Finite Mixture Models and Clustering

Mohamed Nadif

LIPADE, Université Paris Descartes, France

メロト メロト メヨト メヨ

Outline

Mixture Approach

2 Finite Mixture Model

- Definition of the model
- Example
- Different approaches

3 ML and CML approaches

- EM algorithm
- CEM algorithm
- Others variants of EM

Applications

- Gaussian mixture model
- Bernoulli mixture
- Multinomial Mixture

Model Selection

6 Conclusion

・ロト ・ 日 ・ ・ ヨ ト ・

Classical clustering methods

- Clustering methods hierarchical and nonhierarchical methods have advantages and disadvantages
- Disadvantages. They are for the most part heuristic techniques derived from empirical methods
- Difficulties to take into account the characteristics of clusters (shapes, proportions, volume etc.)
- Geometrical approach: Clustering with "adaptives" distances: $d_{M_k}(x,y) = ||x-y||_{M_k}$
- In fact, the principal question "does it exist a model ?"

Mixture Approach

- MA have attracted much attention in recent years
- Is undoubtedly a very useful contribution to clustering
 - It offers considerable flexibility
 - Provides solutions to the problem of the number of clusters
 - Its associated estimators of posterior probabilities give rise to a fuzzy or hard clustering using the a MAP
 - It permits to give a sense to certain classical criteria
- Finite Mixture Models by (McLachlan and Peel, 2000)

・ロト ・部ト ・ヨト ・ヨト

Outline

Introduction Mixture Approach

2 Finite Mixture Model

- Definition of the model
- Example
- Different approaches

3 ML and CML approaches

- EM algorithm
- CEM algorithm
- Others variants of EM

Applications

- Gaussian mixture model
- Bernoulli mixture
- Multinomial Mixture

Model Selection

6 Conclusion

・ロト ・ 日 ・ ・ ヨ ト ・

Definition of the model

• In model-based clustering it is assumed that the data are generated by a mixture of underlying probability distributions, where each component k of the mixture represents a cluster. Thus, the data matrix is assumed to be an i.i.d sample $\mathbf{x} = (x_1, \ldots, x_n)$ where $\mathbf{x}_i = (x_{i1}, \ldots, x_{ip}) \in \mathbb{R}^p$ from a probability distribution with density

$$f(\mathbf{x}_i; \boldsymbol{\theta}) = \sum_k \pi_k \varphi_k(\mathbf{x}_i; \boldsymbol{\alpha}_k),$$

where

- $\varphi_k(.; \alpha_k)$ is the density of an observation x_i from the k-th component
- α_k 's are the corresponding class parameters. These densities belong to the same parametric family
- The parameter π_k is the probability that an object belongs to the k-th component
- K, which is assumed to be known, is the number of components in the mixture

Gaussian mixture model in \mathbb{R}^1

- n=9000, d=1, K=3
- $\varphi(., \alpha_k)$ a Gaussian density $\alpha_k = (m_k, s_k)$
- $\pi_1 = \pi_2 = \pi_3 = \frac{1}{3}$

The mixture density of the observed data x can be written as

$$f(\mathbf{x};\boldsymbol{\theta}) = \prod_{i} \sum_{k} \pi_{k} \prod_{j} \frac{1}{s_{k}\sqrt{2\pi}} exp(-\frac{1}{2}(\frac{x_{i}-m_{k}}{s_{k}})^{2})$$

Mixture of 3 densities

(日) (日) (日) (日)

Bernoulli mixture model

The parameter of this model is the vector θ = (π, α) containing the mixing proportions π = (π₁, ..., π_K) and the vector α = (α₁, ..., α_K) of parameters of each component. The mixture density of the observed data x can be expressed as

$$f(\mathbf{x};\boldsymbol{\theta}) = \prod_{i} \sum_{k} \pi_{k} \varphi_{k}(\mathbf{x}_{i};\boldsymbol{\alpha}_{k}).$$

