i))

=
n∑
i=1

log

q(y(i))
d∏
j=1

qj(x
(i)
j |y

(i))

=

n∑
i=1

log q(y(i)) +
n∑
i=1

log

 d∏
j=1

qj(x
(i)
j |y

(i))

=

n∑
i=1

log q(y(i)) +
n∑
i=1

d∑
j=1

log qj(x
(i)
j |y

(i)) (4)

Here for convenience we use θ to refer to a parameter vector consisting of values
for all parameters q(y) and qj(x|y) in the model. The log-likelihood is a function
of the parameter values, and the training examples. The final two equalities follow
from the usual property that log(a× b) = log a+ log b.

As usual, the log-likelihood function L(θ) can be interpreted as a measure of
how well the parameter values fit the training example. In ML estimation we seek
the parameter values that maximize L(θ).

The maximum-likelihood problem is the following:

Definition 2 (ML Estimates for Naive Bayes Models) Assume a training set (x(i), y(i))
for i ∈ {1 . . . n}. The maximum-likelihood estimates are then the parameter val-
ues q(y) for y ∈ {1 . . . k}, qj(x|y) for j ∈ {1 . . . d}, y ∈ {1 . . . k}, x ∈ {−1,+1}
that maximize

L(θ) =
n∑
i=1

log q(y(i)) +
n∑
i=1

d∑
j=1

log qj(x
(i)
j |y

(i))

subject to the following constraints:

1. q(y) ≥ 0 for all y ∈ {1 . . . k}.
∑k
y=1 q(y) = 1.

2. For all y, j, x, qj(x|y) ≥ 0. For all y ∈ {1 . . . k}, for all j ∈ {1 . . . d},∑
x∈{−1,+1}

qj(x|y) = 1

5

A crucial result is then the following:

Theorem 1 The ML estimates for Naive Bayes models (see definition 2) take the
form

q(y) =

∑n
i=1[[y(i) = y]]

n
=

count(y)

n

and

qj(x|y) =

∑n
i=1[[y(i) = y and x(i)

j = x]]∑n
i=1[[y(i) = y]]

=
countj(x|y)

count(y)

I.e., they take the form given in Eqs. 2 and 3.

The remainder of this section proves the result in theorem 1. We first consider a
simple but crucial result, concerning ML estimation for multinomial distributions.
We then see how this result leads directly to a proof of theorem 1.

4.2 Maximum-likelihood Estimation for Multinomial Distributions

Consider the following setting. We have some finite set Y . A distribution over
the set Y is a vector q with components qy for each y ∈ Y , corresponding to the
probability of seeing element y. We define PY to be the set of all distributions over
the set Y: that is,

PY = {q ∈ R|Y| : ∀y ∈ Y, qy ≥ 0;
∑
y∈Y

qy = 1}

In addition, assume that we have some vector cwith components cy for each y ∈ Y .
We will assume that each cy ≥ 0. In many cases cy will correspond to some
“count” taken from data: specifically the number of times that we see element y.
We also assume that there is at least one y ∈ PY such that cy > 0 (i.e., such that
cy is strictly positive).

We then state the following optimization problem:

Definition 3 (ML estimation problem for multinomials) The input to the prob-
lem is a finite set Y , and a weight cy ≥ 0 for each y ∈ Y . The output from the
problem is the distribution q∗ that solves the following maximization problem:

q∗ = arg max
q∈PY

∑
y∈Y

cy log qy

6

Thus the optimal vector q∗ is a distribution (it is a member of the set PY), and
in addition it maximizes the function

∑
y∈Y cy log qy.

We give a theorem that gives a very simple (and intuitive) form for q∗:

Theorem 2 Consider the problem in definition 3. The vector q∗ has components

q∗y =
cy
N

for all y ∈ Y , where N =
∑
y∈Y cy.

Proof: To recap, our goal is to maximize the function∑
y∈Y

cy log qy

subject to the constraints qy ≥ 0 and
∑
y∈Y qy = 1. For simplicity we will assume

throughout that cy > 0 for all y.1

We will introduce a single Lagrange multiplier λ ∈ R corresponding to the
constraint that

∑
y∈Y qy = 1. The Lagrangian is then

g(λ, q) =
∑
y∈Y

cy log qy − λ

∑
y∈Y

qy − 1

By the usual theory of Lagrange multipliers, the solution q∗y to the maximization
problem must satisfy the conditions

d

dqy
g(λ, q) = 0

for all y, and ∑
y∈Y

qy = 1 (5)

Differentiating with respect to qy gives

d

dqy
g(λ, q) =

cy
qy
− λ

Setting this derivative to zero gives

qy =
cy
λ

(6)

1In a full proof it can be shown that for any y such that cy = 0, we must have qy = 0; we
can then consider the problem of maximizing

∑
y∈Y′ cy log qy subject to

∑
y∈Y′ qy = 1, where

Y ′ = {y ∈ Y : cy > 0}.

