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1 Introduction

Maximum Likelihood Estimation (MLE) is widely used as a method for estimating the parameters
in a probabilistic model. The basic idea is to compute the parameter θMLE where:

θMLE = arg max
θ∈Θ

P(X|θ)

P(X|θ) is the (observable) data likelihood. The parameter θ is omitted sometimes for simple nota-
tion.

MLE is normally done by taking the derivative of the data likelihood P(X) with respect to
the model parameter θ and solving the equation. However, in some cases where we have hidden
(unobserved) variables in the model, the derivative w.r.t. the model parameter does not have a close
form solution. We will illustrate this problem with a simple example of mixture model with hidden
variables.

1.1 An Example: Mixture of Bernoulli Distributions

Suppose we haveN binary data points x1, x2, · · · , xN , each of which is i.i.d. drawn from one out of
K Bernoulli Distribution with parameter qk. Thus p(xn|qk) = qxn

k (1− qk)1−xn . The probability of
picking the kth Bernoulli component out of K is πk, which is often referred as mixing proportion.
We don’t know beforehand which one out of K components each data point is drawn from, thus
the variable representing these component assignments (will define later) is hidden in this mixture
model. Write the data likelihood and log-likelihood:

P(x) =

N∏
n=1

K∑
k=1

πkp(xn|qk)

log P(x) =
N∑

n=1

log
K∑
k=1

πkp(xn|qk)

with the parameter θ = {π, q}, and
∑

k πk = 1.
Notice that the second summation is inside the log, thus it is hard to decouple the parameters

(which will lead to non-close form solution). Take the derivative w.r.t. qk and set to 0, we obtain:

0 =

N∑
n=1

πkp(xn|qk)∑K
j=1 πjp(xn|qj)

· ∂p(xn|qk)

∂qk
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The form of the partial derivative of p(xn|qk) is not important in this case (you can analytically
calculate it though), we only need to know that it is a function of qk. As for the first term in the
summation, we define the hidden variables zn, representing the component assignment for data
point xn using a vector of size K × 1. If xn is drawn from the kth component, znk = 1 while the
remaining are all 0. We could evaluate the posterior distribution of znk:

p(znk = 1|xn,θ) =
p(znk = 1)p(xn|znk = 1)∑K
j=1 p(znj = 1)p(xn|znj = 1)

=
πkp(xn|qk)∑K
j=1 πjp(xn|qj)

which is the first term in the summation. Since znk is a binary variable, the expectation E[znk] =
p(znk = 1|xn,θ). We can think of this term as a “responsibility” of component k for data point xn.
Let’s denote this term as γ(znk) for simplicity, following the notation from Bishop (2006). Now the
derivative becomes:

0 =
N∑

n=1

γ(znk) · ∂p(xn|qk)

∂qk

Thus the solution (if any) will be in the form of:

qMLE
k = Φ(γ(znk),x)

which has the problem that: in order to compute qMLE
k , we need to compute γ(znk) which is depen-

dent on qk itself. This is not a coincident, we will see this again shortly when we derive the MLE
solution for mixing proportion.

For the mixing proportion πk, take the derivative with a Lagrange multiplier λ and set to 0, we
obtain:

0 =

N∑
n=1

p(xn|qk)∑K
j=1 πjp(xn|qj)

+ λ

We can multiply πk on both sides and sum over k:

0 =
N∑

n=1

∑K
k=1 πkp(xn|qk)∑K
j=1 πjp(xn|qj)

+

K∑
k=1

πkλ

Making use of use of the fact that
∑

k πk = 1, we obtain: λ = −N . Substitute λ back to the
derivative and multiply both side with πk, we obtain:

N∑
n=1

πkp(xn|qk)∑K
j=1 πjp(xn|qj)

= πkN

N∑
n=1

γ(znk) = πkN

We could define
∑N

n=1 γ(znk) = Nk, where Nk can be interpreted as the “expected” number of
data points drawn from component k. Therefore:

πk =
Nk

N
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which is again dependent on γ(znk), while γ(znk) depends on πk.
This example of mixture of Bernoulli distributions illustrates the difficulty to directly maximize

the likelihood for models with hidden variables. However, we could get some intuition about an
iterative algorithm where the derivation above can be made use of: Start the algorithm by randomly
initializing the parameter. Then in each iterative step, compute the γ(znk) based on the old param-
eter. Then the new parameter can be updated accordingly with the current value of γ(znk). This is
the basic intuition behind Expectation Maximization (EM) algorithm.