• For instance, for binary data with $x_i \in \{0, 1\}^p$, using multivariate Bernoulli distributions for each component, the mixture density of the observed data x can be written as

$$f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i} \sum_{k} \pi_{k} \prod_{j} \alpha_{kj}^{\mathbf{x}_{ij}} (1 - \alpha_{kj})^{1 - \mathbf{x}_{ij}}$$

where $x_{ij} \in \{0,1\}$, $\alpha_k = (\alpha_{k1}, \dots, \alpha_{kd})$ and $\alpha_{kj} \in (0,1)$

< ロ > < 同 > < 回 > < 回 >

ML and CML approaches

- The problem of clustering can be studied in the mixture model using two different approaches: the maximum likelihood approach (ML) and the classification likelihood approach (CML)
 - The ML approach (Day, 1969): It estimates the parameters of the mixture, and the partition on the objects is derived from these parameters using the maximum a posteriori principle (MAP). The maximum likelihood estimation of the parameters results in an optimization of the log-likelihood of the observed sample

$$L_M(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \mathbf{x}) = \sum_i \log \left(\sum_k \pi_k \varphi(\mathbf{x}_i; \boldsymbol{\alpha}_k) \right)$$

The CML approach (Symons, 1981): It estimates the parameters of the mixture and the partition *simultaneously* by optimizing the classification log-likelihood

$$L_{C}(\theta) = L(\theta; \mathbf{x}, \mathbf{z}) = \log f(\mathbf{x}, \mathbf{z}; \theta) = \sum_{i,k} z_{ik} \log (\pi_{k} \varphi(\mathbf{x}_{i}; \alpha_{k}))$$

<ロ> <()</p>

Outline

Introduction

Mixture Approach

2 Finite Mixture Model

- Definition of the model
- Example
- Different approaches

3 ML and CML approaches

- EM algorithm
- CEM algorithm
- Others variants of EM

Applications

- Gaussian mixture model
- Bernoulli mixture
- Multinomial Mixture

Model Selection

6 Conclusion

・ロト ・ 日 ・ ・ ヨ ト ・

Introduction of EM

- Much effort has been devoted to the estimation of parameters for the mixture model
- Pearson used the method of moments to estimate $\theta = (m_1, m_2, s_1^2, s_2^2, \pi)$ of a unidimensional Gaussian mixture model with two components

$$f(\boldsymbol{x}_i;\boldsymbol{\theta}) = \pi \varphi(\boldsymbol{x}_i; \boldsymbol{m}_1, \boldsymbol{s}_1^2) + (1-\pi)\varphi(\boldsymbol{x}_i; \boldsymbol{m}_2, \boldsymbol{s}_2^2)$$

required to solve polynomial equations of degree nine

- Generally, the appropriate method used in this context is the EM algorithm (Dempster et al., 1977). Two steps Estimation and Maximization
- This algorithm can be applied in different contexts where the model depends on unobserved latent variables. In mixture context z represents this variable. It denotes which x_i is from. Then we note y = (x, z) the complete data.
- Starting from the relation between the densities

$$f(\mathbf{y}, \boldsymbol{\theta}) = f((\mathbf{x}, \mathbf{z}); \boldsymbol{\theta}) = f(\mathbf{y} | \mathbf{x}; \boldsymbol{\theta}) f(\mathbf{x}; \boldsymbol{\theta})$$

we have

$$\log(f(\mathbf{x}; \boldsymbol{\theta})) = \log(f(\mathbf{y}, \boldsymbol{\theta})) - \log(f(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta}))$$

or

$$L_{\mathcal{M}}(\theta) = L_{\mathcal{C}}(\mathbf{z};\theta) - \log f(\mathbf{y}|\mathbf{x};\theta)$$

Principle of EM

- Objective: Maximization of $L_M(\theta)$
- EM rets on the hypothesis that maximizing L_C is simple
- An iterative procedure based on the conditional expectation of $L_M(\theta)$ for a value of the current parameter θ'

$$L_M(\theta) = Q(\theta| heta') - H(\theta| heta')$$

where $Q(\theta|\theta') = \mathbb{E}(L_C(\mathbf{z}; \theta|\mathbf{x}, \theta'))$ and $H(\theta|\theta') = \mathbb{E}(\log f(\mathbf{y}|\mathbf{x}; \theta)|\mathbf{x}, \theta')$

