
BernoulliMix
Program package for finite mixture models of multivariate Bernoulli distributions

Edition 1.1, March 2009

Jaakko Hollmén (Jaakko.Hollmen@tkk.fi)

This is the documentation for BernoulliMix, a program package for working with finite
mixture models of multivariate Bernoulli distributions. The current documentation is Edi-
tion 1.1, last updated 27 March 2009, of BernoulliMix program package, version 1.1. For
the newest version available, check the version information on BernoulliMix homepage at
http://www.cis.hut.fi/jhollmen/BernoulliMix.

Copyright c© 2002–2009 Jaakko Hollmén

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 any later version pub-
lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled "GNU Free Documentation License".

Send bug reports and suggestions to Jaakko.Hollmen@tkk.fi.

i

Table of Contents

1 Introduction . 1

2 Getting started with BernoulliMix . 2
2.1 Installing BernoulliMix program package . 2
2.2 Testing BernoulliMix program package . 2

3 Programs in BernoulliMix program package 4
3.1 Initialize the mixture model parameters with bmix_init . 4
3.2 Train the mixture model parameters with bmix_train . 6
3.3 Calculate the likelihood of data with the mixture model with bmix_like 8
3.4 Sample data from the mixture model with bmix_sample . 8
3.5 Cluster data with the mixture model with bmix_cluster . 9

4 Examples of 0-1 data sets . 11
4.1 Genetic marker data . 11
4.2 DNA copy number amplifications in chromosome 17 . 11

5 Extending BernoulliMix . 12
5.1 Internal representation of the data sets . 12
5.2 Internal representation of the models . 13
5.3 Extend BernoulliMix package by following the example bmix_custom 14

Acknowledgments . 15

References . 16

Index . 17

GNU Free Documentation License . 18

Chapter 1: Introduction 1

1 Introduction

Binary data sets arise in many practical applications as categorical indicator variables denoting
dichotomies such as sick vs. healthy (or even worse: dead vs. alive), positive vs. negative,
defective vs. non-defective, success vs. failure, present vs. absent among others. Even whole
databases are represented using this categorical representation, for instance supermarket basket
data, computer and telecommunications systems data, text document data, and the like. Binary
data, or 0-1 data, may arise as a natural way to represent the measured variables, or as a trans-
formed representation of the original variable through quantization or other form of abstraction.
In machine learning (Bishop, 2006) and data mining (Hand, Mannila, Smyth, 2001), researchers
have been interested in modeling 0-1 data from many perspectives, including local patterns
such as frequent itemsets (Hand, Mannila, Smyth, 2001), global models in a probabilistic con-
text (Tikka and Hollmén, 2007), and a combination of global and local approaches (Hollmén,
Seppänen, Mannila, 2003). Large-scale bioinformatics application involving a database of 0-1
data has been reported in (Myllykangas et al., 2008). Whereas common machine learning and
data mining books present mixture models on a general level, they are covered in more detail, for
instance, in (Wolfe, 1970; Titterington et al. 1985; McLachlan and Basford, 1987; McLachlan,
1996; McLachlan 2000).

The BernoulliMix program package approaches modeling of 0-1 data in a probabilistic frame-
work using finite mixture models of multivariate Bernoulli distributions. The target audience for
BernoulliMix program package includes researchers, teachers, and students in the fields of ma-
chine learning and data mining. Some exercises are included in the documentation in the hope
that they are useful for educational purposes on machine learning and data mining courses. They
have been used on the machine learning courses of the author to form the term project. We have
reported our experiences in using a ready-to-use program package in machine learning education
in (Hollmén and Raiko, 2008). Instead of “just getting their own programs to work”, students
concentrate on setting up the experiments, and thinking about the results. An important note
is that this documentation is merely a description of the BernoulliMix program package and
should not be considered as teaching material on finite mixture models of multivariate Bernoulli
distributions nor learning from data in that context. At best, students learn the concepts of
mixture models and learning from data in the classroom and by using the BernoulliMix program
package, they will see the classroom concepts come to live in action!

The BernoulliMix program package contains five programs to work with finite mixture models
of multivariate Bernoulli distributions. With BernoulliMix, users can

1. Initialize the mixture model with randomly selected parameters (bmix_init)

2. Calculate the likelihood of data with the mixture model (bmix_like)

3. Train the mixture model from data using the EM algorithm (bmix_train)

4. Sample data from the mixture model (bmix_sample)

5. Cluster data with the mixture model by the maximum posterior rule (bmix_cluster)

After describing the step towards successful installation, we describe a test suite to ensure
that all the programs are running correctly. Some example 0-1 data sets are included in the
package, which are described in a later chapter. In addition, the program package includes an
example how to customize the package by writing additional functionality of your own.

This documentation helps you to become familiar with BernoulliMix program package. See
Chapter 2 [Getting started with BernoulliMix], page 2 for the contents of the package including
installation instructions and a short presentation of the test suite. See Chapter 3 [Programs in
BernoulliMix program package], page 4 for the five programs to work with finite mixture models
of multivariate Bernoulli distributions. See Chapter 4 [Examples of 0-1 data sets], page 11 for
the descriptions of example 0-1 data sets for your use. See Chapter 5 [Extending BernoulliMix],
page 12 on information how to extend the functionality of BernoulliMix program package.

