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1 Introduction

Factor analysis is a well established statistical method that is commonly used to extract lower
dimensional manifolds of high dimensional data by exploiting the covariance structure inherent
in the data. In a broad sense, factor analysis assumes that the observed high dimensional data
is the result of a linear combination of a smaller number of “factors” plus some added noise.
In order to apply this technique effectively however, the user is required to supply a significant
amount of knowledge a priori. This may include an estimate of the underlying dimensionality,
as well as the number of mixture components (in the case that mixture models are used for
non-linear manifolds). In general, the data obtained is often high dimensional, and an accurate
estimate of the non-linearity and intrinsic local dimensionalities is hard to obtain.

Ideally we would like this knowledge to fall out of the inference process itself. It is also
desirable that the model be as simple as possible and yet adequately represent the structure
in the observed data. The problem is that more complex models (models which assume a
larger number of factors, and ones with a larger number of mixture componenets) will always
do a better job of fitting data than simpler models, and we must often resort to expensive
cross-validation techniques to ensure that overfitting does not take place.

In recent years, researchers have been turning to Bayesian techniques as a viable method of
doing data analysis. This framework is particularly appealing since the regularization of model
complexity falls naturally out of the Bayesian formalism of integrating over the space of possible
models. In order to use this framework however, we must begin by formulating factor analysis
as a probabilistic model. We shall start with the simplest formulation of factor analysis, and
gradually work up to more complex model structures, as we progress in the complexity and
generality of our statistical analysis.

2 The Probabilistic Factor Analysis Model

Mathematically, we can write the generative model for factor analysis as follows:

t = Wx + ε+ µ (1)
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Figure 1: Graphical model for maximum likelihood factor analysis

where we define

t→ d dimensional vector of observed variables

W→ d× q matrix of factor loadings

x→ q dimensional vector of hidden variables with distribution N (x; 0, I) I

µ→ mean of observed variables

ε→ noise with distribution N (ε; 0,Ψ)

Factor analysis assumes that the covariance matrix Ψ of the noise ε is a diagonal matrix
with possibly distinct elements. The consequences of this assumption are twofold. Firstly, by
assuming that Ψ is diagonal, we assume that the noise in each dimension is independent, and
any correlation between dimensions is accounted for by the factor loading matrix W. Secondly,
by allowing the diagonal elements of Ψ to be distinct, we allow the magnitude of the noise
in each dimension to be different. It can be proved that if we restrict Ψ to be a multiple of
the unit matrix (i.e. Ψ = σ2I) then factor analysis reduces to Principle Component Analysis
(PCA).

3 Maximum Likelihood Estimation

We begin by considering a simple version of the factor analysis model in which we do not
place distributions over the model parameters W and Ψ. Representing probabilistic systems in
terms of graphical models is rapidly becoming a useful tool in Bayesian analysis. The graphical
model corresponding to our current forumlation of the factor analysis model is shown in fig.

IWe use the notation N (x;µ,Σ) to denote the multivariate Normal distribution which is mathematically
defined as:

N (x;µ,Σ) = (2π)−d/2 |Σ|−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}

where d is the dimensionality of x.
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1. Throughout this document we shall adopt the convention that circular nodes in the graph
denote variables that have probability distributions over them, while we represent variables
that have no distributions with rectangular nodes.

The problem of fitting a factor analysis model to the observed data, can be thought of as
equivalent to the problem of determining the values of the model parameters W and Ψ which
when plugged into a generative factor analyzer are most likely to generate the observed data
distribution. In other words we are interested in maximizing the likelihood of generating the
observed data p(D|W,Ψ) given the model parameters W and Ψ. This approach is called the
Maximum Likelihood (ML) framework, and although this method is not truly Bayesian in the
sense of using Bayes RuleII to infer a posterior distribution over the parameter values, it will
lay the probabilistic foundation upon which the more sophisticated factor analysis models are
built.

Although the ML approach is a theoretically appealing solution, we often find that the expres-
sions for likelihood are analytically intractable. The Expectation Maximization (EM) algorithm
can be used to simplify the math considerably. It is this approach that we shall discuss in some
detail in the following sections.

3.1 Estimation of W and Ψ using EM

Given a set of N data points D = {ti} we wish to estimate the parameters W and Ψ. In the EM
formalism, instead of maximizing the likelihood of the observed data p(D|W,Ψ) (also called
the incomplete data likelihood), we attempt to maximize the joint likelihood p(D,X|W,Ψ)
of the observed data and all unobserved random variables in the model (also known as the
complete data likelihood). Since this quantity is a function of the random variable x which we
cannot observe, we must work with the expectation of this quantity w.r.t. some distribution
Q(X). It is easy to show that this expectation is always a lower bound to the incomplete
data likelihood for any arbitrary distribution Q(X), and is only equal to the incomplete data
likelihood when the expectation is taken w.r.t. the posterior distribution of X (i.e. when
Q(X) = p(X|D,W,Ψ)). The logIII complete data likelihood can be written as follows:

lc(W,Ψ) = log p(D,X|W,Ψ) (2)

= log
N∏

i

p(ti,xi|W,Ψ)

=
N∑

i

log p(ti,xi|W,Ψ)

=
N∑

i

log p(ti|xi,W,Ψ) +
N∑

i

log p(xi|W,Ψ)

IIBayes famous rule: p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x)dx

IIISince the log function is monotonic, our analysis is considerably simplified if we maximize the log-likelihood
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but since the distribution of x is independent of W and Ψ

lc(W,Ψ) =
N∑

i

log p(ti|xi,W,Ψ) +
N∑

i

log p(xi) (3)

Since the second term in this equation is independent of W and Ψ it suffices (for the purposes
of maximizing eq. (3) w.r.t. W and Ψ) to think of the complete log-likelihood as simply:

lc(W,Ψ) =

N∑

i

log p(ti|xi,W,Ψ) (4)

Using the definition of our probabilistic factor analysis model — in particular the linear de-
pendence of t on ε and our assumption of Gaussian noise — we can prove that the distribution
of t given x is N (t; Wx,Ψ)IV. Hence we can expand eq. (4) as follows:

lc(W,Ψ) =
N∑

i

log
1

(2π)d/2 |Ψ|1/2
exp

{
−1

2
(ti −Wxi)

TΨ−1(ti −Wxi)

}
(5)

= −Nd
2

log(2π)− N

2
log |Ψ| − 1

2

N∑

i

(
tTi Ψ−1ti − 2tTi Ψ−1Wxi + xTi WTΨ−1Wxi

)

= k − N

2
log |Ψ| − 1

2

N∑

i

(
tTi Ψ−1ti − 2tTi Ψ−1Wxi + Tr

[
WTΨ−1Wxix

T
i

])
V (6)

3.1.1 The M step

The “M” step in EM takes the expected complete log-likelihood as defined in eq. (7) and
maximizes it w.r.t. the parameters that are to be estimated; in this case W and Ψ.

To estimate W we start with eq. (6). Taking expectations and differentiating w.r.t W we get:

〈lc(W,Ψ)〉 = k − N

2
log |Ψ| − 1

2

N∑

i

(
tTi Ψ−1ti − 2tTi Ψ−1W 〈xi〉

+ Tr
[
WTΨ−1W

〈
xix

T
i

〉])

∂ 〈lc(W,Ψ)〉
∂W

= −1

2

N∑

i

(
−2Ψ−1ti 〈xi〉T + 2Ψ−1W

〈
xix

T
i

〉)
VI (7)

IVSince 〈t|x〉 = 〈(Wx + ε)|x〉 = Wx and Cov(t|x) =
〈
(t−Wx)(t−Wx)T |x

〉
=
〈
εεT |x

〉
= Ψ

VHere we have used the relation xTAx = Tr
[
AxxT

]
, where Tr [·] is the trace operator.