• Using the Jensen inequality (Dempster et al;, 1977) for fixed θ' we have $\forall \theta, H(\theta|\theta') \leq H(\theta'|\theta')$ This inequality can proved also

$$H(\theta|\theta') - H(\theta'|\theta') = \sum_{\mathbf{z}\in\mathcal{Z}} f(\mathbf{z}|\mathbf{x};\theta') \log \frac{f(\mathbf{z}|\mathbf{x};\theta)}{f(\mathbf{z}|\mathbf{x};\theta')}$$

As $\log(x) \le x - 1$, we have

$$\log \frac{f(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})}{f(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}')} \leq \frac{f(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})}{f(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta}')} - 1$$

then

$$H(\theta|\theta') - H(\theta'|\theta') \leq \sum_{z \in \mathcal{Z}} f(z|x;\theta) - \sum_{z \in \mathcal{Z}} f(z|x;\theta') = 1 - 1 = 0$$

$Q(\theta|\theta')$

• The value θ maximizing maximization $Q(\theta|\theta')$ satisfies the relation $Q(\theta|\theta') \geq Q(\theta'|\theta')$ and,

$$L_M(heta) = Q(heta| heta') - H(heta| heta') \geq Q(heta'| heta') - H(heta'| heta') = L_M(heta')$$

In mixture context

$$Q(\theta|\theta') = \mathbb{E}(L_C(\mathbf{z};\theta|\mathbf{x},\theta')) = \sum_{i,k} \mathbb{E}(z_{ik}|\mathbf{x},\theta') \log(\pi_k f(\mathbf{x}_i;\alpha_k))$$

• Note that $\mathbb{E}(z_{ik}|\mathbf{x}, \theta') = p(z_{ik} = 1|\mathbf{x}, \theta')$ As the conditional distribution of the missing data \mathbf{z} given the observed values :

$$f(\mathbf{z}|\mathbf{x};\theta) = \frac{f(\mathbf{x},\mathbf{z};\theta)}{f(\mathbf{x};\theta)} = \frac{f(\mathbf{x}|\mathbf{z};\theta)f(\mathbf{z};\theta)}{f(\mathbf{x};\theta)}$$

we have

$$p(z_{ik} = 1 | \mathbf{x}, \boldsymbol{\theta}') = s_{ik} = \frac{\pi_k \varphi(\mathbf{x}_i; \boldsymbol{\alpha}_k)}{f(\mathbf{x}_i; \boldsymbol{\theta})} = \frac{\pi_k \varphi(\mathbf{x}_i; \boldsymbol{\alpha}_k)}{\sum_{\ell} \pi_\ell \varphi(\mathbf{x}_i; \boldsymbol{\alpha}_\ell)}$$

<ロ> <()</p>

The steps of EM

• The EM algorithm involves constructing, from an initial $\theta^{(0)}$, the sequence $\theta^{(c)}$ satisfying

$$oldsymbol{ heta}^{(m{c}+1)} = \operatorname{argmax} Q(oldsymbol{ heta}|oldsymbol{ heta}^{(m{c})})$$

and this sequence causes the criterion $L_M(\theta)$ to grow The EM algorithm takes the following form

- Initialize by selecting an initial solution $\theta^{(0)}$
- Repeat the two steps until convergence
 - **Q** E-step: compute $Q(\theta|\theta^{(c)})$. Note that in the mixture case this step reduces to the computation of the conditional probabilities $s_{it}^{(c)}$
 - **Q** M-step: compute $\theta^{(c+1)}$ maximizing $Q(\theta, \theta^{(c)})$. This leads to $\pi_k^{(c+1)} = \frac{1}{n} \sum_i s_{ik}^{(c+1)}$ and the exact formula for the $\alpha_k^{(c+1)}$ will depend on the involved parametric family of distribution probabilities

Properties of EM

- Under certain conditions, it has been established that EM always converges to a local likelihood maximum
- Simple to implement and it has good behavior in clustering and estimation contexts
- Slow in some situations