Chapter 2: Getting started with BernoulliMix 2

2 Getting started with BernoulliMix

In this chapter, we cover how to install BernoulliMix program package on your computer by
compiling its programs that are written in C programming language. Also, we present a test
suite for ensuring that BernoulliMix program package is behaving expectedly. If you are reading
this, the chances are high that you have already downloaded the BernoulliMix program package
and familiarized yourself with the documentation. After all, this is the documentation!

2.1 Installing BernoulliMix program package

The BernoulliMix program package is distributed with the source code of all the programs in
programming language C and a ‘Makefile’ utility that helps the user to compile the source code
into executable programs. This installation information is targeted to users with familiarity on
compiling programs Linux operating systems. If your system is somehow related to UNIX or
Linux, there is a high probability that you will be able to compile the programs without any
problems. See the BernoulliMix home page for a list of compatible systems.

The package is contained in a file ‘bmix-1.1.tar.gz’, which is a compressed archive of files,
available at BernoulliMix home page. You should uncompress the gzipped tar file with the
commands

~ % gunzip bmix-1.1.tar.gz

~ % tar xvf bmix-1.1.tar

After uncompressing, you will have a directory ‘bmix-1.1/’ created for you. Enter the created
directory ‘bmix-1.1/’ with the command cd bmix-1.1/ and you should see files ‘COPYING’,
‘Changes’, ‘INSTALL’, ‘Makefile’, and ‘README’ and in addition, the directories named ‘bin/’,
‘doc/’, ‘src/’, ‘data/’, and ‘test/’. The files ‘README’ and ‘INSTALL’ contain brief information
for the impatient users. The directory ‘bin/’ is initially empty and will contain the binary
files once they are compiled. Directory ‘doc/’ contains the documentation in DVI format as
‘bmix_doc.dvi’, in PostScript format as ‘bmix_doc.ps’, and as a PDF file ‘bmix_doc.pdf’.
Also, the source file for the documentation in Texinfo format is provided. The directory ‘src/’
contains the source files in C programming language that you are free to inspect, learn from
and modify under the terms of the GNU General Public License (in file ‘COPYING’). There is a
further directory ‘src/my_getopt/’ that contains a separate, command-line parser contributed
by Benjamin Stiller, which has its own licensing terms (see the file ‘src/my_getopt/LICENSE’).
The directory ‘data/’ contains example 0-1 data sets and the directory ‘test/’ contains the test
suite that will be explained shortly.

In order to compile the programs to executable form, you need a compiler and compilation
instructions. The compilation instructions are provided in the file ‘Makefile’. To compile the
programs, write command make on your command prompt in a shell window, in the directory
‘bmix-1.1/’ containing the ‘Makefile’. This starts the necessary compilation process and pro-
duces the programs described in this documentation. To be able to run the programs, you can
add the directory with the executable programs to your environment variable PATH, or alter-
natively give the full path to the programs when running them or simply execute them in the
‘bmix-1.1/’ directory.

~/bmix-1.1/ % /home/myaccount/bmix-1.1/bin/bmix_train --data mydata ...

~/bmix-1.1/ % ./bin/bmix_train --data mydata ...

After the compilation, you can test that everything works correctly by following the testing
instructions in the next section.

2.2 Testing BernoulliMix program package

In order to test that you have compiled everything correctly and that the BernoulliMix program
package is working expectedly, you can go to the directory ‘test/’ and run the test suite. The

Chapter 2: Getting started with BernoulliMix 3

test suite has been written as a Korn shell script that you can execute with the command ksh

bmix_test (or just ./bmix_test). The test suite runs all five programs in a typical work flow
that feeds data and models to next programs. The test suite should not create any errors. The
test suite monitors the program behavior by storing their return status and interpreting the
overall results in the end. If error occurs during the test, the program reports that there are
errors and aborts prematurely. An example printout of a test run that runs correctly without
any errors looks like

~/bmix-1.1/test %

~/bmix-1.1/test % ksh bmix_test

Test script bmix_test: testing the BernoulliMix program package

--- Started bmix_test ---

Testing BernoulliMix, mixture model: c = 5, data: n = 1000, d = 2, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 5000, d = 2, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 1000, d = 5, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 5000, d = 5, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 1000, d = 10, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 5000, d = 10, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 1000, d = 20, ok

Testing BernoulliMix, mixture model: c = 5, data: n = 5000, d = 20, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 1000, d = 2, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 5000, d = 2, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 1000, d = 5, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 5000, d = 5, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 1000, d = 10, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 5000, d = 10, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 1000, d = 20, ok

Testing BernoulliMix, mixture model: c = 10, data: n = 5000, d = 20, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 1000, d = 2, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 5000, d = 2, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 1000, d = 5, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 5000, d = 5, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 1000, d = 10, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 5000, d = 10, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 1000, d = 20, ok

Testing BernoulliMix, mixture model: c = 20, data: n = 5000, d = 20, ok

--- Ended bmix_test ---

Called BernoulliMix programs 432 times, all tests ok.

