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Following Page 12 to 13 in the slides, given a dataset D = {(x;,v;)}, where
X; is a p-Dimensional feature vector, y; is the class label taking values from
{C1,Cs,...,Cy}, the goal is to find the best parameters P(C;) and P(Xj =
v|C;) that can maximize the likelihood of the observed dataset:
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where 1 is the indicator functlon, which equals to 1 if the predicate holds,
otherwise, 0.
This is equivalent to maximize log-likelihood:

logL = > "log(P(ik|ys)) +ZZn C;)log(P(C;)) (2)
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Now we can see that if we want to estimate P(C};), the first part of the
log-likelihood function is irrelevant, as it does not contain P(C;). Note that, we
have a constraint on P(Cj), which is 3, P(C;) = 1. We can use the method
of Lagrange multipliers to solve the problem, which makes us to maximize the
following Lagrange function:

J = ZZ (yi = Cj) log( (C]—))+/\(ZP(CJ-)71) 3)

By taking the first derivative respective to P(C;) and set it to 0, we have

(1)
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We can then get —A = 2,3 1(y; = C;) = >, = |D|, the total number

of objects in the dataset. By plugging in A, we can get P(C;) = %
|C[j'j’|3‘, where |C; p| denotes the total number of objects in D that belong to
class Cj.

Other notes on parameter derivation:



e http://www.cs.columbia.edu/~mcollins/em.pdf

e http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/NB.
pdf