NUP NEPP NEP NEP

An other interpretation of EM

Hathaway interpretation of EM : classical mixture model context

• EM = alternated maximization of the fuzzy clustering criterion

$$F_C(\mathbf{s}, \theta) = L_C(\mathbf{s}; \theta) + H(\mathbf{s})$$

Algorithm

- Maximizing F_C w.r. to **s** yields the *E* step
- Maximizing F_C w.r. to θ yields the M step

(日)

CEM algorithm

- In the CML approach the partition is added to the parameters to be estimated. The maximum likelihood estimation of these new parameters results in an optimization of the complete data log-likelihood. This optimization can be performed using the following Classification EM (CEM) algorithm (Celeux and Govaert, 1992), a variant of EM, which converts the s_{ik}'s to a discrete classification in a C-step before performing the M-step:
 - E-step: compute the posterior probabilities $s_{ik}^{(c)}$.
 - C-step: the partition $\mathbf{z}^{(c+1)}$ is defined by assigning each observation x_i to the cluster which provides the maximum current posterior probability.
 - M-step: compute the maximum likelihood estimate $(\pi_k^{(c+1)}, \alpha_k^{(c+1)})$ using the k-th cluster. This leads to $\pi_k^{(c+1)} = \frac{1}{n} \sum_i z_{ik}^{(c+1)}$ and the exact formula for the $\alpha_k^{(c+1)}$ will depend on the involved parametric family of distribution probabilities

Properties of CEM

- Simple to implement and it has good practical behavior in clustering context
- Faster than EM and scalable
- Some difficulties when the clusters are not well separated

・ロト ・四ト ・ヨト ・ヨト

Link between CEM and the dynamical clustering methods

Dynamical clustering method	The CEM algorithm
Assignation-step	E-step
$\mathbf{z}_{\mathbf{k}} = \{\mathbf{i}; \mathbf{d}(\mathbf{x}_{\mathbf{i}}, \mathbf{a}_{\mathbf{k}}) \leq \mathbf{d}(\mathbf{x}_{\mathbf{i}}, \mathbf{a}_{\mathbf{k}}'); \mathbf{k}' \neq \mathbf{k}\}$	Compute $s_{ik} \propto \pi_k \varphi(x_i, \alpha_k)$
	C-step
	$\mathbf{z_k} = \{i; \mathbf{s_{ik}} \ge \mathbf{s_{ik'}}; k' \neq k\}$
	$z_{k} = \{i; -\log(\pi_{k}\varphi(x_{i}, \alpha_{k})) \leq -\log(\pi_{k}\varphi(x_{i}, \alpha_{k})); k' \neq k\}$
Representation-step	M-step
Compute the center a_k of each cluster	Compute the $\pi_{m k}$'s and $lpha_{m k}$

Density and distance

• When the proportions are supposed equal we can propose a *distance* D by

$$D(\mathbf{x}_i, \mathbf{a}_k) = -\log(\varphi(\mathbf{x}_i, \mathbf{a}_k))$$

Classical algorithms

- k-means
- k-modes
- Mndki2

(日) (同) (目) (

Stochastic EM "SEM", (Celeux and Diebolt, 1985)

Steps of SEM

- S-step between E-step and M-step
- In CEM (C-step), In SEM (S-step)
 - E-step compute the posterior probabilities
 - S-step This stochastic step consists to look for the partition z̄. Each object *i* is assigned to the *k*th component. the parameter *k* is selected according to the multinomial distribution (*s_{i1},...,s_{iK}*)
 - $\bullet\,$ M-step As the CEM algorithm this step is based on \bar{z}

Advantages and Disadvantages of SEM

- It gives good results when the size of data is large enough
- It can be used even if the number of clusters is unknown. It suffices to fix K to K_{max} the maximum number of clusters and this number can be reduced when the a cluster has a number of objects so lower that the estimation of parameters is not possible. For example when the cardinality of a cluster is less than a threshold, we run SEM with (K 1)
- It can avoid the problem of initialization and other problems of EM
- Instability of the results. Solution: SEM (for estimation of paremetrs and the number of clusters), The obtained results are used by EM

.