~/bmix-1.1/test %

~/bmix-1.1/test %

All is well that ends well, indicated by all tests ok.

Exercises

1. On what computer and operating system did you compile the BernoulliMix program pack-
age? The author of the package would be very happy if you sent the printout of your test
results by e-mail. The list of compatible platforms will be listed on BernoulliMix home page.
To find out what system you are using, type the command uname -a in a shell window.

Chapter 3: Programs in BernoulliMix program package 4

3 Programs in BernoulliMix program package

There are five programs in BernoulliMix program package to work with finite mixture models
of multivariate Bernoulli distributions. With BernoulliMix, users can

1. Initialize the mixture model with randomly selected parameters (bmix_init)

2. Calculate the likelihood of data with the mixture model (bmix_like)

3. Train the mixture model from data using the EM algorithm (bmix_train)

4. Sample data from the mixture model according to ancestral sampling scheme (bmix_sample)

5. Cluster data with the mixture model by the maximum posterior rule (bmix_cluster)

All the programs are run from the command-line and can be combined in a flexible fashion,
for instance, to initialize and learn models from data. All inputs and outputs of the programs
are controlled with command-line options. There are alternative forms of command line options:
you may specify an option with a short format, such as ‘-f’ followed by the argument, or in
longer format, such as ‘--data’. The longer format is much more readable and less prone to
mistakes in practice. The argument to the option follows the option immediately or with a space
between the option and the argument. Options may be given in any order, but the argument
to the option (naturally) always follows the option. A space is recommended for improved
readability, since the mistaken form ‘-model-in’ really means ‘-m odel-in’, that tells to write
the model to a file ‘odel-in’. The correct form would be ‘--model-in my.model’. See following
sections for examples.

The five programs making the BernoulliMix program package are described in the following
sections. The basic function of each program and the available command-line options are de-
scribed. This basic usage is followed by examples to demonstrate practical use scenarios and
exercises to be used for educational purposes. The programs explained in the following sections
are bmix_init, bmix_train, bmix_like, bmix_sample, and bmix_cluster.

3.1 Initialize the mixture model parameters with bmix_init

The program ‘bmix_init’ initializes a mixture model with random parameter values and outputs
the initialized model. If a filename is specified as an argument to the option ‘-o’, the model
is written to a file, otherwise the model is printed on the screen (or technically speaking, the
standard output). The screen output can, of course, be redirected to a file, for instance.

With ‘bmix_init’, the mixing coefficients are always initialized to be equal and they will
sum to one. The parameters in the component distributions are drawn randomly from a uniform
distribution between desired probability values, or if not specified, between 0.25 and 0.75.

The program ‘bmix_init’ accepts the following options:

‘--data-dim,-d’

The dimension of the data must be specified with the option ‘--data-dim’ or with the corre-
sponding short form ‘-d’. Dimension of the data is necessary to specify the model; this option
is therefore mandatory.

‘--clusters, -c’

The number of component distributions are given with the option ‘--clusters’, which has
the short form ‘-c’. Also, the number of component distributions (or clusters in the clustering
context) is necessary to specify the model; this option is mandatory.

‘--model-out, -o’

Optionally, a model filename can be specified with the long option ‘--model-out’ or its
short form ‘-o’. It will write over any file without asking, so care is needed. If the option
‘--model-out’ is not given, the initialized model will be printed on the screen. An error is given
if it is not possible to open the model file for writing purposes.

Chapter 3: Programs in BernoulliMix program package 5

‘--min-probability, -a’

This option is used to give the minimum value for random parameters of the component dis-
tributions. Its use is optional. You can alternatively use the long version ‘--min-probability’
or the short version ‘-a’. An error is given if the probability value given as an argument is
beyond the natural range between 0 and 1, or if the minimum probability is larger than the
maximum probability. The default value is 0.25. It is technically possible to give 0.0 as the
minimum value, but this may lead to unwanted results (see Exercises).

‘--max-probability, -b’

This option specifies the maximum value for random parameters of the component distri-
butions. Its use is optional. Long version of the option is ‘--max-probability’ and the short
version is ‘-b’. An error is given if the probability value is beyond the natural range between 0
and 1, or if the maximum probability is smaller than the value for minimum probability. The
default value is 0.75.

‘--help, -h’

The option ‘--help’ prints out the available options for the program, both in short and long
forms, with their short description.

Examples

The first example demonstrates a useful feature present in all programs. Try it out and see for
yourself:

./bmix_init --help

The following example command initializes a mixture model with 2 component distributions
for data with data dimension 3. The parameters for the component distributions are drawn
from a uniform distribution between 0.25 and 0.75 (which is the default). The model is written
to a model file ‘small.model’.

./bmix_init --data-dim 3 --clusters 2 --model-out small.model

Same command as the previous one can also be given using the short options. Instead of
writing the mixture model to a file, the model is printed on screen.

./bmix_init -d 3 -c 2

The function of the first example may also be achieved using the shell redirection with the
command

./bmix_init --data-dim 3 --clusters 2 > small.model

The next example initializes a mixture model with 6 component distributions. The dimension
of data is 4. The parameters are drawn for a uniform distributions between 0.2 and 0.8. The
model is printed on screen.