VIWhere we have used the relations ∂
∂X

ATXB = ABT , and ∂
∂X

Tr
[
XTAXB

]
= AXB + ATXBT .
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Setting to zero and solving for W gives us:

W =

(
N∑

i

ti 〈xi〉T
)(

N∑

i

〈
xix

T
i

〉
)−1

(8)

To maximize w.r.t. Ψ we start with eq. (5). Taking expectations and differentiating w.r.t.
Ψ−1 (Note that differentiating w.r.t. Ψ−1 instead of Ψ makes the analysis simpler) we get:

〈lc(W,Ψ)〉 =

〈
N∑

i

log
1

(2π)d/2 |Ψ|1/2
exp

{
−1

2
(ti −Wxi)

TΨ−1(ti −Wxi)

}〉

= −Nd
2

log(2π)− N

2
log |Ψ| − 1

2

N∑

i

〈
(ti −Wxi)

TΨ−1(ti −Wxi)
〉

∂ 〈lc(W,Ψ)〉
∂Ψ−1 =

N

2
Ψ− 1

2

N∑

i

〈
(ti −Wxi)(ti −Wxi)

T
〉

VII

=
N

2
Ψ− 1

2

N∑

i

tit
T
i +

(
N∑

i

ti 〈xi〉T
)

WT − 1

2
W

(
N∑

i

〈
xix

T
i

〉
)

WT

Setting to zero and solving for Ψ with the help of eq. (8) gives us:

Ψ =
1

N
diag

[
N∑

i

tit
T
i −

(
N∑

i

ti 〈xi〉T
)

WT

]
(9)

We have introduced the diag [·] operator in Eq. (9) so that Ψ is constrained to be a diagonal
matrix.

3.1.2 The E step

We are still left with the problem of determining the actual values of 〈xi〉 and
〈
xix

T
i

〉
. As we

mentioned earlier, in order to guarantee that we are indeed maximizing the incomplete data
likelihood, it is essential that the expected complete log likelihood (which is its lower bound)
is maximized by taking the expectation w.r.t. p(X|D,W,Ψ). Hence the expectations 〈xi〉 and〈
xix

T
i

〉
should actually be computed w.r.t. p(X|D,W,Ψ).

In this relatively simplified setting, we can actually obtain an analytical form for the posterior
distribution p(x|t) using Bayes rule as follows:

p(xi|ti) ∝ p(ti|xi)p(xi)
VIIWhere we have used the relations ∂

∂X
log |X| = (X−1)T , and ∂

∂X
ATXB = ABT .
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Hence

log p(xi|ti) = log p(ti|xi) + log p(xi) + const

= −d
2

log 2π − 1

2
log |Ψ| − 1

2
(ti −Wxi)

TΨ−1(ti −Wxi)

− q

2
log 2π − 1

2
xTi xi + const

(10)

= −1

2

(
tTi Ψ−1ti − 2xTi WTΨ−1ti + xTi (I + WTΨ−1W)xi

)
+ const (11)

From the quadratic form we can infer that the posterior distribution of xi is Gaussian:

p(xi|ti) = N
(
xi; m

(i)
x ,Σx

)
(12)

with

Σx = (I + WTΨ−1W)−1 (13)

m(i)
x = ΣxWTΨ−1ti

= (I + WTΨ−1W)−1WTΨ−1ti

= βti (14)

where we define β ≡ (I + WTΨ−1W)−1WTΨ−1

Given this distribution we can infer the required expectations as follows:

〈xi〉 = m(i)
x = βti (15)

〈
xix

T
i

〉
= Σx + m(i)

x m(i)
x

T

= (I + WTΨ−1W)−1 + βtit
T
i β

T

= I−WT (Ψ + WWT )−1W + βtit
T
i β

T (16)

Using the Sherman-Morrison-Woodbury matrix inversion theorem, we can derive the following
result (refer to appendix A.2):

WT (Ψ + WWT )−1 = (I + WTΨ−1W)−1WTΨ−1 = β

Notice that the second form is much easier to evaluate since (I + WTΨ−1W) is a smaller
matrix than (Ψ + WWT ) and Ψ is diagonal. Plugging this result into eq. (16) we get:

〈
xix

T
i

〉
= I− βW + βtit

T
i β

T

4 Inferring Underlying Dimensionality — Gaussian Ap-
proximation

The preceding section arrives at an extremely elegant solution to the problem of estimating the
values of W and Ψ in our factor analysis model. However, one must still make an assumption
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Figure 2: Graphical model for inferring the underlying latent variable dimensionality using a
gaussian approximation.

of the dimensionality q of the underlying distribution. In doing so one runs the risk of selecting
too high a value of q and overfitting the data by explaining noise, or of selecting too low a
value and over generalizing, resulting in not capturing the true data complexity.

Each column of the W matrix represents one dimension of the underlying latent variable space.
What is required is a way for us to determine how many columns of W are actually relevant
based on the data that is presented to us. In some sense, the number of columns of W is a
measure of our factor analysis model complexity — the larger the value of q, the greater the
model complexity since it can explain (or generate) a larger family of data sets.

In order to determine the most appropriate latent variable dimensionality, we start with the
maximum possible value of q = d − 1, but place a prior distribution over each of the d − 1
columns of W parameterized by a precision parameter α which functions as an inverse spherical
covariance for each column. Hence we can write the distribution of W as follows:

p(W|α) =
d−1∏

i

(αi
2π

)d/2
exp

(
−αi

2
wT
i wi

)
(17)

This change in model structure is reflected in our updated graphical model as shown in figure 2.
Here we see a new node α being added as a parent to W. Also the W node has been changed
from a rectangular node to a circle, reflecting the fact that we now have a prior distribution
over W and that we can estimate a posterior distribution for this variable using Bayesian
analysis rather than merely compute a maximum likelihood estimate of its value. Using Bayes
rule we have:

p(W|D,α) ∝ p(D|W)p(W|α) (18)

and hence

log p(W|D,α) = const+ log p(D|W) + log p(W|α) (19)

Since we have a distribution over W, in practice we would like to find the maximum a posteriori
value WMP of this distribution, which means finding the value of W which maximizes eq. (19).
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Since we know that the complete log-likelihood lc is a lower bound to the true data log-
likelihood, we can substitute lc for log p(D|W) and try to maximize this new equation.

log p(W|D,α) = const+ lc(W,Ψ) + log p(W|α) (20)

which using eq. (17) and discarding terms that are independent of W and Ψ gives us:

log p(W|D,α) = lc(W,Ψ)− 1

2

d−1∑

i

αiw
T
i wi (21)

= lc(W,Ψ)− 1

2
Tr
[
WAWT

]
(22)

Which is simply the complete log-likelihood with a regularization term that penalizes solutions
of W with higher intrinsic dimensionality. EM still applies within this framework and we can
differentiate the expectation of this regularized likelihood to derive the update equations for
W and Ψ. Substituting from eq. (6) and taking expectations we get:

〈log p(W|D,α)〉 = −1

2

N∑

i

(
tTi Ψ−1ti − 2tTi Ψ−1W 〈xi〉+ Tr

[
WTΨ−1W

〈
xix

T
i

〉])

− 1

2
Tr
[
WAWT

]
− N

2
log |Ψ|+ k (23)

Maximizing w.r.t. W we get:

∂ 〈log p(W|D,α)〉
∂W

= −1

2

N∑

i

(
−2Ψ−1ti 〈xi〉T + 2Ψ−1W

〈
xix

T
i

〉)
−WA = 0VIII (24)

Hence

W
N∑

i

〈
xix

T
i

〉
+ ΨWA =

N∑

i

ti 〈xi〉T (25)

or equivalently

WS + ΨWA = m (26)

Where we define S ≡∑N
i

〈
xix

T
i

〉
and m ≡∑N

i ti 〈xi〉T

Since Ψ is a diagonal matrix, we can obtain a closed form solution for each row of W individ-
ually. For the kth row:

wk = mk(S + pkA)−1 (27)

Where wk and mi are the kth rows of W and m respectively, pk is the kth diagonal element
of Ψ, and 1 ≤ k ≤ d.