7

Combining Eqs. 6 and 5 gives

qy =
cy∑
y∈Y cy

The proof of theorem 1 follows directly from this result. See section A for a
full proof.

5 The EM Algorithm for Naive Bayes

Now consider the following setting. We have a training set consisting of vectors
x(i) for i = 1 . . . n. As before, each x(i) is a vector with components x(i)

j for
j ∈ {1 . . . d}, where each component can take either the value −1 or +1. In
other words, our training set does not have any labels. Can we still estimate the
parameters of the model?

As a concrete example, consider a very simple text classification problem where
the vector x representing a document has the following four components (i.e.,
d = 4):

x1 = +1 if the document contains the word Obama, −1 otherwise

x2 = +1 if the document contains the word McCain, −1 otherwise

x3 = +1 if the document contains the word Giants, −1 otherwise

x4 = +1 if the document contains the word Patriots, −1 otherwise

In addition, we assume that our training data consists of the following examples:

x(1) = 〈+1,+1,−1,−1〉
x(2) = 〈−1,−1,+1,+1〉
x(3) = 〈+1,+1,−1,−1〉
x(4) = 〈−1,−1,+1,+1〉
x(5) = 〈−1,−1,+1,+1〉

Intuitively, this data might arise because documents 1 and 3 are about politics (and
thus include words like Obama or McCain, which refer to politicians), and docu-
ments 2, 4 and 5 are about sports (and thus include words like Giants, or Patriots,
which refer to sports teams).

8

For this data, a good setting of the parameters of a NB model might be as
follows (we will soon formalize exactly what it means for the parameter values to
be a “good” fit to the data):

q(1) =
2

5
; q(2) =

3

5
; (7)

q1(+1|1) = 1; q2(+1|1) = 1; q3(+1|1) = 0; q4(+1|1) = 0; (8)

q1(+1|2) = 0; q2(+1|2) = 0; q3(+1|2) = 1; q4(+1|2) = 1 (9)

Thus there are two classes of documents. There is a probability of 2/5 of seeing
class 1, versus a probability of 3/5 of seeing class 2. Given class 1, we have the
vector x = 〈+1,+1,−1,−1〉 with probability 1; conversely, given class 2, we
have the vector x = 〈−1,−1,+1,+1〉 with probability 1.

Remark. Note that an equally good fit to the data would be the parameter values

q(2) =
2

5
; q(1) =

3

5
;

q1(+1|2) = 1; q2(+1|2) = 1; q3(+1|2) = 0; q4(+1|2) = 0;

q1(+1|1) = 0; q2(+1|1) = 0; q3(+1|1) = 1; q4(+1|1) = 1

Here we have just switched the meaning of classes 1 and 2, and permuted all of
the associated probabilities. Cases like this, where symmetries mean that multiple
models give the same fit to the data, are common in the EM setting.

5.1 The Maximum-Likelihood Problem for Naive Bayes with Missing
Labels

We now describe the parameter estimation method for Naive Bayes when the labels
y(i) for i ∈ {1 . . . n} are missing. The first key insight is that for any example x, the
probability of that example under a NB model can be calculated by marginalizing
out the labels:

p(x) =
k∑
y=1

p(x, y) =
k∑
y=1

q(y)
d∏
j=1

qj(xj |y)

Given this observation, we can define a log-likelihood function as follows. The
log-likelihood function is again a measure of how well the parameter values fit the

9

training examples. Given the training set (x(i)) for i = 1 . . . n, the log-likelihood
function (we again use θ to refer to the full set of parameters in the model) is

L(θ) =
n∑
i=1

log p(x(i))

=
n∑
i=1

log
k∑
y=1

q(y)
d∏
j=1

qj(x
(i)
j |y)

In ML estimation we seek the parameter values that maximize L(θ). This leads

to the following problem definition:

Definition 4 (ML Estimates for Naive Bayes Models with Missing Labels) Assume
a training set (x(i)) for i ∈ {1 . . . n}. The maximum-likelihood estimates are then
the parameter values q(y) for y ∈ {1 . . . k}, qj(x|y) for j{1 . . . d}, y ∈ {1 . . . k},
x ∈ {−1,+1} that maximize

L(θ) =
n∑
i=1

log
k∑
y=1

q(y)
d∏
j=1

qj(x
(i)
j |y)

 (10)

subject to the following constraints:

1. q(y) ≥ 0 for all y ∈ {1 . . . k}.
∑k
y=1 q(y) = 1.