Stochastic Annealing EM "SAEM" (Celeux and Diebolt, 1992)

Steps of SEM

- The aim of the SAEM is to reduce the "part" of random in estimations of the parameters
- SAEM is based on SEM and EM
- Solution
 - E-step: Idem for EM, SEM
 - S-step: Idem for SEM
 - M-step: The compute of parameters depends on this expression:

$$\boldsymbol{\theta}^{(t+1)} = \gamma^{(t+1)} \boldsymbol{\theta}_{SEM}^{(t+1)} + (1 - \gamma^{(t+1)}) \boldsymbol{\theta}_{EM}^{(t+1)}$$

The initial value of $\gamma = 1$ and decreases until 0.

・ロト ・ 一 ・ ・ ヨ ト ・

Applications

Outline

Introduction

Mixture Approach

2 Finite Mixture Model

- Definition of the model
- Example
- Different approaches

ML and CML approaches

- EM algorithm
- CEM algorithm
- Others variants of EM

Applications

- Gaussian mixture model
- Bernoulli mixture
- Multinomial Mixture

Model Selection

6 Conclusion

メロト メロト メヨト メ

The Gaussian model

• The density can be written as: $f(x_i; \theta) = \sum_k \pi_k \varphi(x_i; \mu_k, \Sigma_k)$ where

$$\varphi(\mathbf{x}_{i}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\boldsymbol{\Sigma}_{k}|^{\frac{1}{2}}} exp\{-\frac{1}{2}(\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{i} - \boldsymbol{\mu}_{k})\}$$

• Spectral decomposition of the variance matrix

$$\Sigma_k = \lambda_k D_k A_k D_k^T$$

- $\lambda_k = |\Sigma_k|^{1/p}$ positive real represents the volume of the *k*th component
- $A_k = Diag(a_{k1}, \dots, a_{kp})$ formed by the normalized eigenvalues in decreasing order $|A_k| = 1$. It defines the shape of the *k*th cluster
- D_k formed by the eigenvectors. It defines the direction of the kth cluster
- Example in \mathbb{R}^2 , D_k is a rotation, and A_k is diagonal matrix, the equidensity ellipse of the distribution depends on the center μ_k , semimajor axis and semiminor axis $\sqrt{\lambda_k a}$ and $\sqrt{\lambda_k / a}$

$$D_k = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} A_k = \begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix}$$

Different Gaussian models

- The Gaussian mixture depends on: proportions, centers, volumes, shapes and Directions then different models can be proposed
- In the following models proportions can be assumed equal or not
 - **Q** Spherical models: $A_k = I$ then $\Sigma_k = \lambda_k I$. Two models $[\lambda I]$ and $[\lambda_k I]$
 - **(a)** Diagonal models: no constraint on A_k but D_k is a permutation matrix with $B_k = D_k A_k D_k^T$ such as $|B_k| = 1$, Σ_k is diagonal. Four models $[\lambda B]$, $[\lambda_k B]$, $[\lambda B_k]$ and $[\lambda_k B_k]$
 - General models: the eight models assuming equal or not volumes, shapes and directions [λDAD^T], [λ_kDAD^T], [λDA_kD^T], [λ_kDA_kD^T], [λ_kDA_kD^T], [λ_kD_kAD_k^T], [λ_kD_kAD_k^T], [λ_kD_kAD_k^T], [λ_kD_kAD_k^T], [λ_kD_kAD_k^T]
- Finally we have 28 models, we will study the problem of the choice of the models

CEM

• In clustering step, each x_i is assigned to the cluster maximizing $s_{ik} \propto \pi_k \varphi(\mathbf{x}_i; \mu_k, \Sigma_k)$ or equivalently the cluster that minimizes

$$-\log(\pi_k\varphi(\mathbf{x}_i;\boldsymbol{\alpha}_k)) = (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\mathsf{T}} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) + \log|\boldsymbol{\Sigma}_k| - 2\log(\pi_k) + cste$$