VIIIWhere we have used the relation ∂
∂X

Tr
[
XAXT

]
= X

(
A + AT

)
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4.1 Estimation of α

From the graphical model in figure 2 we see that in order to compute the likelihood of the data
given the hyperparameters α we must integrate over the distribution of W

p(D|α) =

∫
p(D|W,α)p(W|α)dW

=

∫
p(D|W)p(W|α)dW (28)

Now since we assume that our observed data is Independently Identically Distributed (IID) we
can write:

p(D|W) =

N∏

i

p(t|W) (29)

=

[
1

(2π)d/2 |C|1/2

]N
exp

{
−1

2

N∑

i

tTi C−1ti

}
(30)

=

[
1

(2π)d/2

]N
exp

{
−1

2

N∑

i

(
tTi C−1ti + log |C|

)
}

(31)

Where C = WWT + Ψ is the covariance matrix of the observed dataIX. Hence using eq. (17)
for p(D|W) along with eq. (31) in eq. (28) we get:

p(D|α) ∝
[
d−1∏

i

(αi
2π

)d/2
]∫

exp

{
−1

2

N∑

i

(
tTi C−1ti + log |C|

)
− 1

2

d−1∑

i

αiw
T
i wi

}
dW (32)

=

[
d−1∏

i

(αi
2π

)d/2
]∫

exp {−S(W)} dW (33)

Where we define

S(W) ≡ 1

2

N∑

i

(
tTi C−1ti + log |C|

)
+

1

2

d−1∑

i

αiw
T
i wi (34)

IXThis is trivially shown:

〈t〉 = 〈Wx + ε〉 = W 〈x〉+ 〈ε〉 = 0

Cov(t) =
〈
ttT

〉
=
〈

(Wx + ε)(Wx + ε)T
〉

= W
〈
xxT

〉
WT + W

〈
xεT

〉
+
〈
εxT

〉
WT +

〈
εεT

〉

= WWT + 0 + 0 + Ψ

= WWT + Ψ ≡ C

9
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Approximate S(W) with a second-order Taylor series expansion around the extremal point
WMP . Since the first order derivative at an extremal is zero, our expansion does not contain
a linear term.

S(W) ≈ S(WMP ) +
1

2
(W −WMP )TH(W −WMP ) (35)

Where H is the d(d − 1) × d(d − 1) Hessian matrix of S(·) evaluated at WMP . Using this
approximation to S(W) we can now evaluate the integral

∫
exp {−S(W)} dW ≈

∫
exp

{
−S(WMP )− 1

2
(W −WMP )TH(W −WMP )

}
dW

= exp {−S(WMP )}
∫

exp

{
−1

2
(W −WMP )TH(W −WMP )

}
dW

= exp {−S(WMP )} (2π)d(d−1)/2
∣∣H−1

∣∣1/2 (36)

Where the value of the integral is now simply the normalizing constant for a gaussian distri-
bution in W with covariance H−1. Substituting this result back into eq. (33) we get:

p(D|α) ∝
[
d−1∏

i

(αi
2π

)d/2
]

exp {−S(WMP )} (2π)d(d−1)/2
∣∣H−1

∣∣1/2 (37)

or equivalently

log p(D|α) = const+
d

2

d−1∑

i

logαi − S(WMP )− 1

2
log |H| (38)

Differentiating w.r.t. αk we get:

∂ log p(D|α)

∂αk
=

∂

∂αk

[
d−1∑

i

d

2
logαi

]
− ∂

∂αk
S(WMP )− 1

2

∂

∂αk
log |H| (39)

Now using eq. (34) we have:
∂

∂αk
S(WMP ) =

1

2
‖wMP

k ‖2 (40)

In order to compute the partial derivative of H w.r.t. αk let us express S(W) as follows:

S(W) = EW + Eα (41)

where we define EW ≡ 1
2

∑N
i

(
tTi C−1ti + log |C|

)
and Eα ≡ 1

2

∑d−1
i αiw

T
i wi. Hence we can

write the Hessian of S(W) as:
H = ∇∇EW +∇∇Eα (42)

10
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Now if we assume that W is structured such that each column is lined up to form a large
vector of dimensionality d(d− 1), then we can write:

∇∇Eα =




α1Id 0 . . . . . . . . . .
0 α2Id 0 . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . 0 αd−1Id


 (43)

Hence we can view ∇∇Eα as a block diagonal matrix, where each d × d block along the
diagonal is a unit matrix scaled by a corresponding αi. Let λij be the jth eigenvalue of the ith

diagonal submatrix of ∇∇EW. Since the determinant of a matrix is equal to the product of
it’s eigenvaluesX, we can write:

∂ log |H|
∂αk

=
∂

∂αk
log

d−1∏

i

d∏

j

(λij + αi)

=
∂

∂αk

d−1∑

i

d∑

j

log(λij + αi)

=

d∑

j

1

λkj + αk

= Trk
[
H−1

]
(44)

Hence substituting from eqs. (40) and (44) back into eq. (39) gives us:

∂ log p(D|α)

∂αk
=

d

2αk
− 1

2
‖wMP

k ‖2 − 1

2
Trk

[
H−1

]
= 0 (45)

Solving for αk we arrive at the update equation:

αk =
d

‖wMP
k ‖2 + Trk [H−1]

(46)

If we make the assumption that the parameter W is well determined, then its posterior distri-
bution will be sharply peaked, which means H will have large eigenvalues. This also implies
that Trk

[
H−1

]
will be very small. Under this assumption, eq. (46) for αk reduces to:

αk =
d

‖wMP
k ‖2 (47)

This avoids costly computation and manipulation of the d(d− 1)× d(d− 1) Hessian matrix.

XThis can be proved trivially; we can decompose a matrix A into the product A = VDVT , where V is a
matrix of eigenvectors, and D is a diagonal matrix of the corresponding eigenvalues λi. Since V is orthonormal
(implying |V| = 1), we have |A| = |D| = ∏

i λi.

11
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When doing the Taylor series expansion of S(W) in eq. (35) we assumed that our current
estimate of W is a (possibly local) extremum. This assumption was important since it allowed
us to eliminate the linear term in the expansion and retain only the quadratic term, making
it a Gaussian approximation to the posterior distribution. Algorithmically this means that we
should perform our EM iterations to update W (and Ψ) given a fixed current estimate of the
value of α. When these iterations converge then we know that we have reached an extremum,
and we can use the current value of W to re-estimate α. Thus our algorithm performs the EM
updates with an outer loop that periodically re-estimates the value of α.

In general since EM operates in a maximum likelihood framework, it will favour higher dimen-
sionalities of W since this will always result in an increase in the likelihood. However, by using
the α as a precision parameter on each of the columns of W we create a penalized likelihood
which seeks to limit the model complexity (dimensionality). By formulating the problem this
way EM results in a compromise between maximizing the dimensionality to increase likelihood,
and reducing the penalizing term (which increases with the dimensionality).

5 Inferring Underlying Dimensionality — Variational Ap-
proximation

If anything, the previous section should give us a hint that as the model complexity increases,
integrating over the model parameter distributions becomes increasingly more complex, and
indeed eventually analytically intractable. In the previous section itself, we fit a Gaussian
distribution to the posterior distribution of W in order to be able to integrate over it. We could
also adopt a sampling approach and use Monte Carlo methods to give us an approximation to
the true distribution. In general however, sampling approaches tend to be expensive; both in
terms of computation and in terms of storage since the probability distributions are effectively
represented by a collection of samples.

In this section we will explore Variational Methods as another method of approximating the
posterior distributions of model parameters. Variational methods have long been used in
statistical physics, and have recently been getting significant attention from the statistical
learning community. In essence, variational methods allow us to create a bound on the function
of interest (in our case the log-evidence for the observed data). Subsequent analysis then works
towards minimizing the difference between the bound and the true function.

Let us begin by augmenting our factor analysis model to place a probability distribution over
all parameters whose cardinality scales with model complexity. As shown in fig. 3, we have
now placed a probability distribution over the α precision parameters as well. Since these
parameters cannot be negative (being inverse covariances for each column vector of W), we
cannot place a Gaussian distribution over them. Instead we place a Gamma prior over the α
variables:

p(α) =

q∏

i

G (αi; aα, bα) XI (48)
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Figure 3: Graphical model for learning a factor analyzer with automatic dimensionality esti-
mation

Let us now look at the log probability of the observed data D (also known as the evidence).
This can be obtained by marginalizing over all the model parameters and hidden variables as
follows:

log p(D) = log

∫
p(D,X,W,α)dXdWdα (49)

Using Jensen’s inequality, we can lower-bound this quantity as follows:

log p(D) ≥
∫
Q(X,W,α) log

p(D,X,W,α)

Q(X,W,α)
dXdWdα = F(Q) (50)

for any arbitrary distribution Q(X,W,α).