./bmix_init -d 4 -c 6 --min-probability 0.2 --max-probability 0.8

Exercises

1. Create a mixture model with 3 component distributions for modeling data with data di-
mension 4. Identify the parameters of the mixture model in the resulting model file, that
is, find the correspondence of the mixture model equation for calculating and the numbers
on the model file.

2. Explain why the following initialization of the mixture model isn’t so useful (or even sensible)
in practice?

./bmix_init --data-dim 3 --clusters 4 --min-probability 0.5 \

--max-probability 0.5

3. What kind of consequences does it have if some of the parameters of the component dis-
tributions are initialized with zero values? Think in terms of the update equation of the
mixture model.

Chapter 3: Programs in BernoulliMix program package 6

3.2 Train the mixture model parameters with bmix_train

The program ‘bmix_train’ trains a finite mixture model of multivariate Bernoulli distributions
using the Expectation-Maximization (EM) algorithm. In order to specify the model, you have
to define the number of component distributions and the dimension of the data. In this case,
the model parameters will automatically be initialized randomly. Alternatively, you may give
an existing model as an input to the program. As parameters for the iterative EM training
procedure, ‘bmix_train’ takes the maximum number of iterations and/or the relative tolerance
for the change in the likelihood as a stopping criterion. If both are given, the training terminates
when either the maximum number of iterations is reached, or when the relative change in
the likelihood is smaller than the tolerance given as an argument to the option. Equivalent
sample size affects the estimation of the mixing coefficients by inputting virtual data points
(pseudo data) to the mixture components. When running the training procedure, the current
log-likelihood value is printed for each iteration. If no output is wished during the execution of
the programs, so called quiet mode can be invoked.

The program ‘bmix_train’ accepts the following options:

‘--data, -f’

The filename of the data set used during training the mixture model is given as an argument.
This option is mandatory.

‘--model-in, -i’

The filename of the initial model used in training is given as an argument to this option. If
this option is not used, the mixture model is automatically initialized with random parameter
values using the default settings.

‘--model-out, -o’

The filename of the final model is given as an argument to this option. The model output is
always written to a file. This is a mandatory option.

‘--clusters, -c’

The number of component distributions used in the model. This command-line option is only
used if no initial model is given and can not be used together with the option ‘--model-in’,
since the model already contains this information.

‘--iterations, -t’

The maximum number of iterations used during the training. The default is 100 iterations,
which is used if this option is not given.

‘--relative-change, -r’

The option ‘--relative-change’ specifies a stopping criterion based on the relative change
of likelihood between successive iterations of the EM algorithm. When the training converges,
the relative change in likelihood becomes smaller and smaller. When the change is smaller than
the specified tolerance, the training stops. This option can be used in connection with the
maximum number of iterations.

‘--equivalent-sample-size, -e’

Assign pseudo data, or virtual data points to the component distributions distributed equally
among the component distributions.

‘--quiet, -q’

The quiet mode suppresses any printing.

‘--help, -h’

Print a help indicating the options available in the ‘bmix_train’.

Chapter 3: Programs in BernoulliMix program package 7

Examples

The first example initializes and trains a mixture model with 2 component distributions using
the data set ‘marker.data’ with data dimension 6. After training for 10 iterations, the trained
model is written to a file ‘cancer.model’.

./bmix_train --data marker.data --data-dim 6 --clusters 2 \

--iterations 10 --model-out cancer.model

The second example reads an existing model file ‘init.model’ and trains a mixture model
with a data set ‘stuff.data’ for a very large number of iterations, or until the relative change
of likelihood is less than 0.005 (whichever comes first, most probably the relative change). The
trained model is written to a model file ‘final.model’. Neither the dimension of the data nor
the number of components of the mixture model need to be specified, since the initial model
includes this information.

./bmix_train --data stuff.data --model-in init.model \

--iterations 10000 --relative-change 0.005 --model-out final.model

Exercises

1. As an exercise, write the command in the first example using the short options.

2. Initialize a mixture model with two component distributions to model data with data di-
mension six and write the file to a model file called ‘init.model’. Then, using the same
initial model ‘init.model’ and the same data set ‘marker.data’, train a model three sepa-
rate times and write each of the resulting models to a file, say ‘out1.model’, ‘out2.model’,
‘out3.model’. For training, use commands like the following

./bmix_train --model-in init.model -f marker.data -t 20 \

--model-out out1.model

Compare the resulting models, and explain your observations.

3. Repeat the following training command three times (with different model names, such as
‘m1.model’, ‘m2.model’, ‘m3.model’). Explain why the results are not identical?

./bmix_train -c 2 --data marker.data --data-dim 6 -t 20 \

--model-out m1.model

4. Run one iteration of the EM algorithm for finite mixture model of multivariate Bernoulli
distributions with pen and paper (in the style of course exercise). First, calculate the
posterior probabilities of each data vector in each component distribution (the E-step), and
then perform the update of the parameters (M-step). Use a data set with two data vectors
of dimension two shown as follows.

1 1

0 1

Use the following model below as your initial model.

