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‘Gaussian mixture models'

These are like kernel density estimates, but with a
small number of components (rather than one

component per data point)

e k-means clustering

e a soft version of k-means: EM algorithm for

(Gaussian mixture model

e EM algorithm for general missing data

problems
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‘ K-means clustering I

See pp 461.

Xo

X1

Simulated data in the plane, clustered into three

classes (represented by red, blue and green) by the

\K—means clustering algorithm /
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(1) For each data point, the closest cluster center

(2) Each cluster center is replaced by the

~

K-means algorithm I

(in Euclidean distance) is identified;

coordinate-wise average of all data points

that are closest to it.

Steps 1 and 2 are alternated until
convergence. Algorithm converges to a local
minimum of the within-cluster sum of

squares.

Typically one uses multiple runs from random
starting guesses, and chooses the solution

with lowest within cluster sum of squares.
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‘Kmeans in action'

Initial Centroids

Initial Partition

Iteration Number 20

Successive iterations of the K-means clustering

algorithm for the simulated data.
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‘ Vector Quantization I

See pp 466.

e V() is k-means clustering, applied to vectors

arising from the blocks of an image

________ -

o o o O O

16 16

K means clustering
/ (encoder)

~

codebook (centroids)

+ cluster assignments

transmission

reconstructed image |=—— decoder
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‘ Real application I

Sir Ronald A. Fisher (1890-1962) was one of the
founders of modern day statistics, to whom we owe
maximum-likelihood, sufficiency, and many other
fundamental concepts. The image on the left is a
1024 x 1024 greyscale image at 8 bits per pixel. The
center image is the result of 2 x 2 block VQ, using 200
code vectors, with a compression rate of 1.9
bits/pixel. The right image uses only four code

vectors, with a compression rate of 0.50 bits/pixel
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(Gaussian mixtures and EM'

Soft k-means clustering
See | pp 463,
Mixture Model: f(z) = (1 — m)g1(x) + g2 (x)

Gaussian mixture: g;(z) = ¢g, (z), 0; = (15, 07)
c=1.0 c=1.0

| |

Responsibilities
(/
00 02 04 06 08 10

Responsibilities
|
00 02 04 06 08 1.0

/
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Details of ﬁgure' \

Left panels: two Gaussian densities g1(z) and
g2(x) (blue and orange) on the real line, and a
single data point (green dot) at x = 0.5. The
colored squares are plotted at x = —1.0 and

x = 1.0, the means of each density.

Right panels: the relative densities

91(z)/(91(z) + g2(x)) and g2(z)/(g1(x) + g2(x)),
called the “responsibilities” of each cluster, for
this data point. In the top panels, the Gaussian
standard deviation o = 1.0; in the bottom panels
o= 0.2.

The EM algorithm uses these responsibilities to
make a “soft” assignment of each data point to
each of the two clusters. When o is fairly large,
the responsibilities can be near 0.5 (they are 0.36
and 0.64 in the top right panel).

As o0 — 0, the responsibilities — 1, for the cluster
center closest to the target point, and 0 for all
other clusters. This “hard” assignment is seen in

the bottom right panel. /
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The EM Algorithm:'

Two-Component Mixture Model

The left panel of Figure 1 shows a histogram of
the 20 fictitious data points in Table 1.
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Figure 1: Mixture example. Left panel: histogram of data.
Right panel: maximum likelihood fit of Gaussian densities
(solid red) and responsibility (dotted green) of the left com-

ponent density for observation y, as a function of y.
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Table 1:

-0.39 0.12 0.94 1.67 1.76 2.44 3.72 4.28 4.92
0.06 0.48 1.01 1.68 1.80 3.25 4.12 4.60 5.28

53
22

Yi ~ N(M170%)7

Yo ~ N(M%O_%)?

Y = 1-A)-1+A-Y,,
where A € {0,1} with Pr(A =1) = .

Let ¢g(x) denote the normal density with
parameters 6 = (u,0?). Then the density of Y is

gy (y) = (1 =)o, (y) + mdg, (y).

The log-likelihood based on the N training cases
1S

1=1

0(0;2) = > log[(1 — m)de, (us) + 7, (vi)]- (1)
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Direct maximization of £(0;z) is quite difficult
numerically, because of the sum of terms inside
the logarithm. There is, however, a simpler
approach. We consider unobserved latent
variables A; taking values 0 or 1: if A; = 1 then
Y, comes from model 2, otherwise it comes from
model 1. Suppose we knew the values of the A;’

Then the log-likelihood would be

N

1=1
N
+) [(1—Ai)logm + Ajlog(1 —

1 =1

lo(0;2,A) = > [(1—Ay)log do, (i) + Aslog da, (y:)

~

S.