Maximizing the functional F(Q) is equivalent to minimizing the Kullback-Liebler divergence
between Q and the true posterior distribution p(X,W,α|D)XII. There are two ways of assum-
ing a functional form for Q. One is to assume a parameterized version of the distribution which
simplifies its analytical form at the expense of introducing extra “variational” parameters that
must be optimized. Another approach is to assume a factorized form for the distribution. This
is the approach we shall take here. We assume the factorization:

Q(X,W,α) = Q(X)Q(W)Q(α) (51)

XIWe use the notation G (x; a, b) to denote the Gamma distribution which is mathematically defined as:

G (x; a, b) =
ba

Γ(a)
xa−1 exp(−bx)

XIIThis can be easily proved as follows:

log p(D) =

∫
Q(θ) log p(D)dθ =

∫
Q(θ) log

p(D, θ)

p(θ|D)
dθ =

∫
Q(θ) log

p(D, θ)

Q(θ)
dθ +

∫
Q(θ) log

Q(θ)

p(θ|D)
dθ

=

∫
Q(θ) log

p(D, θ)

Q(θ)
dθ +KL {Q(θ)‖p(θ|D)}

13
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Using the calculus of variations we can prove (see appendix B) that the solution for each of
the individual Q distributions that maximizes the functional F(Q) is of the form:

Qi(θi) =
exp 〈log p(D,θ)〉Qk 6=i∫

exp 〈log p(D,θ)〉Qk 6=i dθi
(52)

or equivalently

logQi(θi) = 〈log p(D,θ)〉Qk 6=i + const (53)

Where θ = {X,W,α} and 〈·〉Qk 6=i denotes expectation taken with respect to every distribution

other than Qi(θi).

Let us first determine the expression for p(D,θ). The graphical model makes this easy to
express:

p(D,θ) =

[
N∏

i

p(ti|xi,W)p(xi)

]
p(W|α)p(α) (54)

and hence

log p(D,θ) =

N∑

i

log p(ti|xi,W) +

N∑

i

log p(xi) + log p(W|α) + log p(α) (55)

= −N
2

log |Ψ| − 1

2

N∑

i

(ti −Wxi)
TΨ−1(ti −Wxi)

− 1

2

N∑

i

xTi xi

+
d

2

q∑

i

logαi −
1

2

q∑

i

αiw
T
i wi

+

q∑

i

(aα − 1) logαi −
q∑

i

bααi + const (56)

5.1 Estimation of Q(α)

To obtain an expression for Q(α) using eq. (53), we take expectations of eq. (56) w.r.t. the
distribution Q(W)Q(X). All terms not involving α can conveniently be clubbed into a const
term at the end of the equation, and contribute to the normalizing constants in the distribution

14
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of α.

〈log p(D,θ)〉Q(W)Q(X) =
d

2

q∑

i

logαi −
1

2

q∑

i

αi
〈
‖wi‖2

〉

+

q∑

i

(aα − 1) logαi −
q∑

i

bααi + const

=

q∑

i

(aα +
d

2
− 1) logαi −

q∑

i

(
bα +

〈
‖wi‖2

〉

2

)
αi + const (57)

Since we have
logQ(α) = 〈log p(D,θ)〉Q(W)Q(X) + const (58)

we can infer that Q(α) is of the form:

Q(α) =

q∏

i

Q(αi) (59)

=

q∏

i

G
(
αi; âα, b̂

(i)
α

)
(60)

where

âα = aα +
d

2
(61)

b̂(i)α = bα +

〈
‖wi‖2

〉

2
(62)

5.2 Estimation of Q(W)

In order to estimate Q(W) we start with eq. (56) and retain only the terms that contain W

log p(D,θ) = −1

2

N∑

i

(ti −Wxi)
TΨ−1(ti −Wxi)−

1

2

q∑

i

αiw
T
i wi + const (63)

This equation can be rewritten as follows:

log p(D,θ) = −1

2

N∑

i

d∑

k

pk
(
tik −wT

k xi
)2 − 1

2

d∑

k

wT
k Awk + const

= −1

2

N∑

i

d∑

k

pk
(
t2ik − 2tikw

T
k xi + wT

k xix
T
i wk

)
− 1

2

d∑

k

wT
k Awk + const

= −1

2

d∑

k

pk

[
N∑

i

t2ik − 2wT
k

(
N∑

i

tikxi

)
+ wT

k

(
N∑

i

xix
T
i +

1

pk
A

)
wk

]
+ const

(64)

15



DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT 

where wk is a column vector corresponding to the kth row of W, A = diag [α], and pk is the
kth diagonal element of Ψ−1. Taking expectations according to Q(X)Q(α) we get:

〈log p(D,θ)〉Q(X)Q(α) = −1

2

d∑

k

pk

[
N∑

i

t2ik − 2wT
k

(
N∑

i

tik 〈xi〉
)

+wT
k

(
N∑

i

〈
xix

T
i

〉
+

1

pk
〈A〉

)
wk

]
+ const (65)

Since this is a quadratic in wk and since we know that

logQ(W) = 〈log p(D,θ)〉Q(X)Q(α) + const (66)

we can infer that Q(W) is of the form:

Q(W) =
d∏

k

Q(wk) (67)

=

d∏

k

N
(
wk; m(k)

w ,Σ(k)
w

)
(68)

where

Σ(k)
w =

(
pk

N∑

i

〈
xix

T
i

〉
+ 〈A〉

)−1

(69)

m(k)
w = pkΣ

(k)
w

(
N∑

i

tik 〈xi〉
)

(70)

5.3 Estimation of Q(X)

Take expectations of eq. (56) w.r.t. Q(W)Q(α) and (for simplicity) retain only the terms that
contain xi.

〈log p(D,θ)〉Q(W)Q(α) = −1

2

N∑

i

(
tTi Ψ−1ti − 2xTi

〈
WT

〉
Ψ−1ti + xTi

〈
WTΨ−1W

〉
xi
)

− 1

2

N∑

i

xTi xi (71)

= −1

2

N∑

i

(
tTi Ψ−1ti − 2xTi

〈
WT

〉
Ψ−1ti + xTi

(
I +

〈
WTΨ−1W

〉)
xi
)

(72)
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Since we have
logQ(X) = 〈log p(D,θ)〉Q(W)Q(α) + const (73)

we can infer that Q(X) is of the form:

Q(X) =
N∏

i

Q(xi) (74)

=
N∏

i

N
(
xi; m

(i)
x ,Σx

)
(75)

where

Σx =
(
I +

〈
WTΨ−1W

〉)−1
(76)

m(i)
x = Σx

〈
WT

〉
Ψ−1ti (77)

5.4 Calculation of the required expectations

Most of the moments required in the update equations can be obtained directly given the form
of the distributions. For a Gaussian distribution for example, the expectation is simply the
mean of the distribution. A slightly non-trivial expectation is

〈
WTΨ−1W

〉
which occurs in

eq. (76). To compute this expectation we use the fact that Ψ−1 is a diagonal matrix as follows:

〈
WTΨ−1W

〉
=

〈
d∑

k

1

pk
wkw

T
k

〉

=

d∑

k

1

pk

〈
wkw

T
k

〉
(78)

Where wk is the kth row of W, and pk is the kth diagonal element of Ψ. Since we have shown
that the distribution of each row of W is Gaussian with covariances and means as shown in
eqs. (69) and (70) we can compute the required second order moments trivially.