2 2

A finite mixture model with c=2, d=2

The mixture coefficients:

0.7 0.3

The paramaters of the component distributions:

0.5 0.4

0.2 0.7

Verify your results by running one iteration of EM with BernoulliMix. Make sure you get
the same results.

Chapter 3: Programs in BernoulliMix program package 8

3.3 Calculate the likelihood of data with the mixture model
with bmix_like

The program bmix_like calculates the probability or likelihood of data given the model. The
likelihood is the logarithm of the probability, either separately for individual data vectors or for
the whole data set as one number. Results are always printed on screen, shell redirection can
be used to write results to a file.

The program bmix_like accepts the following options:

‘--data, -f’

The name of the file following this option specifies the data set used in likelihood calculation.

‘--model-in, -i’

The name of the file following this option specifies the mixture model used in likelihood
calculation.

‘--sample-likelihood, -s’

If the option ‘-s’ is used, the program outputs likelihoods for every data vector, or sample,
separately. The output is printed on screen with one likelihood for each row (data vector) in
the data set.

‘--total-likelihood, -l’

With the option ‘-l’, the program calculates the total likelihood for the whole data set
assuming independence of data vectors in the data set. Average likelihood per data sample is
given and printed on the screen. This is the default, if neither of the options ‘-s’ or ‘-l’ are
given.

Examples

The first example reads the data from a file ‘small.data’ and a model from a file ‘tiny.model’
and prints the average likelihood per sample for the whole dataset on screen.

./bmix_like --data small.data --model-out tiny.model --total-likelihood

The second example reads the data from a file ‘this.data’ and a model from a file
‘that.model’ and prints the likelihood per sample on the screen, on as many rows as there
are rows in the data file ‘this.data’.

./bmix_like -f this.data -i that.model --sample-likelihood

The third example is a repetition of the second example, now executed with short options.
Results are redirected to a file ‘likelihoods.txt’.

./bmix_like -f this.data -i that.model -l > likelihoods.txt

Exercises

1. Initialize 10 separate mixture models with two component distributions to work with the
data set ‘marker.data’ (the dimension of the data set is six). Calculate the total likelihood
of the data ‘marker.data’ with each of the initial models and store the values. Then, train
each of the mixture models until convergence and calculate the total likelihood of the data
‘marker.data’ in the same way as above, but now for the trained models. Compare the
two sets of the likelihood values (10 values each) and explain your observations. You can
do the comparison visually with a boxplot, for instance.

3.4 Sample data from the mixture model with bmix_sample

The program ‘bmix_sample’ samples data from the mixture model using the ancestral sampling
scheme (Bishop, 2006). The sampled data is printed on the screen. If you want the sampled
data written to a file, you must use shell redirection (see Examples). The mandatory options
to the program are the name of the model file given as an argument to the option ‘-i’ and the
number of samples as an argument to the option ‘-n’.

Chapter 3: Programs in BernoulliMix program package 9

The program ‘bmix_sample’ accepts the following options:

‘--model-in, -i’

The name of the file given as an argument to this option specifies the mixture model to
sample from. This option is mandatory.

‘--number-of-samples, -n’

The number of sampled data vectors is given as an argument to this option. This option is
mandatory.

‘--help, -h’

The option ‘--help’ prints out the available options for the program, both in short and long
forms, with their short description.

Examples

The following example reads the model ‘tiny.model’ and samples 1000 data vectors according
to the mixture model. The command in the example prints the sampled data on the screen.

./bmix_sample --model-in tiny.model --number-of-samples 1000

This example differs from the previous example in that the sampled data is written to a
output data file ‘samples.data’.

./bmix_sample --model-in tiny.model --number-of-samples 1000 > samples.data

Exercises

1. Train a mixture model with 5 component distributions using the data set ‘dna_17.data’
until convergence and sample 100, 1000, 10000 data vectors from the trained model. Save
the sampled data to separate data files. Train three model, one from each of the sampled
data set and compare the resulting three models with the original trained model from which
you generated the samples. Think also how you can actually compare two models? Think
of solutions in terms of likelihood calculations.

3.5 Cluster data with the mixture model with bmix_cluster

The program ‘bmix_cluster’ clusters the data set into clusters according to the posterior proba-
bilities of the component distributions. A data vector is clustered to the component distribution
that maximizes its posterior probability. Clustering with ‘bmix_cluster’ is a hard clustering,
or partitioning of the data set into disjoint subsets. As an output, one can choose to print all
data belonging to one cluster (defined by a pre-defined component distribution), or to print the
cluster indices of all the data vectors. Printing the cluster indices is the default behavior, unless
the option ‘--cluster’ is given. The number of a cluster is defined from 1 to J in the order
they occur in the model file. The results are always printed on screen, but can be written to a
file using shell redirection.

The program ‘bmix_cluster’ accepts the following options:

‘--data, -f’

The data file following the option ‘--data’ is the data set to be clustered. This option is
mandatory.

‘--model-in, -i’

The argument used with the option ‘--model-in’ determines the model used in clustering,
that is, in calculating the posterior probabilities of the component distributions and allocating
data to the component distribution that has the maximum posterior probability. This option is
mandatory.