2. For all y, j, x, qj(x|y) ≥ 0. For all y ∈ {1 . . . k}, for all j ∈ {1 . . . d},∑
x∈{−1,+1}

qj(x|y) = 1

Given this problem definition, we are left with the following questions:

How are the ML estimates justified? In a formal sense, the following result
holds. Assume that the training examples x(i) for i = 1 . . . n are actually i.i.d.
samples from a distribution specified by a Naive Bayes model. Equivalently, we
assume that the training samples are drawn from a process that first generates an
(x, y) pair, then deletes the value of the label y, leaving us with only the observa-
tions x. Then it can be shown that the ML estimates are consistent, in that as the

10

number of training samples n increases, the parameters will converge to the true
values of the underlying Naive Bayes model.2

From a more practical point of view, in practice the ML estimates will often
uncover useful patterns in the training examples. For example, it can be verified
that the parameter values in Eqs. 7, 8 and 9 do indeed maximize the log-likelihood
function given the documents given in the example.

How are the ML estimates useful? Assuming that we have an algorithm that
calculates the maximum-likelihood estimates, how are these estimates useful? In
practice, there are several scenarios in which the maximum-likelihood estimates
will be useful. The parameter estimates find useful patterns in the data: for ex-
ample, in the context of text classification they can find a useful partition of docu-
ments in naturally occurring classes. In particular, once the parameters have been
estimated, for any document x, for any class y ∈ {1 . . . k}, we can calculate the
conditional probability

p(y|x) =
p(x, y)∑k
y=1 p(x, y)

under the model. This allows us to calculate the probability of document x falling
into cluster y: if we required a hard partition of the documents into k different
classes, we could take the highest probability label,

arg max
y∈{1...k}

p(y|x)

There are many other uses of EM, which we will see later in the course.

Given a training set, how can we calculate the ML estimates? The final ques-
tion concerns calculation of the ML estimates. To recap, the function that we would
like to maximize (see Eq. 10) is

L(θ) =
n∑
i=1

log
k∑
y=1

q(y)
d∏
j=1

qj(x
(i)
j |y)

note the contrast with the regular ML problem (see Eq. 4), where we have labels
y(i), and the function we wish to optimize is

L(θ) =
n∑
i=1

log

q(y(i))
d∏
j=1

qj(x
(i)
j |y

(i))

2Up to symmetries in the model; for example, in the text classification example given earlier with

Obama, McCain, Giants, Patriots, either of the two parameter settings given would be recovered.

11

The two functions are similar, but crucially the new definition of L(θ) has an ad-
ditional sum over y = 1 . . . k, which appears within the log. This sum makes
optimization of L(θ) hard (in contrast to the definition when the labels are ob-
served).

The next section describes the expectation-maximization (EM) algorithm for
calculation of the ML estimates. Because of the difficulty of optimizing the new
definition of L(θ), the algorithm will have relatively weak guarantees, in the sense
that it will only be guaranteed to reach a local optimum of the function L(θ). The
EM algorithm is, however, widely used, and can be very effective in practice.

5.2 The EM Algorithm for Naive Bayes Models

The EM algorithm for Naive Bayes models is shown in figure 1. It is an iterative
algorithm, defining a series of parameter values θ0, θ1, . . . , θT . The initial param-
eter values θ0 are chosen to be random. At each iteration the new parameter values
θt are calculated as a function of the training set, and the previous parameter values
θt−1. A first key step at each iteration is to calculate the values

δ(y|i) = p(y|x(i); θt−1)

for each example i ∈ {1 . . . n}, for each possible label y ∈ {1 . . . k}. The value
for δ(y|i) is the conditional probability for label y on the i’th example, given the
parameter values θt−1. The second step at each iteration is to calculate the new
parameter values, as

qt(y) =
1

n

n∑
i=1

δ(y|i)

and

qtj(x|y) =

∑
i:xij=x δ(y|i)∑

i δ(y|i)
Note that these updates are very similar in form to the ML parameter estimates

in the case of fully observed data. In fact, if we have labeled examples (x(i), y(i))
for i ∈ {1 . . . n}, and define

δ(y|i) = 1 if yi = y, 0 otherwise

then it is easily verified that the estimates would be identical to those given in Eqs. 2
and 3. Thus the new algorithm can be interpreted as a method where we replaced
the definition

δ(y|i) = 1 if yi = y, 0 otherwise

12

used for labeled data with the definition

δ(y|i) = p(y|x(i); θt−1)

for unlabeled data. Thus we have essentially “hallucinated” the δ(y|i) values, based
on the previous parameters, given that we do not have the actual labels y(i).