5.5 Maximization equation for Ψ

The noise covariance matrix is estimated using the standard EM algorithm. Differentiating
the expectation of Eq. (56) w.r.t. Ψ−1, we get:

Ψ =
1

N

N∑

i

〈
(ti −Wxi)(ti −Wxi)

T
〉

(79)

=
1

N

[
N∑

i

tit
T
i − 2 〈W〉

( N∑

i

〈xi〉 tTi
)

+
N∑

i

〈
Wxix

T
i WT

〉
]

(80)
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Our only difficulty is in computing the term
∑N
i

〈
Wxix

T
i WT

〉
. We can work our way around

this by noting that only the diagonal terms of Ψ are of interest. For this term, the kth diagonal
element can be written as follows:

diagk

[
N∑

i

〈
Wxix

T
i WT

〉
]

=
N∑

i

〈
wT
k xix

T
i wk

〉
(81)

= Tr

[
〈
wkw

T
k

〉 N∑

i

〈xixi〉
]

(82)

= Tr

[
Σk

w

(
NΣx +

N∑

i

〈xi〉 〈xi〉T
)]

+ 〈wk〉
(
NΣx +

N∑

i

〈xi〉 〈xi〉T
)
〈wk〉T

(83)

5.6 Measuring success: High F(Q) or low KL {Q(θ)‖p(θ|D)}?

It must be pointed out that the variational framework is not inherently an approximation in
itself. Free-form maximization of the functional F(Q) results in the solution that effectively
reduces KL {Q(θ)‖p(θ|D)} to zero. However, it must be pointed out that we introduce the
approximation, when we restrict Q to have a factorized form. Given this restriction, a high
value of F(Q) does not necessarily mean that we have obtained a good approximation to the
form of the posterior distribution. Conversely, a low value for the KL divergence between Q
and the true posterior does not imply that we will have the tightest bound on the log-evidence
of the data.

Which quantity then, is an appropriate measure of success? If we are doing Bayesian inference,
then we are most likely interested in obtaining an approximation to the posterior that is as
good as possible. In this case, the KL divergence is the true measure of how well we have
inferred our model parameters from the data. If however, we are doing model comparison,
then we would probably be more interested in achieving the tightest possible bound on the
log-evidence of the data under each of the models we are comparing so that we can accurately
judge the suitability of each model to the dataset at hand.

6 Modelling Nonlinear Manifolds — Mixture Models

Factor analysis is a linear model. This very fact makes it unsuitable for modelling non-linear
manifolds. By using multiple factor analyzers however, we can create a soft partition of the
data space such that each factor analyzer models a locally linear region of the manifold.

Using a mixture of factor analysis requires considerable extension to our graphical model as
we can see in fig. 4. Each individual factor analyzer must automatically position itself within
the input space (by adjusting its mean vector), and determine its appropriate factor loading
matrix. In addition, each factor analyzer must also determine its own dimensionality. These
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Figure 4: Graphical model for learning a mixture of factor analyzers with local dimensionality
estimation

modifications are evident in the fact that we have now placed the µ, W, and α variables within
a plate that indexes over the M factor analyzers in our mixture model.

In the previous sections we have glossed over the determination of the µ parameter since we
were dealing with a single factor analyser, and could subtract the sample mean from the data
before performing our analysis. Indeed, if we had actually decided to perform computations
for the µ variable in the preceeding models we would have arrived at exactly the equations
for the sample mean of the data (i.e. 1

N

∑N
i ti). In this section, we can no longer ignore the

means since we are adapting the positions of our factor analyzers to account for local linearities
within the data. Each mean is assigned a circular Gaussian prior with zero mean and precision
(inverse covariance) βm.

In addition to parameterizing each model, we introduce a hidden variable si for each data
point that indicates which mixture component generated the data. The distribution of si is
multinomial with a probability vector π, which in turn is modelled by a conjugate Dirichlet
distribution parameterized by u.

As with the case of the single factor analyzer, we shall first try and determine an expression
for p(D,θ).

p(D,θ) =

[
N∏

i

p(ti|xi, si,W,µ)p(xi)p(si|π)

]
p(π)

[
M∏

m

p(Wm|αm)p(αm)p(µm)

]
(84)
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=

[
N∏

i

M∏

m

[p(ti|xi, sim,Wm,µm)p(xi)p(sim|π)]
sim

]
p(π) (85)

·
[
M∏

m

p(Wm|αm)p(αm)p(µm)

]
(86)

And hence

log p(D,θ) =
N∑

i

M∑

m

sim [log p(ti|xi, sim,Wm,µm) + log p(xi) + log p(sim|π)]

+ log p(π) +
M∑

m

[log p(Wm|αm) + log p(αm) + log p(µm)]

(87)

= −1

2

N∑

i

M∑

m

sim(ti −Wmxi − µm)TΨ−1(ti −Wmxi − µm)

− 1

2

N∑

i

M∑

m

simxTi xi +
N∑

i

M∑

m

sim logπm

+
M∑

m

(um − 1) logπm

+
M∑

m

q∑

i

d

2
logαim −

1

2

M∑

m

q∑

i

αimwT
imwim

+
M∑

m

q∑

i

(aα − 1) logαim −
M∑

m

q∑

i

bααim

− 1

2

M∑

m

βmµ
T
mµm + const

(88)

We assume the factorization

Q(X,S,W,α,π,µ) = Q(X,S)Q(W)Q(α)Q(π)Q(µ)

= Q(X|S)Q(S)Q(W)Q(α)Q(π)Q(µ) (89)

6.1 Estimation of Q(π)

Taking expectations of eq. (88) w.r.t. all distributions except Q(π) and retaining only the
terms containing π we get:
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〈log p(D,θ)〉Qθ−{π} =
N∑

i

M∑

m

〈sim〉 logπm +
M∑

m

(um − 1) logπm + const (90)

=
M∑

m

(
um +

N∑

i

〈sim〉 − 1

)
logπm + const (91)

We can infer:

Q(π) = D(π; û)XIII (92)

where

ûm = um +
N∑

i

〈sim〉 (93)

6.2 Estimation of Q(α)

Taking expectations of eq. (88) w.r.t. all distributions except Q(α) and retaining only the
terms containing α we get:

〈log p(D,θ)〉Qθ−{α} =
M∑

m

q∑

i

d

2
logαim −

1

2

M∑

m

q∑

i

αim
〈
‖wim‖2

〉

+
M∑

m

q∑

i

(aα − 1) logαim −
M∑

m

q∑

i

bααim + const (94)

=
M∑

m

q∑

i

(
aα +

d

2
− 1

)
logαim −

M∑

m

q∑

i

(
bα +

〈
‖wim‖2

〉

2

)
αim + const

(95)

Q(α) =
M∏

m

q∏

i

Q(αim) (96)

=

M∏

m

q∏

i

G
(
αim; âα, b̂

(im)
α

)
(97)

XIIIWe use the notation D (π; u) to denote the Dirichlet distribution which is mathematically defined as:

D (π; u) =
Γ
(∑M

m um
)

∏M
m Γ(um)

M∏

m

πum−1
m
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where

âα = aα +
d

2
(98)

b̂(im)
α = bα +

〈
‖wim‖2

〉

2
(99)

6.3 Estimation of Q(µ)

〈log p(D,θ)〉Qθ−{µ} = −1

2

N∑

i

M∑

m

〈sim〉
〈
(ti −Wmxi − µm)TΨ−1(ti −Wmxi − µm)

〉

− 1

2

M∑

m

βmµ
T
mµm + const (100)

= −1

2

N∑

i

M∑

m

〈sim〉
[
µTmΨ−1µm − 2µTmΨ−1(ti − 〈Wm〉 〈xi|m〉)

+(ti − 〈Wm〉 〈xi|m〉)TΨ−1(ti − 〈Wm〉 〈xi|m〉)
]

(101)

− 1

2

M∑

m

βmµ
T
mµm + const

= −1

2

M∑

m

[
µTm

(
βmI + Ψ−1

N∑

i

〈sim〉
)
µm

− 2µTmΨ−1
N∑

i

〈sim〉 (ti − 〈Wm〉 〈xi|m〉)

+
N∑

i

〈sim〉 (ti − 〈Wm〉 〈xi|m〉)TΨ−1(ti − 〈Wm〉 〈xi|m〉)
]

+ const

(102)

We can deduce

Q(µ) =

M∏

m

Q(µm)

=
M∏

m

N
(
µm; mm

µ ,Σ
m
µ

)
(103)
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where

Σm
µ =

(
βmI + Ψ−1

N∑

i

〈sim〉
)−1

(104)

mm
µ = Σm

µΨ−1
N∑

i

〈sim〉 (ti − 〈Wm〉 〈xi|m〉) (105)

6.4 Estimation of Q(W)

〈log p(D,θ)〉Qθ−{W} = −1

2

N∑

i

M∑

m

〈sim〉
〈
(ti −Wmxi − µm)TΨ−1(ti −Wmxi − µm)