‘--cluster, -c’

Chapter 3: Programs in BernoulliMix program package 10

You can specify the number of a cluster as an argument to the option ‘--cluster’. In this
case, the printed data will have the maximum posterior probability in the given component
distribution among all of the component distributions. The number of a cluster ranges from 1
to the total number of component distributions (defined from 1 to J in the order they occur
in the model file). Giving this option overrides the default behavior of printing out the cluster
indices for each data vector separately.

‘--help, -h’

Prints the help and the available options to the program.

Examples

The first example takes the model ‘tiny.model’ and calculates the posterior probabilities of the
component distributions for each data vector in the data file ‘my.data’ and prints out the data
belonging to the cluster 1 according to the maximum posterior probability rule. The first cluster
is defined by the first component distribution in the model file.

./bmix_cluster --model-in tiny.model --data my.data --cluster 1

The second example performs the same clustering as the first example, but prints the cluster
indices on the screen.

./bmix_cluster --model-in tiny.model --data my.data

Exercises

1. Perform a clustering as presented in the first example above with a trained model and
compare the average of the clustered data with the corresponding parameter vector of the
component distribution.

2. Model selection refers to selecting the number of component distributions in a mixture
model. Repeat the model selection procedure presented in (Tikka and Hollmén, 2007) for
the included data set ‘dna_amp_chr_17.data’ (For a more detailed description, see the
next chapter). Try out different solutions ranging from 2 clusters to 30 clusters in a cross-
validation setting and base your selection on the average likelihood (averaged over repeated
runs). For cross-validation, you need to be able to divide data sets to a training part and
a validation part and store the results of the repeated runs of the training procedure. Plot
the results similarly to the results of (Tikka and Hollmén, 2007). How many components
would you select?

Chapter 4: Examples of 0-1 data sets 11

4 Examples of 0-1 data sets

In this chapter, we describe the format of the data and a few 0-1 data sets that are included as
examples in the BernoulliMix program package. The example data sets are located in the direc-
tory ‘bmix-1.1/data’. In addition to the example data sets, you can inspect the BernoulliMix
home page at the address http://www.cis.hut.fi/jhollmen/BernoulliMix for more pointers
on binary (0-1) data matrices. You are also welcome to submit your own.

The data files are text files that contain data vectors as rows of 0’s and 1’s separated by
whitespace on each row, the rows ended with a newline. The lines are concatenated together to
form the data set as shown in the following.

[0|1]<whitespace>[0|1]<whitespace>...[0|1]<newline>

[0|1]<whitespace>[0|1]<whitespace>...[0|1]<newline>

...

[0|1]<whitespace>[0|1]<whitespace>...[0|1]<newline>

4.1 Genetic marker data

The first data set in the file ‘marker.data’ contains measurements of 6 genetic biomarkers in
38 patients. The patients are the rows in the data file, the six measurements are recorded in
the columns of the data matrix. A 0 indicates a neutral result from the test, a 1 denotes an
interesting or an abnormal finding. This data file serves as an example of a small illustrative
data set. The first few lines of the data file are shown.

0 0 0 1 1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

1 1 0 0 0 0

4.2 DNA copy number amplifications in chromosome 17

The second data set ‘dna_amp_chr_17.dat’ contains data about certain type of mutations of
DNA in cancer patients. One row of data depicts structural aberrations of the chromosome 17
in a given cancer patient. The DNA copy number amplification means that the DNA material
is mutated and copied so that the DNA consists of multiple copies of the chromosomal material.
The data set contains DNA amplifications of the chromosome 17 in 342 cancer patients. There
are 12 chromosomal regions covering the chromosome 17 that make up the 12 attributes in each
row vector. These are, in fact, recordings from the chromosomal regions with names 17p13,
17p12, 17p11.2, 17p11.1, 17q11.1, 17q11.2, 17q12, 17q21, 17q22, 17q23, 17q24, 17q25. The
chromosomal regions which are amplified, are marked with ones, and the rest are marked with
zeroes. For more information, see (Myllykangas et al., 2008). As you will see, there are strong
correlations between adjacent attributes, since they are nearby regions in the chromosome and
since amplifications can cover large areas of the chromosome. This data set is well suited for
clustering. The first few lines of the data file are shown below.

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0

Chapter 5: Extending BernoulliMix 12

5 Extending BernoulliMix

This chapter describes how to extend BernoulliMix program package with your own programmed
functions in C programming language. First and foremost, BernoulliMix is meant to be a user-
level program package for working with finite mixture models of multivariate Bernoulli distri-
butions. It is expected that most users are satisfied with the available functionality and do not
have the need to extend BernoulliMix by additional programming. Therefore, the documenta-
tion will never be a full-blown developer’s guide. Rather, it gives some important hints about
data structures that are central to the operation of BernoulliMix program package. The data
structures governing data and models are covered in the following two sections. In the last
section, how to extend the BernoulliMix program package is presented by a way of example.
A full application ‘bmix_custom’ containing customized code to calculate the average of a 0-1
data set is presented. By following the example and learning about central data structures,
extending should be relatively straightforward. It still requires familiarity working with the
programming language C and the willingness (and patience) to browse through the existing pro-
gram code in BernoulliMix. Before going to the example ‘bmix_custom’, central data structures
in BernoulliMix are presented in the next sections.