The next section describes why this method is justified. First, however, we
need the following property of the algorithm:

Theorem 3 The parameter estimates qt(y) and qt(x|y) for t = 1 . . . T are

θt = arg max
θ
Q(θ, θt−1)

under the constraints q(y) ≥ 0,
∑k
y=1 q(y) = 1, qj(x|y) ≥ 0,

∑
x∈{−1,+1} qj(x|y) =

1, where

Q(θ, θt−1) =
n∑
i=1

k∑
y=1

p(y|x(i); θt−1) log p(x(i), y; θ)

=
n∑
i=1

k∑
y=1

p(y|x(i); θt−1) log

q(y)
d∏
j=1

qj(x
(i)
j |y)

6 The EM Algorithm in General Form

In this section we describe a general form of the EM algorithm; the EM algorithm
for Naive Bayes is a special case of this general form. We then discuss convergence
properties of the general form, which in turn give convergence guarantees for the
EM algorithm for Naive Bayes.

6.1 The Algorithm

The general form of the EM algorithm is shown in figure 2. We assume the follow-
ing setting:

• We have sets X and Y , where Y is a finite set (e.g., Y = {1, 2, . . . k} for
some integer k). We have a model p(x, y; θ) that assigns a probability to
each (x, y) such that x ∈ X , y ∈ Y , under parameters θ. Here we use θ to
refer to a vector including all parameters in the model.

13

Inputs: An integer k specifying the number of classes. Training examples (x(i))
for i = 1 . . . n where each x(i) ∈ {−1,+1}d. A parameter T specifying the
number of iterations of the algorithm.

Initialization: Set q0(y) and q0
j (x|y) to some initial values (e.g., random values)

satisfying the constraints

• q0(y) ≥ 0 for all y ∈ {1 . . . k}.
∑k
y=1 q

0(y) = 1.

• For all y, j, x, q0
j (x|y) ≥ 0. For all y ∈ {1 . . . k}, for all j ∈ {1 . . . d},∑

x∈{−1,+1}
q0
j (x|y) = 1

Algorithm:
For t = 1 . . . T

1. For i = 1 . . . n, for y = 1 . . . k, calculate

δ(y|i) = p(y|x(i); θt−1) =
qt−1(y)

∏d
j=1 q

t−1
j (x

(i)
j |y)∑k

y=1 q
t−1(y)

∏d
j=1 q

t−1
j (x

(i)
j |y)

2. Calculate the new parameter values:

qt(y) =
1

n

n∑
i=1

δ(y|i) qtj(x|y) =

∑
i:x

(i)
j =x

δ(y|i)∑
i δ(y|i)

Output: Parameter values qT (y) and qT (x|y).

Figure 1: The EM Algorithm for Naive Bayes Models

14

For example, in Naive Bayes we have X = {−1,+1}d for some integer
d, and Y = {1 . . . k} for some integer k. The parameter vector θ contains
parameters of the form q(y) and qj(x|y). The model is

p(x, y; θ) = q(y)
d∏
j=1

qj(x|y)

• We use Ω to refer to the set of all valid parameter settings in the model.

For example, in Naive Bayes Ω contains all parameter vectors such that
q(y) ≥ 0,

∑
y q(y) = 1, qj(x|y) ≥ 0, and

∑
x qj(x|y) = 1 (i.e., the usual

constraints on parameters in a Naive Bayes model).

• We have a training set consisting of examples x(i) for i = 1 . . . n, where
each x(i) ∈ X .

• The log-likelihood function is then

L(θ) =
n∑
i=1

log p(x(i); θ) =
n∑
i=1

log
∑
y∈Y

p(x(i), y; θ)

• The maximum likelihood estimates are

θ∗ = arg max
θ∈Ω

L(θ)

In general, finding the maximum-likelihood estimates in this setting is in-
tractable (the function L(θ) is a difficult function to optimize, because it contains
many local optima).