2 EM in General

One of the problems with directly maximizing the observable data likelihood, as shown above, is
that the summation is inside the logarithm. So what if we move on to the complete data likelihood
P(X,Z) and then marginalize the hidden variable Z? Let’s do the derivation1.

Start from the log-likelihood:

log P(X|θ) = log
∑
Z

P(X,Z|θ)

Here we make use of the variational point of view by adding a variational distribution q(Z) and the
fact that logarithm function is concave:

log P(X|θ) = log
(∑

Z

P(X,Z|θ)

q(Z)
q(Z)

)
≥
∑
Z

q(Z) log
(P(X,Z|θ)

q(Z)

)
By making use of the Jensen’s inequality, we move out the summation from the logarithm success-
fully. We could of course find out q(Z) by exploring when the equality holds for Jensen’s inequality.
However, we will solve it from a different approach here. We first want to learn how much we have
lost from the Jensen’s inequality:

∆ = log P(X|θ)−
∑
Z

q(Z) log
(P(X,Z|θ)

q(Z)

)
=
∑
Z

q(Z) log P(X|θ)−
∑
Z

q(Z) log
(P(X,Z|θ)

q(Z)

)
=
∑
Z

q(Z) log
(P(X|θ)q(Z)

P(X,Z|θ)

)
=
∑
Z

q(Z) log
( q(Z)

P(Z|X,θ)

)
=KL(q‖p)

Thus, the difference is actually the KL-divergence between the variational distribution q(Z) and the
posterior distribution P(Z|X,θ). Thus, we could rearrange the log-likelihood as:

log P(X|θ) =
∑
Z

q(Z) log
(P(X,Z|θ)

q(Z)

)
︸ ︷︷ ︸

L(q,θ)

+KL(q‖p)

1There are actually a lot of different versions of derivations for EM algorithm. The one presented here gives the most
intuition to the author.
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Since the KL-divergence is non-negative for any q and p, L(q,θ) acts as a lower-bound for the
log-likelihood. Let’s denote the log-likelihood as `(θ) for simplicity.

EM algorithm has 2 steps as its name suggests: Expectation(E) step and Maximization(M) step.
In the E step, from the variational point of view, our goal is to choose a proper distribution

q(Z) such that it best approximates the log-likelihood. At this moment, we have existing parameter
θold. Thus we set the variational distribution q(Z) equal the posterior distribution P(Z|X,θold) so
that KL(q‖p) = 0. In that case, we make the lower-bound L(q,θ) equal `(θ).

In the M step, we have q(Z) fixed and maximize the L(q,θ), which is equivalent to maximize
`(θ), w.r.t. the parameter θ. Unless we reach the convergence, the lower-boundL(q,θ) will increase
with the new parameter θnew. Since the parameter θ changes from the E step, KL-divergence no
longer equals 0, which creates gap between L(q,θ) and `(θ) again. And this gap will be filled out
in the next E step.

To see analytically the objective function in M step, substitute q(Z) with P(Z|X,θold) from E
step:

L(q,θ) =
∑
Z

P(Z|X,θold) log
( P(X,Z|θ)

P(Z|X,θold)

)
=
∑
Z

P(Z|X,θold) log P(X,Z|θ)︸ ︷︷ ︸
Q(θ,θold)

−H{P(Z|X,θold)}

whereH{P(Z|X,θold)} represents the negative entropy of P(Z|X,θold), which is irrelevant to the
parameter θ. Thus we could consider it as a constant. What really matters is Q(θ,θold) which we
could view as the expectation of P(X,Z|θ) under the posterior distribution P(Z|X,θold). There
are a few very nicely-drawn figures, visualizing the whole procedures of EM algorithm in Chapter
9 of Bishop (2006).

The sweet spot in M step is that, instead of directly maximizing P(X) which does not have a
close form solution, computing P(X,Z) is generally much simpler because we can just view it as a
model with no hidden variables.