)]

/
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Since the values of the A;’s are actually unknown,
we proceed in an iterative fashion, substituting

for each A; its expected value

also called the of model 2 for
observation . We use a procedure called the EM

algorithm.
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e Take initial guesses for the parameters
fi1,6%, fi2, 63,7 (see text).
e Faxpectation Step: compute the responsibilities

o4, (Yi)
Vi = - 2z L i=1,2,...,N. (3
N A P, i) + R, W) %)

e Maximization Step: compute the weighted means and

and the mixing probability & = Zi\rz 1 Yi/N.

e Iterate these steps until convergence.

variances:
N 2 N A A
fi = > i1 (L — )y 52 — > i1 (L — %) (yi — f )2
- N R ’ 1 — N A
Zi:1(1 - ’Yi) 27;21(1 - ’Yi)
N 2 N A A
o Xin Vi o i Yy — pn)?
p2 = N . 92 = N . ’
D im1 Vi D im1 Vi
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| | | | |

Observed Data Log-likelihood
44 -43 -42 -41 -40 -39

|

5 10 15 20
Iteration

EM algorithm: observed data log-likelihood as a

function of the iteration number.

Table 2:

[teration T
1 0.485

5 0.493

10 0.523

15 0.544

20 0.546

: 14
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The final maximum likelihood estimates are

il = 4.62, 62 = (.87,
i1z = 1.06, 62 =0.77,

: 15
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Training Ermor; 0.17
Test Error: 0.22
Bayes Eror: 0.21

Mixture model used for classification of the
simulated data

: 16
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‘ EM for general missing data problems '

e Our observed data is z, having log-likelihood
¢(0;z) depending on parameters 6.

e The latent or missing data is z™, so that the
complete data is t = (z,2™) with
log-likelihood £y (0;t), £o based on the

complete density.
e In the mixture problem (z,z") = (y, A).

e EM paper in 1977 has interesting discussion-
many including Hartley and Baum said that
they had already done this work!

/
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. Start with initial guesses for the parameters

A0

Expectation Step: at the jth step, compute
Q(0,09)) = E (4o(6'%) 2,01) (4)

as a function of the dummy argument 6.

Mazimaization Step: determine the new
estimate U1 as the maximizer of QY é(j))

over 0.

Iterate steps 2 and 3 until convergence.

;18
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‘Proof that EM WOI‘kS'

Since
Pr(z™,z|0")
Pr(z™|z.0") = ’
we can write
Pr(t|0’)
P 0') = .
1(z]0') Pr(z™|z,0) (6)

In terms of log-likelihoods, we have

0(0";2z) = Ly(0';t) — £1(0';2™|z), where {1 is based
on the conditional density Pr(z""|z,8’). Taking
conditional expectations with respect to the

distribution of t|z governed by parameter 6 gives

00:z) = E[£y(0';t)|z,0] —E [£1(6;2™|2)|z, 0]
= Q0',0)— R(0',0). (7)

\_ /
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In the M step, the EM algorithm maximizes
Q(0',0) over 0, rather than the actual objective
function £(0’; z).

Why does it succeed in maximizing ¢(6’;z)? Note
that R(6*,0) is the expectation of a log-likelihood
of a density (indexed by 6*), with respect to the
same density indexed by 6, and hence (by
Jensen’s inequality) is maximized as a function of

0*, when 0* = 0 (see Exercise 8.1). So if ¢’
maximizes Q(6’,60), we see that

6(9/3Z> —E(@;Z) — [Q(Q/,@) T Q(879>] o [R(@/,Q) o R'Qve)]
> 0. (8)

Hence the M step never decreases the
log-likelihood.

\_ /
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A Different VieW'

EM as a Maximization—Maximization Procedure

e (Consider the function
F(0",P)=Epllo(0';t)] — E pllog P(z™)]. (9)

e Here P(z™) is any distribution over the latent
data z™. In the mixture example, P(z™)

comprises the set of probabilities
vi = Pr(A; =110, 2).

e Note that F' evaluated at
P(z™) = Pr(z™|z,0’), is the log-likelihood of
the observed data.

\_ /
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e The EM algorithm can be viewed as a joint

maximization method for F' over " and
P(z™), by fixing one argument and
maximizing over the other. The maximizer

over P(z™) for fixed #’ can be shown to be
P(z™) = Pr(z"|z,6") (10)

(Exercise 8.3).

This is the distribution computed by the E
step.

In the M step, we maximize F'(6', P) over ¢’
with P fixed: this is the same as maximizing
the first term E p[¢o(0;t)|z, 0] since the

second term does not involve 6’.

Finally, since F'(6’,P) and the observed data
log-likelihood agree when

P(z™) = Pr(z™|z,0"), maximization of the
former accomplishes maximization of the

latter.

/
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Model Parameters
2
|

{ I I I \
1 2 3 4 5

Latent Data Parameters

Mazximization—mazimization view of the EM
algorithm. Shown are the contours of the (augmented)
observed data log-likelihood F (0, P). The E step is
equivalent to maximizing the log-likelthood over the
parameters of the latent data distribution. The M
step maximazes it over the parameters of the
log-likelihood. The red curve corresponds to the

observed data log-likelihood, a obtained by

\ma:cimz'zz'ng F(¢', P) for each value of ¢'. /