〉

− 1

2

M∑

m

q∑

i

〈αim〉wT
imwim + const

= −1

2

N∑

i

M∑

m

〈sim〉
d∑

k

pk

〈(
tik −wT

mkxi − µmk
)2〉

(106)

− 1

2

M∑

m

d∑

k

wT
mk 〈Am〉wmk + const

= −1

2

M∑

m

d∑

k

[
pk

N∑

i

〈sim〉
〈(
tik −wT

mkxi − µmk
)2〉

+ wT
mk 〈Am〉wmk

]

+ const (107)

We can deduce

Q(W) =
M∏

m

d∏

k

Q(wmk) (108)

=
M∏

m

d∏

k

N
(
wmk; mm(k)

w ,Σm(k)
w

)
(109)

where

Σm(k)
w =

(
pk

N∑

i

〈sim〉
〈
xix

T
i |m

〉
+ 〈Am〉

)−1

(110)

mm(k)
w = pkΣ

m(k)
w

(
N∑

i

〈sim〉 〈xi|m〉 (tik − 〈µmk〉)
)

(111)
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6.5 Estimation of Q(X|S)

Since the distribution of X is conditioned on S we must not take expectations w.r.t. Q(S).

〈log p(D,θ)〉Qθ−{X,S} = −1

2

N∑

i

M∑

m

sim
〈
(ti −Wmxi − µm)TΨ−1(ti −Wmxi − µm)

〉

− 1

2

N∑

i

M∑

m

simxTi xi + const

From which we can infer that

logQ(X|S) = log

N∏

i

Q(xi|si) (112)

= log

N∏

i

M∏

m

Q(xi|m)sim (113)

=

N∑

i

M∑

m

sim logQ(xi|m) (114)

where

Q(xi|m) = N
(
xi; m

m(i)
x ,Σm

x

)
(115)

and

Σm
x =

(
I +

〈
WT

mΨ−1Wm

〉)−1
(116)

mm(i)
x = Σm

x 〈Wm〉T Ψ−1(ti − 〈µm〉) (117)

6.6 Estimation of Q(S)

Since the distribution Q(X|S) is conditioned on S we can derive (see appendix B.1):

logQ(S) = 〈log p(D,θ)〉Qθ−{S} + entropy {Q(X|S)}+ const (118)

Now we have
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〈log p(D,θ)〉Qθ−{S} = −1

2

N∑

i

M∑

m

sim
〈
(ti −Wmxi − µm)TΨ−1(ti −Wmxi − µm)

〉

− 1

2

N∑

i

M∑

m

sim
〈
xTi xi|m

〉
+

N∑

i

M∑

m

sim 〈logπm〉+ const (119)

also

entropy {Q(X|S)} = −
∫
Q(X|S) logQ(X|S)dX (120)

= −
∫
Q(X|S) log

N∏

i

M∏

m

Q(xi|m)simdX (121)

= −
∫
Q(X|S)

N∑

i

M∑

m

sim logQ(xi|m)dX (122)

Given that the posterior distributions of the X variables are independent Gaussian (see eqs.
(114) and (115)) we can write:

entropy {Q(X|S)} = −
N∑

i

M∑

m

sim

∫
Q(xi|m) logQ(xi|m)dxi (123)

= −
N∑

i

M∑

m

simentropy {Q(xi|m)} (124)

=
1

2

N∑

i

M∑

m

sim log |Σm
x |+ const (125)

From eqs. (118), (119) and (125), we can infer:

Q(S) =
N∏

i

M∏

m

Q(sim = 1)sim (126)

where

logQ(sim = 1) = −1

2

{
tTi Ψ−1ti − 2tTi Ψ−1 〈Wm〉 〈xi|m〉 − 2tTi Ψ−1 〈µm〉

+ 2
〈
µTm
〉
Ψ−1 〈Wm〉 〈xi|m〉+ Tr

[〈
WT

mΨ−1Wm

〉 〈
xix

T
i |m

〉]

+ Tr
[
Ψ−1

〈
µmµ

T
m

〉]}
+ 〈logπm〉 −

1

2

〈
xTi xi|m

〉
+

1

2
log |Σm

x |
+ const

(127)
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The constant term in the above equation can be determined by normalizing. We have encoun-
tered all the above sufficient statistics before except for 〈logπm〉. Given that the distribution
Q(π) is Dirichlet, we can use the result:

〈logπm〉 = ψ (um)− ψ




M∑

j

uj


 (128)

where ψ (·) is the Digamma function defined as follows:

ψ (x) =
∂

∂x
log Γ (x) (129)

6.7 Maximization equation for Ψ

The noise covariance matrix is estimated using the standard EM algorithm. Differentiating
the expectation of Eq. (88) w.r.t. Ψ−1, we get:

Ψ =
1

N

N∑

i

M∑

m

〈sim〉
〈
(ti −Wmxi − µm)(ti −Wmxi − µm)T

〉
(130)

=
1

N

[
N∑

i

tit
T
i − 2

M∑

m

( N∑

i

〈sim〉 ti
)
〈µm〉T +

M∑

m

( N∑

i

〈sim〉
)(

Σm
µ + 〈µm〉 〈µm〉T

)

− 2
M∑

m

〈Wm〉
( N∑

i

〈sim〉xi
(
ti − 〈µm〉

)T
)

+
N∑

i

M∑

m

〈sim〉
〈
Wmxix

T
i WT

m

〉
]

(131)

Our only difficulty is in computing the term
∑N
i

∑M
m 〈sim〉

〈
Wmxix

T
i WT

m

〉
. We can work our

way around this by noting that only the diagonal terms of Ψ are of interest. For this term,
the kth diagonal element can be written as follows:

diagk

[ N∑

i

M∑

m

〈sim〉
〈
Wmxix

T
i WT

m

〉]
=

N∑

i

M∑

m

〈sim〉
〈
wT
mkxix

T
i wmk

〉
(132)

=

M∑

m

Tr

[〈
wmkw

T
mk

〉 N∑

i

〈sim〉 〈xixi|m〉
]

(133)

Typically the matrix Ψ in Eq. (131) is diagonalized after it is computed, but by realizing that
only its diagonal terms are required, we may be able to write the expression simply for the kth
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diagonal term in a manner which is numerically much more efficient.

diagk[Ψ] =
1

N

N∑

i

M∑

m

〈sim〉
〈
(tik −wT

mkxi − µmk)2
〉

(134)

=
1

N

[
N∑

i

t2ik − 2

M∑

m

( N∑

i

〈sim〉 tik
)
〈µmk〉+

M∑

m

( N∑

i

〈sim〉
)(

Σm
µ (k, k) + 〈µmk〉2

)

− 2

M∑

m

〈wmk〉T
( N∑

i

〈sim〉xi
(
tik − 〈µmk〉

))

+

M∑

m

Tr

[〈
wmkw

T
mk

〉 N∑

i

〈sim〉 〈xixi|m〉
]]

(135)

6.8 Functional monitoring

From our definition of the functional F(Q) in Eq. (50), we can write:

F(Q) =

∫
Q(θ) log

p(D,θ)

Q(θ)
dθ (136)

= 〈log p(D,θ)〉Q(θ) + Entropy[Q(θ)] (137)

From Eq. (87) we have:

〈log p(D,θ)〉 =
N∑

i

M∑

m

〈sim〉
[
〈log p(ti|xi, sim,Wm,µm)〉+ 〈log p(xi)〉+ 〈log p(sim|π)〉

]

+ 〈log p(π)〉+
M∑

m

[
〈log p(Wm|αm)〉+ 〈log p(αm)〉+ 〈log p(µm)〉

]

(138)

Consider each of the above terms individually:

N∑

i

M∑

m

〈sim〉 〈log p(ti|xi, sim,Wm,µm)〉 (139)

= −N
2

log |Ψ| − 1

2

N∑

i

M∑

m

〈sim〉
〈
(ti −Wmxi − µm)TΨ−1(ti −Wmxi − µm)

〉
+ const

(140)

= −N
2

log |Ψ| − 1

2

d∑

k

1

diagk[Ψ]