The EM algorithm is an iterative algorithm that defines parameter settings
θ0, θ1, . . . , θT (again, see figure 2). The algorithm is driven by the updates

θt = arg max
θ∈Ω

Q(θ, θt−1)

for t = 1 . . . T . The function Q(θ, θt−1) is defined as

Q(θ, θt−1) =
n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ) (11)

where

δ(y|i) = p(y|x(i); θt−1) =
p(x(i), y; θt−1)∑
y∈Y p(x

(i), y; θt−1)

Thus as described before in the EM algorithm for Naive Bayes, the basic idea is
to fill in the δ(y|i) values using the conditional distribution under the previous
parameter values (i.e., δ(y|i) = p(y|x(i); θt−1)).

15

Inputs: Sets X and Y , where Y is a finite set (e.g., Y = {1, 2, . . . k} for some
integer k). A model p(x, y; θ) that assigns a probability to each (x, y) such that
x ∈ X , y ∈ Y , under parameters θ. A set of Ω of possible parameter values in the
model. A training sample x(i) for i ∈ {1 . . . n}, where each x(i) ∈ X . A parameter
T specifying the number of iterations of the algorithm.

Initialization: Set θ0 to some initial value in the set Ω (e.g., a random initial value
under the constraint that θ ∈ Ω).

Algorithm:
For t = 1 . . . T

θt = arg max
θ∈Ω

Q(θ, θt−1)

where

Q(θ, θt−1) =
n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ)

and

δ(y|i) = p(y|x(i); θt−1) =
p(x(i), y; θt−1)∑
y∈Y p(x

(i), y; θt−1)

Output: Parameters θT .

Figure 2: The EM Algorithm in General Form

Remark: Relationship to Maximum-Likelihood Estimation for Fully Observed
Data. For completeness, figure 3 shows the algorithm for maximum-likelihood
estimation in the case of fully observed data: that is, the case where labels y(i) are
also present in the training data. In this case we simply set

θ∗ = arg max
θ∈Ω

n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ) (12)

where δ(y|i) = 1 if y = y(i), 0 otherwise.
Crucially, note the similarity between the optimization problems in Eq. 12 and

Eq. 11. In many cases, if the problem in Eq. 12 is easily solved (e.g., it has a
closed-form solution), then the problem in Eq. 11 is also easily solved.

16

Inputs: Sets X and Y , where Y is a finite set (e.g., Y = {1, 2, . . . k} for some
integer k). A model p(x, y; θ) that assigns a probability to each (x, y) such that
x ∈ X , y ∈ Y , under parameters θ. A set of Ω of possible parameter values in
the model. A training sample (x(i), y(i)) for i ∈ {1 . . . n}, where each x(i) ∈ X ,
y(i) ∈ Y .

Algorithm: Set θ∗ = arg maxθ∈Ω L(θ) where

L(θ) =
n∑
i=1

log p(x(i), y(i); θ) =
n∑
i=1

∑
y∈Y

δ(y|i) log p(x(i), y; θ)

and
δ(y|i) = 1 if y = y(i), 0 otherwise

Output: Parameters θ∗.

Figure 3: Maximum-Likelihood Estimation with Fully Observed Data

6.2 Guarantees for the Algorithm

We now turn to guarantees for the algorithm in figure 2. The first important theorem
(which we will prove very shortly) is as follows:

Theorem 4 For any θ, θt−1 ∈ Ω, L(θ)−L(θt−1) ≥ Q(θ, θt−1)−Q(θt−1, θt−1).

The quantity L(θ)−L(θt−1) is the amount of progress we make when moving
from parameters θt−1 to θ. The theorem states that this quantity is lower-bounded
by Q(θ, θt−1)−Q(θt−1, θt−1).

Theorem 4 leads directly to the following theorem, which states that the likeli-
hood is non-decreasing at each iteration:

Theorem 5 For t = 1 . . . T , L(θt) ≥ L(θt−1).

Proof: By the definitions in the algorithm, we have

θt = arg max
θ∈Ω

Q(θ, θt−1)

It follows immediately that

Q(θt, θt−1) ≥ Q(θt−1, θt−1)

17

(because otherwise θt would not be the arg max), and hence

Q(θt, θt−1)−Q(θt−1, θt−1) ≥ 0

But by theorem 4 we have

L(θt)− L(θt−1) ≥ Q(θt, θt−1)−Q(θt−1, θt−1)

and hence L(θt)− L(θt−1) ≥ 0.
Theorem 5 states that the log-likelihood is non-decreasing: but this is a rel-

atively weak guarantee; for example, we would have L(θt) − L(θt−1) ≥ 0 for
t = 1 . . . T for the trivial definition θt = θt−1 for t = 1 . . . T . However, under
relatively mild conditions, it can be shown that in the limit as T goes to∞, the EM
algorithm does actually converge to a local optimum of the log-likelihood function
L(θ). The proof of this is beyond the scope of this note; one reference is Wu, 1983,
On the Convergence Properties of the EM Algorithm.