EM algorithm is usually referred as a typical example of coordinate ascent, where in each E/M
step, we have one variable fixed (θold in E step and q(Z) in M step), and maximize w.r.t. another
one. Coordinate ascent is widely used in numerical optimization.

3 EM Applications in the Mixture Models

3.1 Mixture of Bernoulli Revised

Now let’s go back to the problem we encountered earlier on mixture of Bernoulli distributions.
Assume we have some pre-set initial values θold = {πold

k , qold
k } for parameter. We first write the

complete likelihood and log-likelihood:

P(x,Z) =

N∏
n=1

K∏
k=1

(
πk · qxn

k (1− qk)1−xn
)znk

log P(x,Z) =

N∑
n=1

K∑
k=1

znk
(

log πk + xn log qk + (1− xn) log(1− qk)
)
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Note how this one differs from the observable data log-likelihood in Section 1.1. What we want
to maximize in the M step is actually Ez[log P(x,Z)] where Z has been decomposed as znk in the
complete log-likelihood. Also we have already shown that E(znk) = γ(znk) in Section 1.1, thus:

EZ[log P(x, z)] =

N∑
n=1

K∑
k=1

γ(znk)
(

log πk + xn log qk + (1− xn) log(1− qk)
)

Take the derivative w.r.t. qk and set to 0, we obtain:

qnew
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

As for πk, similarly, we obtain:

πnew
k =

∑N
n=1 γ(znk)

N

To summarize the 2 steps of EM algorithm for the mixture of Bernoulli distributions:
E step: Compute γ(znk) with current parameter θold = {πold

k , qold
k }:

γ(znk) = p(znk = 1|xn,θ) =
πold
k p(xn|qold

k )∑K
j=1 π

old
j p(xn|qold

j )

M step: Update πk and qk:

πnew
k =

∑N
n=1 γ(znk)

N

qnew
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

{πnew
k , qnew

k } → {πold
k , qold

k }

3.2 Mixture of Gaussian Distributions

A common scenario for applying EM algorithm is to estimate the parameter for mixture of Gaussian
distributions, or Gaussian Mixture Models (GMM). The EM solution for GMM is actually very
similar to the one for mixture of Bernoulli distributions derived above. Now assume we have N
vectors of D dimensions {x1, · · · ,xN} each of which is drawn i.i.d. from a Gaussian distribution
N (µk,Σk) with mixing proportion πk. Define the hidden variable zn the same as in Section 1.1.
Write the complete log-likelihood:

log P(X,Z) =

N∑
n=1

K∑
k=1

znk
(

log πk + logN (µk,Σk)
)

where the expectation of complete log-likelihood under the posterior distribution follows:

EZ[log P(X,Z)] =
N∑

n=1

K∑
k=1

γ(znk)
(

log πk + logN (µk,Σk)
)

Note in GMM, the kth component follows N (µk,Σk), thus:

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)
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Similarly from the derivation in the mixture of Bernoulli distributions, we can obtain the µk, Σk,
and πk by taking the derivative and setting to 0:

µnew
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

Σnew
k =

∑N
n=1 γ(znk)(xn − µnew

k )T(xn − µnew
k )∑N

n=1 γ(znk)

πnew
k =

∑N
n=1 γ(znk)

N

We could see that these derivations are almost exactly the same with the mixture of Bernoulli dis-
tributions, except that in GMM there is one more parameter, covariance matrix Σk, to estimate.
Formally summarize the 2 steps of EM algorithm for GMM:

E step: Compute γ(znk) with current parameter θold = {πold
k ,µold

k ,Σold
k }:

γ(znk) = p(znk = 1|xn,θ) =
πold
k N (xn|µold

k ,Σold
k )∑K

j=1 π
old
j N (xn|µold

j ,Σold
j )

M step: Update πk, µk and Σk:

πnew
k =

∑N
n=1 γ(znk)

N

µnew
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

Σnew
k =

∑N
n=1 γ(znk)(xn − µnew

k )T(xn − µnew
k )∑N

n=1 γ(znk)

{πnew
k ,µnew

k ,Σnew
k } → {πold

k ,µold
k ,Σold

k }

3.3 Thoughts on the mixture models

A recent blog post2 by Larry Wasserman pointed out the merit and defect of mixture models (mainly
from the view of a statistician). Clearly Larry is not a fan of mixture models. I do agree with some of
the points. However, as a not-too-deep-math machine learner, I still find mixture models (especially
GMM) capable to do the job in some applications (which theoretical result doesn’t care about).