5.1 Internal representation of the data sets

Externally, the data sets in BernoulliMix program package are represented as text files containing
0’s and 1’s. In real-world data sets, however, the data is typically very sparse, meaning that only
a very small portion of all variables are in fact 1’s. The proportion of 1’s in the data typically
ranges from 1 percent to 5 percent. We may take advantage of this property and represent the
data internally coding only the variables with 1’s and treating 0’s as default values. This can be
achieved by storing only the indices of 1’s of the data vector. As an example, a high-dimensional
data vector ‘0 1 1 0 0 0 0 0 0 1 0 1’ is converted to ‘2 3 10 12’, since only the 2nd, 3rd, 10th,
and 12th component in the data vector are 1’s. The memory savings are related to the degree
of sparsity in the data set.

Inside the BernoulliMix, the data vectors are stored in a linked list of struct bmix_entry

structures. A definition of struct bmix_entry structure is shown below. The variable data_dim
defines the true dimension of the original data and the needed number of index variables for
storing the data in stored in ncomp. The pointer comps points to the data vector, which is coded
as integer indices of 1’s, as explained above. Variables weight and mask are not currently in
use but may have natural use in extending the package. The field next points to the next data
vector in the uni-directional linked list of struct bmix_entry structures. The next variable of
the last vector of data has a value NULL.

/* data structure for one data vector: */

struct bmix_entry {

unsigned int data_dim;

unsigned int ncomp;

unsigned int *comps;

double *weight;

char *mask;

struct bmix_entry *next;

};

The customized application bmix_custom traverses through the data set, which serves as a
good example to learn from.

Chapter 5: Extending BernoulliMix 13

5.2 Internal representation of the models

In the previous section, the data structure in C programming language for representing data
vectors was presented. In similar fashion, structured data is used also for multivariate Bernoulli
distributions and for finite mixture models of multivariate Bernoulli distributions. A multivariate
Bernoulli distribution is defined with the following data structure struct bernoulli_entry:

/* data structure for a bernoulli distribution: */

struct bernoulli_entry {

int ncomp;

double *params;

char *mask;

};

The data structure includes information about the number of parameters in the Bernoulli
distributions in the variable ncomp. The pointer params points to an array of parameters.
Currently, mask is not used, but is reserved for masking off variables in future use.

The structure struct bernoulli_mixture defines the data structure for a mixture model of
Bernoulli distributions. A finite mixture model consists of mixture coefficients and component
distributions. The previous data structure struct bernoulli_entry is used for each of the
component distributions and a finite mixture model has an array containing pointers to these
data structures stored in the comp. The mixture weights are stored in an array mix_weight.
The variable ncomp tells how many component distributions there are in a mixture model. With
the variable equivalent_sample_size, pseudo-counts can be added to the data during model
training.

/* data structure for a mixture of bernoulli distributions: */

struct bernoulli_mixture {

int ncomp;

double *mix_weight;

double *equivalent_sample_size;

struct bernoulli_entry **comp;

};

During the Expectation-Maximization (EM) algorithm, training proceeds with a repeated
computation of the posterior probability matrix with the help of the Bayes’s theorem. This
computation is in fact the E-step of the EM algorithm. The M-step of the EM algorithm takes
both the data set and the posterior probability matrix as an input and produces a new set
of model parameters that are used in the next iteration of the EM algorithm. The posterior
probabilities only make sense in the context of a given model and a data set. Therefore, we
define a data structure struct b_likelihood that includes pointers to the mixture model in
the variable mixt (explained above) and a data set given by a pointer to the first data entry in
the data set as header. The variable table stores the posterior probability values. The variable
loglike stores the log-likelihood which is produced as a side-product in computing the posterior
probability matrix.

/* Data structure for likelihood */

struct b_likelihood {

double **table;

struct bernoulli_mixture *mixt;

struct bmix_entry *header;

double loglike;

};

In the next section, we’ll go through bmix_custom, an example application to extend the
functionality of BernoulliMix.

Chapter 5: Extending BernoulliMix 14

5.3 Extend BernoulliMix package by following the example
bmix_custom

It is possible to create your own application programs using the data structures and existing
functionality in the BernoulliMix program package. You can use any function part of Bernoul-
liMix and combine them with your program code (under the terms of the GNU General Public
Licence). As an example, there is a program template to compile a program ‘bmix_custom’.
The source code of the program is in the file ‘src/main_custom.c’. The extension, programmed
as an example, calculates the average value of a 0-1 data set. This functionality is not included
in BernoulliMix program package as a built-in feature, but by following the example, you can
learn to take advantage of the existing code and extend it for added functionality. The rules
for compiling ‘bmix_custom’ are included in the file ‘Makefile’. When creating a program with
your own custom functionality, similar to the example ‘bmix_custom’, you need to compile the
core functionality in the file ‘BernoulliMix.c’ and link it together with your own functionality
in the file ‘bmix_custom.c’. Naturally, all files need to be compiled to object files and then
linked together.