To complete this section, we give a proof of theorem 4. The proof depends on
a basic property of the log function, namely that it is concave:

Remark: Concavity of the log function. The log function is concave. More
explicitly, for any values x1, x2, . . . , xk where each xi > 0, and for any values
α1, α2, . . . , αk where αi ≥ 0 and

∑
i αi = 1,

log

(∑
i

αixi

)
≥
∑
i

αi log xi

The proof is then as follows:

L(θ)− L(θt−1) =
n∑
i=1

log

∑
y p(x

(i), y; θ)∑
y p(x

(i), y; θt−1)

=
n∑
i=1

log
∑
y

(
p(x(i), y; θ)

p(x(i); θt−1)

)

=
n∑
i=1

log
∑
y

(
p(y|x(i); θt−1)× p(x(i), y; θ)

p(y|x(i); θt−1)× p(x(i); θt−1)

)
(13)

=
n∑
i=1

log
∑
y

(
p(y|x(i); θt−1)× p(x(i), y; θ)

p(x(i), y; θt−1)

)

≥
n∑
i=1

∑
y

p(y|x(i); θt−1) log

(
p(x(i), y; θ)

p(x(i), y; θt−1)

)
(14)

18

=
n∑
i=1

∑
y

p(y|x(i); θt−1) log p(x(i), y; θ)−
n∑
i=1

∑
y

p(y|x(i); θt−1) log p(x(i), y; θt−1)

= Q(θ, θt−1)−Q(θt−1, θt−1) (15)

The proof uses some simple algebraic manipulations, together with the prop-
erty that the log function is concave. In Eq. 13 we multiply both numerator and
denominator by p(y|x(i); θt−1). To derive Eq. 14 we use the fact that the log func-
tion is concave: this allows us to pull the p(y|x(i); θt−1) outside the log.

A Proof of Theorem 1

We now prove the result in theorem 1. Our first step is to re-write the log-likelihood
function in a way that makes direct use of “counts” taken from the training data:

L(θ) =
n∑
i=1

log q(yi) +
n∑
i=1

d∑
j=1

log qj(xi,j |yi)

=
∑
y∈Y

count(y) log q(y)

+
d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y) (16)

where as before

count(y) =
n∑
i=1

[[y(i) = y]]

countj(x|y) =
n∑
i=1

[[yi = y and x(i)
j = x]]

Eq. 16 follows intuitively because we are simply counting up the number of
times each parameter of the form q(y) or qj(x|y) appears in the sum

n∑
i=1

log q(yi) +
n∑
i=1

d∑
j=1

log qj(xi,j |yi)

To be more formal, consider the term

n∑
i=1

log q(y(i))

19

We can re-write this as

n∑
i=1

log q(y(i)) =
n∑
i=1

k∑
y=1

[[y(i) = y]] log q(y)

=
k∑
y=1

n∑
i=1

[[y(i) = y]] log q(y)

=
k∑
y=1

log q(y)
n∑
i=1

[[y(i) = y]]

=
k∑
y=1

(log q(y))× count(y)

The identity

n∑
i=1

d∑
j=1

log qj(xi,j |yi) =
d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

can be shown in a similar way.
Now consider again the expression in Eq. 16:

∑
y∈Y

count(y) log q(y) +
d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

Consider first maximization of this function with respect to the q(y) parameters. It
is easy to see that the term

d∑
j=1

∑
y∈Y

∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

does not depend on the q(y) parameters at all. Hence to pick the optimal q(y)
parameters, we need to simply maximize∑

y∈Y
count(y) log q(y)

subject to the constraints q(y) ≥ 0 and
∑k
y=1 q(y) = 1. But by theorem 2, the

values for q(y) which maximize this expression under these constraints is simply

q(y) =
count(y)∑k
y=1 count(y)

=
count(y)

n

20

By a similar argument, we can maximize each term of the form∑
x∈{−1,+1}

countj(x|y) log qj(x|y)

for a given j ∈ {1 . . . k}, y ∈ {1 . . . k} separately. Applying theorem 2 gives

qj(x|y) =
countj(x|y)∑

x∈{−1,+1} countj(x|y)

21