4 Variations of the EM

EM algorithm can be thought of as an example of a generalized algorithm named GEM (generalized
EM), where in the M step, the maximization can be only partially implemented. In this case, the
likelihood can still be increased. Similarly, the E step can also be partially performed, which could
actually lead to an incremental algorithm, as summarized in Neal and Hinton (1998).

The EM algorithm described in Section 2 (I will call it normal EM) totally separate the 2 steps,
which is computationally inefficient. In the E step, we calculate the component “responsibility”

2http://normaldeviate.wordpress.com/2012/08/04/mixture-models-the-twilight-
zone-of-statistics/
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γ(znk) for each data point with each possible component assignment, and store all of the N · K
values, as in the M step, all of them are required as reflected from the update rule. What incre-
mental EM does is to make these 2 steps coherent. As proved in Neal and Hinton (1998), both
q(Z) and log P(X,Z|θ) can be factorized according to the data points, assuming the data points
are independent. Furthermore, this could lead to the factorization of L(q,θ), with local maxima
unchanged:

L(q,θ) =
N∑

n=1

Ln(qn,θ)

where
Ln(qn,θ) = Eqn [log P(xn, zn|θ)] +H{qn}

Note that the factorization (product) is summation in the logarithm domain. We have shown that
in the EM algorithm, both E and M steps can be considered as maximizing L(q,θ) in a coordinate
ascent manner, thus an incremental version of the EM is described in Algorithm 1:

Algorithm 1: EM algorithm with partially implemented E step
Initialization:

Randomly initialize θold and qn. qn does not have to be consistent with θold;
Repeat until convergence:

• E step:
Select some data point i to be updated:

– Set qj for the data points where j 6= i unchanged.
– Updated qi to maximize Li(qi,θold), given by the value p(zi|xi,θ

old).
• M step:

Update the parameter the same as the normal EM algorithm.

We can make some strategic decision for choosing data points, e.g. choose data points which
we are more uncertain about their component assignment (qi is not stabilized yet). However, es-
sentially, this variation does not help with the inefficiency problem mentioned earlier. As we could
see, the bottleneck is in the M step. To address this problem, assume the complete log-likelihood
can be summarized in some form of the sufficient statistics S(X,Z) (e.g. exponential family) and
factorized as:

S(X,Z) =
N∑

n=1

Sn(xn, zn) (1)

We can rewrite the normal EM algorithm in the form of sufficient statistics (omitted here). However,
we could make use of the property of the sufficient statistics. In each iteration, we only compute
how much S(X,Z) will be increased given some of the chosen data points and then we can directly
obtain the updated parameter given updated sufficient statistics. This incremental EM is described
as in Algorithm 2.

Note that in Algorithm 2, both E and M steps are independent of the number of data points.
As mentioned above, the benefit comes from the incremental sufficient statistics, as it reflects the
changes to the complete log-likelihood immediately. Thus speedy convergence can be achieved as
we fully utilize the intermediate computation.

A sparse variant of the incremental EM can be further proposed (Neal and Hinton, 1998). The
intuition behind this setting comes from the fact that in many cases, only a small portion of all the
possible values of hidden variable Z has non-negligible probability. Substantial computation may
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Algorithm 2: Incremental EM algorithm
Initialization:

Randomly initialize θold and Sold
n . Sold

n does not have to be consistent
with θold. Sold is computed given Eq. 1.

Repeat until convergence:

• E step:
Select some data point i to be updated:

– Set Sj where j 6= i unchanged from the previous iteration.
– Set Si = Eqi [Si(xi, zi)], where qi = p(zi|xi,θ

old).
– Set S = Sold − Sold

i + Si

• M step:
Update θ based on the current value of S.

be saved if we could “freeze” those negligible probability for many iterations, and only update those
are chosen as plausible values. Such EM algorithm can still guarantee increasing the log-likelihood
after each iteration, while mostly importantly, it is computationally efficient.
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