N∑

i

M∑

m

〈sim〉
〈
(tik −wT

mkxi − µmk)2
〉

︸ ︷︷ ︸
=Ndiagk[Ψ] (see Eq. (134))

+const (141)
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= −N
2

log |Ψ| − 1

2
Nd+ const (142)

= −N
2

log |Ψ|+ const (143)

N∑

i

M∑

m

〈sim〉 〈log p(xi)〉 = −1

2

N∑

i

M∑

m

〈sim〉
〈
xTi xi|m

〉
+ const (144)

= −1

2

N∑

i

M∑

m

〈sim〉Tr
[〈

xix
T
i |m

〉]
+ const (145)

= −1

2

M∑

m

( N∑

i

〈sim〉
)

Tr [Σm
x ]− 1

2

M∑

m

N∑

i

〈sim〉 〈xi|m〉T 〈xi|m〉+ const

(146)

N∑

i

M∑

m

〈sim〉 〈log p(sim|π)〉 =
N∑

i

M∑

m

〈sim〉 〈log πm〉 (147)

=
N∑

i

M∑

m

〈sim〉
(
ψ(um)− ψ(u0)

)
(148)

=
M∑

m

( N∑

i

〈sim〉
)
ψ(um)−Nψ(u0) (149)

〈log p(π)〉 = log Γ(u0)−
M∑

m

log Γ(um) +
M∑

m

(um − 1) 〈log πm〉 (150)

= log Γ(u0)−
M∑

m

log Γ(um) +

M∑

m

(um − 1)
(
ψ(um)− ψ(u0)

)
(151)

= log Γ(u0)−
M∑

m

log Γ(um) +
M∑

m

(um − 1)ψ(um)− ψ(u0)
M∑

m

(um − 1) (152)

M∑

m

〈log p(Wm|αm)〉 =
d

2

M∑

m

q∑

i

〈logαmi〉 −
1

2

M∑

m

q∑

i

〈αmi〉
〈
wT
miwmi

〉
(153)

=
d

2

M∑

m

q∑

i

(
ψ(âα)− log b̂(mi)α

)
− 1

2

M∑

m

d∑

k

〈
wT
mkAmwmk

〉
(154)

=
d

2

M∑

m

q∑

i

(
ψ(âα)− log b̂(mi)α

)
− 1

2

M∑

m

d∑

k

Tr
[〈

wmkw
T
mk

〉
〈Am〉

]
(155)

28



DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT 

=
d

2

M∑

m

q∑

i

(
ψ(âα)− log b̂(mi)α

)
− 1

2

M∑

m

( d∑

k

Tr
[
Σm(k)

w 〈Am〉
])

− 1

2

M∑

m

d∑

k

〈wmk〉T 〈Am〉 〈wmk〉
(156)

M∑

m

〈log p(αm)〉 =
M∑

m

q∑

i

(
aα log bα − log Γ(aα)

)
+ (aα − 1)

M∑

m

q∑

i

〈logαmi〉

− bα
M∑

m

q∑

i

〈αmi〉
(157)

= Mq
(
aα log bα − log Γ(aα)

)
+ (aα − 1)

M∑

m

q∑

i

(
ψ(âα)− log b̂(mi)α

)

− bα
M∑

m

q∑

i

〈αmi〉
(158)

M∑

m

〈log p(µm)〉 =
d

2

M∑

m

log βm −
1

2

M∑

m

βm
〈
µTmµm

〉
(159)

=
d

2

M∑

m

log βm −
1

2

M∑

m

βm

(
Tr
[
Σm
µ

]
+ 〈µm〉T 〈µm〉

)
(160)

We can compute the entropiesXIVof the various distributions as follows:

Entropy[Q(µ)] =
M∑

m

Entropy[Q(µm)] (161)

=
1

2

M∑

m

log
(
(2πe)d

∣∣Σm
µ

∣∣) (162)

=
1

2

M∑

m

log
∣∣Σm
µ

∣∣+ const (163)

XIVEntropies of some standard distributions:

Entropy [N (x;µ,Σ)] =
1

2
log
(

(2πe)d |Σ|
)

Entropy [G (x; a, b)] = log Γ(a)− (a− 1)ψ(a)− log b+ a

Entropy [D (x; u)] = − log Γ(u0) +
M∑

m

log Γ(um)−
M∑

m

(um − 1)ψ(um) + ψ(u0)
M∑

m

(um − 1)
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Entropy[Q(W)] =
M∑

m

d∑

k

Entropy[Q(wmk)] (164)

=
1

2

M∑

m

d∑

k

log
∣∣Σm(k)

w

∣∣+ const (165)

Entropy[Q(X,S)] = −
∫
Q(X|S)Q(S)

(
logQ(X|S) + logQ(S)

)
dXdS (166)

= −
∫
Q(X|S)Q(S) logQ(X|S)dXdS−

∫
Q(X|S)Q(S) logQ(S)dXdS

(167)

= 〈Entropy[Q(X|S)]〉Q(S) + Entropy[Q(S)] (168)

which from Eq. (125) gives us:

=
1

2

N∑

i

M∑

m

〈sim〉 log |Σm
x | −

N∑

i

M∑

m

〈sim〉 log 〈sim〉 (169)

=
1

2

M∑

m

( N∑

i

〈sim〉
)

log |Σm
x | −

N∑

i

M∑

m

〈sim〉 log 〈sim〉 (170)

Entropy[Q(α)] =
M∑

m

q∑

i

Entropy[Q(α)] (171)

=
M∑

m

q∑

i

log Γ(âα)− (âα − 1)ψ(âα)− log b̂(mi)α + âα (172)

= Mq
(

log Γ(âα)− (âα − 1)ψ(âα) + âα

)
−

M∑

m

q∑

i

log b̂(mi)α (173)

Entropy[Q(π)] = − log Γ(u0) +
M∑

m

log Γ(um)−
M∑

m

(um − 1)ψ(um) + ψ(u0)
M∑

m

(um − 1)

(174)
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6.8.1 Functional contribution of each model

In order to assess when a model needs to be split, we need to estimate the contribution of each
model to the overall functional. The functional is written as follows:

F(Q) =

∫
dθQ(θ) log

p(D,θ)

Q(θ)
(175)

=

∫
dπQ(π) log

p(π)

Q(π)
+

M∑

m

∫
dµmQ(µm) log

p(µm)

Q(µm)

+
M∑

m

∫
dαmQ(αm)

[
log

p(αm)

Q(α)
+

∫
dWmQ(Wm) log

p(Wm|αm)

Q(Wm)

]

+
N∑

i

M∑

m

〈sim〉
[∫

dπQ(π) log
p(m|π)

Q(m)
+

∫
dxiQ(xi|m) log

p(xi)

Q(xi|m)

+

∫
dµmQ(µm)

∫
dWmQ(Wm)

∫
dxiQ(xi|m)p(ti|xi,m,Wm,µm)

]

(176)

The last term in the expression (normalized by
∑N
i 〈sim〉) is the contribution of each model

to the functional.

A Useful matrix algebra results

A.1 Matrix inversion theorem

The famous Sherman-Morrison-Woodbury theorem:

(A + XRY)−1 = A−1 −A−1X(R−1 + YA−1X)−1YA−1

A.2 Another useful result

A = WT (Ψ + WWT )−1

= WT
[
Ψ−1 −Ψ−1W(I + WTΨ−1W)−1WTΨ−1

]

=
[
I−WTΨ−1W(I + WTΨ−1W)−1

]
WTΨ−1

=
[
I + (I + WTΨ−1W)−1 − (I + WTΨ−1W)(I + WTΨ−1W)−1

]
WTΨ−1

= (I + WTΨ−1W)−1WTΨ−1

In a simliar fashion, we can also prove the more general result

WT (Ψ + WAWT )−1 = A−1(A−1 + WTΨ−1W)−1WTΨ−1
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B Use of the factorial variational approximation

We lower bound the log evidence using Jensen’s inequality as follows:

log p(D) = log

∫
p(D,θ)dθ (177)

= log

∫
Q(θ)

p(D,θ)

Q(θ)
dθ (178)

≥
∫
Q(θ) log

p(D,θ)

Q(θ)
dθ = F(Q) (179)