If your contributed program code extends over a screenful of code, say 20 or 30 lines of code,
it is advisable to place it in another file such as ‘bmix_contrib.c’ and just write the necessary
function calls in ‘bmix_custom.c’. This improves the readability of your code. The example
rule for compiling bmix custom follows this model: place all your changes in ‘bmix_contrib.c’
and change the ‘bmix_custom.c’ minimally just to achieve the behavior you want.

If you think your contribution is useful to others and you are willing to share it, you could
propose it as a contribution to the BernoulliMix package. In order to contact the author
of BernoulliMix and propose a contribution, take a look at the BernoulliMix home page at
http://www.cis.hut.fi/jhollmen/BernoulliMix for more precise information.

Acknowledgments 15

Acknowledgments

I wish to thank all people that have contributed to the BernoulliMix program package. Paul
Grouchy was the first user of the package, he has made many useful remarks and suggestions for
improvements. Niko Vuokko has actively contributed more suggestions and improvements that
I have been able to incorporate. I have received helpful comments from Gemma Garriga, Heikki
Mannila, Mika Sulkava, and Nikolaj Tatti concerning the programs and the documentation.
Janne Toivola and Mikko Korpela helped with compatibility testing. All the students of 2008
on the course T-61.5140 Machine Learning: Advanced Probabilistic Methods at the Helsinki
University of Technology have contributed to the current version of the package.

References 16

References

Christopher M. Bishop. Pattern recognition and machine learning, Springer-Verlag, 2006.

David Hand, Heikki Mannila, Padhraic Smyth. Principles of Data Mining, MIT Press, Adaptive
Computation and Machine Learning Series, 2001.

Jaakko Hollmén, Jouni K. Seppänen, and Heikki Mannila. Mixture models and frequent sets:

combining global and local methods for 0-1 data. In Daniel Barbará and Chandrika Kamath,
editors, Proceedings of the Third SIAM International Conference on Data Mining, pages 289–
293. Society of Industrial and Applied Mathematics, 2003.

Jaakko Hollmén and Jarkko Tikka. Compact and understandable descriptions of mixtures of

Bernoulli distributions. In M.R. Berthold, J. Shawe-Taylor, and N. Lavrac, editors, In Proceed-
ings of the 7th International Symposium on Intelligent Data Analysis (IDA 2007), volume 4723
of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, September 2007. Ljubljana,
Slovenia.

Jaakko Hollmén and Tapani Raiko. Learning mixture models courseware for finite

mixture distributions of multivariate Bernoulli distributions. In Stéphanie Jacquemont
and Colin de la Higuera, editors, Proceedings of Teaching Machine Learning workshop on
open problems and new directions. May 2008. Saint-Étienne, France. Available on the
http://www.cis.hut.fi/jhollmen/BernoulliMix.

Geoffrey McLachlan and David Peel. Finite Mixture Models. Wiley Series in Probability and
Statistics. John Wiley & Sons, 2000.

Geoffrey J. McLachlan.T The EM Algorithm and Extensions. John Wiley & Sons, 1996.

Geoffrey J. McLachlan and Kaye E. Basford. Mixture Models — Inference and Applications to

Clustering, volume 84 of Statistics: Textbooks and Monographs. Marcel Dekker, Inc., 1987.

Samuel Myllykangas, Jarkko Tikka, Tom Böhling, Sakari Knuutila and Jaakko Hollmén. Clas-

sification of human cancers based on DNA copy number amplification modeling. BMC Medical
Genomics,1:15, May 2008.

Jarkko Tikka, Jaakko Hollmén, and Samuel Myllykangas. Mixture modeling of DNA copy num-

ber amplification patterns in cancer. In Francisco Sandoval, Alberto Prieto, Joan Cabestany,
and Manuel Graa, editors, Proceedings of the 9th International Work-Conference on Artificial
Neural Networks (IWANN 2007), volume 4507 of Lecture Notes in Computer Science, pages
972–979. Springer-Verlag, June 2007. San Sebastin, Spain.

D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of finite mixture distri-

butions. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, 1985.

John W. Wolfe. Pattern Clustering by Multivariate Mixture Analysis, Multivariate Behavioral
Research, 5:329–350, July 1970.

Index 17

Index

A
API . 12

B
bmix . 2

‘bmix_cluster’ . 9

‘bmix_custom’ . 12, 14

‘bmix_init’ . 4

‘bmix_like’ . 8

‘bmix_sample’ . 8

‘bmix_train’ . 6

C
clustering . 9

customizing . 12

D
data sets . 11

E
EM algorithm . 6

Extending BernoulliMix . 14

G
Getting started . 2

I
installation . 2

Installation . 2

introduction . 1

L
likelihood . 8

P
programming . 12

programs . 4

R
regression testing . 2

S
sampling . 8

struct b likelihood . 13

struct bernoulli entry . 13

struct bernoulli mixture . 13

struct bmix entry . 12

T
test suite . 2

testing . 2

GNU Free Documentation License 18

GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

GNU Free Documentation License 19

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

GNU Free Documentation License 20

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

GNU Free Documentation License 21

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

GNU Free Documentation License 22

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

GNU Free Documentation License 23

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License 24

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