Maximizing the lower bound implies maximizing the functional F(Q) over the space of proba-
bility distributions Q(θ). If we assume that Q(θ) factors over the individual variables θi, then
we can write Q(θ) =

∏
iQi(θi). Let us consider a simple example in which θ = {θ1, θ2, θ3},

and Q(θ) = Q1(θ1)Q2(θ2)Q3(θ3). For the ease of notation, we shall use the symbol Qi to
denote Qi(θi). Hence for our current example, our functional F(Q) is of the form:

F(Q) =

∫
Q1Q2Q3 log

p(D,θ)

Q1Q2Q3
dθ1dθ2dθ3 (180)

From the calculus of variations we know that maximizing F(Q) is actually a constrained
maximization since we must ensure that

∫
Q(θ)dθ = 1. This constraint can be incorporated

into the integrand by the use of Lagrange multipliers. To this end we define a new function
z(θ) as follows:

z(θ) =

∫ θ

−∞
Q1(θ′1)Q2(θ′2)Q3(θ′3)dθ′1dθ

′
2dθ
′
3 (181)

Giving us the differential constraint:

ż −Q1Q2Q3 = 0 (182)

with the end point constraints being z(−∞) = 0 and z(∞) = 1. If we let g(Q1, Q2, Q3,θ)
represent the integrand:

g(Q1, Q2, Q3,θ) = Q1Q2Q3 log
p(D,θ)

Q1Q2Q3
(183)

The we can incorporate the constraint into the integral by augmenting the integrand with the
help of the Lagrange multiplier λ as follows:

ga(Q1, Q2, Q3,θ, z, λ) = Q1Q2Q3 log
p(D,θ)

Q1Q2Q3
+ λ(ż −Q1Q2Q3) (184)
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Maximizing the functional F(Q) w.r.t. each of the distributions Qi involves solving the Euler
equations:

∂ga
∂Qi

− d

dθ

(
∂ga

∂Q̇i

)
= 0 (185)

∂ga
∂z
− d

dθ

(
∂ga
∂ż

)
= 0 (186)

Where Q̇i = dQi/dθ

Substituting from eq. (184) in eq. (186) we get:

dλ

dθ
= 0 (187)

Which implies that λ is independent of θ = {θ1, θ2, θ3}. This is an important result that will be
used in the following steps. Similarly substituting from eq. (184) in eq. (185) and performing
the differentiation with Qi = Q1 we get:

Q2Q3 [log p(D,θ)− logQ1 − logQ2Q3]−Q2Q3 − λQ2Q3 = 0 (188)

Integrating the above equation w.r.t. θ2 and θ3 we get:

〈log p(D,θ)〉Q2Q3
− logQ1 −

∫
Q2Q3 logQ2Q3dθ2dθ3 − 1− λ = 0 (189)

Solving for Q1 we get:

Q1 =
exp 〈log p(D,θ)〉Q2Q3

exp
(
1 + λ+

∫
Q2Q3 logQ2Q3dθ2dθ3

) (190)

From eq. (187) and the assumed factorization Q(θ) =
∏
iQi(θi) we know that the denominator

is independent of θ1 and can be treated as a normalizing constant. Hence in general we
can express the solution for the individual Qi that maximizes the functional F(Q) under the
assumed factorization as:

Qi(θi) =
exp 〈log p(D,θ)〉Qk 6=i∫

exp 〈log p(D,θ)〉Qk 6=i dθi
(191)

B.1 Solution for partial factorization

Let us drop the assumption of complete factorization for now and examine how our solution
changes when the factorization is partial. Suppose our current example had the partial fac-
torization Q(θ) = Q12(θ1, θ2)Q3(θ3) = Q1(θ1|θ2)Q2(θ2)Q(θ3), then if we were trying to find
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a solution for Q1 we would not be able to separate the logQ1 term out of the integral as we
have done in eq. (189), due to the fact that Q1 = Q1(θ1|θ2) and has a dependency on θ2. Our
only way out of the problem is to infer the joint distribution Q12(θ1, θ2), and hope to be able
to factor the resulting distribution into Q1(θ1|θ2)Q2(θ2).

The final solution also changes if we were trying to maximize the functional w.r.t. Q2. We
would proceed as if we assumed full factorization as before and arrive at the following equation
which is analogous to eq. (189)

〈log p(D,θ)〉Q1Q3
− logQ2 −

∫
Q1Q3 logQ1Q3dθ1dθ3 − 1− λ = 0 (192)

In this situation however, we must keep in mind that Q1 is actually Q1(θ1|θ2) and hence has a
dependency on θ2. Now when we solve for Q2 we should take care to place all of the terms in
the equation that have a dependency on θ2 in the numerator. We then arrive at the equation:

Q2(θ2) ∝ exp

(
〈log p(D,θ)〉Q1Q3

−
∫
Q1(θ1|θ2) logQ1(θ1|θ2)dθ1

)
(193)

or equivalently

logQ2 = 〈log p(D,θ)〉Q1Q3
+ entropy {Q1(θ1|θ2)}+ const (194)

C Computing 〈log x〉 and 〈log |X|〉 expectations from the
Gamma & Wishart distributions

(Thanks to Matt Beal for the hint about the derivation)

The Gamma distribution is frequently used as a conjugate prior to a precision (inverse variance)
variable. The multivariate extension of this conjugate prior to precision (inverse covariance)
matrices is the Wishart prior. These two distributions have the following form.

G (x; a, b) =
ba

Γ(a)
x(a−1) exp(−bx) (195)

W (X; ν,S) =
|S|−ν/2

2νd/2πd(d−1)/4
∏d
i Γ
(
ν+1−i

2

) |X|(ν−d−1)/2
exp

{
−1

2
Tr
[
S−1X

]}
(196)

The Gamma distribution is valid over x ≥ 0, and the Wishart is valid over all positive-definite
X. When working with these distributions, it is sometimes required to compute the expecta-
tions 〈log x〉G and 〈log |X|〉W .
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C.1 For the Gamma distribution

Consider:

G (x; a, b) =
ba

Γ(a)
x(a−1) exp(−bx) (197)

=
1

Z
x(a−1) exp(−bx) (198)

where:

Z =
Γ(a)

ba
(199)

=

∫ ∞

0

x(a−1) exp(−bx)dx (200)

Differentiating w.r.t. the parameter a we get:

d

da
Z =

d

da

∫ ∞

0

x(a−1) exp(−bx)dx (201)

=

∫ ∞

0

(log x)x(a−1) exp(−bx)dx (202)

= Z 〈log x〉G (203)

Hence:

〈log x〉G =
1

Z

d

da
Z (204)

=
d

da
logZ (205)

=
d

da

(
log Γ(a)− a log b

)
(206)

= ψ (a)− log b (207)

C.2 For the Wishart distribution

Consider:

W (X; ν,S) =
|S|−ν/2

2νd/2πd(d−1)/4
∏d
i Γ
(
ν+1−i

2

) |X|(ν−d−1)/2
exp

{
−1

2
Tr
[
S−1X

]}
(208)

=
1

Z
|X|(ν−d−1)/2

exp

{
−1

2
Tr
[
S−1X

]}
(209)
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where:

Z =
2νd/2πd(d−1)/4

∏d
i Γ
(
ν+1−i

2

)

|S|−ν/2
(210)

=

∫ ∞

O

|X|(ν−d−1)/2
exp

{
−1

2
Tr
[
S−1X

]}
dX (211)

Differentiating w.r.t. the parameter ν we get:

d

dν
Z =

d

dν

∫ ∞

O

|X|(ν−d−1)/2
exp

{
−1

2
Tr
[
S−1X

]}
dX (212)

=

∫ ∞

O

(log |X|) |X|(ν−d−1)/2
exp

{
−1

2
Tr
[
S−1X

]}
dX (213)

= Z 〈log |X|〉W (214)

Hence:

〈log |X|〉W =
1

Z

d

dν
Z (215)

=
d

dν
logZ (216)

=
d

dν

(
νd

2
log 2 +

d(d− 1)

4
log π +

d∑

i

log Γ

(
ν + 1− i

2

)
+
ν

2
log |S|

)
(217)

=

d∑

i

ψ

(
ν + 1− i

2

)
+
d

2
log 2 +

1

2
log |S| (218)
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