• From density to Distance (or dissimilarity), *x_i* is assigned to the cluster according the following dissimilarity

$$d_{\Sigma_k^{-1}}(\boldsymbol{x}_i;\boldsymbol{\mu}_k) + \log |\boldsymbol{\Sigma}_k| - 2\log(\pi_k)$$

where $d_{\Sigma_k^{-1}}(x_i; \mu_k) = (x_i - \mu_k)^T \Sigma_k^{-1} (x_i - \mu_k)$ is the Mahanalobis distance

• Note that when the proportions are supposed equal and the variances identical, the assignation is based only on

$$d_{\Sigma_k^{-1}}^2(x_i;\mu_k)$$

• When the proportions are supposed equal and for the spherical model $[\lambda I]$ ($\Sigma_k = I$), one uses the usual euclidean distance

$$d^2(\mathbf{x}_i; \boldsymbol{\mu}_k)$$

・ロト ・四ト ・ヨト ・ヨト

Description of CEM

- E-step: classical, C-step: Each cluster z_k i formed by using $d^2(x_i; \mu_k)$
- M-step: Given the partition z, we have to determine the parameter heta maximizing

$$L_{C}(\theta) = L(\theta; \mathbf{x}, \mathbf{z}) = \sum_{i,k} z_{ik} \log \left(\pi_{k} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{k}) \right) = \sum_{k} \sum_{i \in \mathbf{z}_{k}} \log \left(\pi_{k} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{k}) \right)$$

For the Gaussian model

$$-\frac{1}{2}\sum_{k}\left(\sum_{i\in z_{k}}(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k})^{\mathsf{T}}\boldsymbol{\Sigma}_{k}^{-1}(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{k})+\#\boldsymbol{z}_{k}\log|\boldsymbol{\Sigma}_{k}|-2\#\boldsymbol{z}_{k}\log(\pi_{k})\right)$$

- The parameter μ_k is thus necessary the center $\mu_k = rac{\sum_{i \in \mathbf{z}_k} \mathbf{x}_i}{\# z_k}$

- The proportions satisfy
$$\pi_k = \frac{\#z_k}{n}$$

- The parameters must then for the general model

$$F(\Sigma_1, \dots, \Sigma_K) = \sum_k (\operatorname{trace}(W_k \Sigma_k^{-1}) + \# z_k \log |\Sigma_k|)$$

where $W_k = \sum_{i \in z_k} (x_i - \mu_k) (x_i - \mu_k)^T$

・ロト ・ 同ト ・ ヨト ・ ヨト …

Consequence for the spherical model $[\lambda I]$

• The function to maximize for the model $[\lambda I]$ becomes

$$F(\lambda) = \frac{1}{\lambda} \operatorname{trace}(W) + np \log(\lambda)$$

where $W = \sum_{k} W_k$ With $\lambda = \frac{\text{trace}(W)}{np}$ maximizing $F(\lambda)$, the classification log-likelihood becomes

$$L_{C}(\theta) = -\frac{np}{2}$$
trace(W) + cste = $-\frac{np}{2}W(z)$ + cste

- Maximizing *L_c* is equivalent to minimize the SSQ criterion minimized by the *k*means algorithm
- Interpretation
 - The use of the model $[\lambda I]$ assumes that the clusters are spherical having the same proportion and the same volume
 - The CEM is therefore an extension of the kmeans

Description of EM

- E-step: classical
- M-step: we have to determine the parameter θ maximizing $Q(\theta, \theta')$ taking the following form

$$L_{C}(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z}) = \sum_{i,k} s_{ik} \log \left(\pi_{k} \varphi(\mathbf{x}_{i}; \boldsymbol{\alpha}_{k}) \right)$$

For the Gaussian model

$$-\frac{1}{2}\sum_{i,k}\left(s_{ik}(\boldsymbol{x}_i-\boldsymbol{\mu}_k)^{\mathsf{T}}\boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x}_i-\boldsymbol{\mu}_k)+s_{ik}\log|\boldsymbol{\Sigma}_k|-2s_{ik}\log(\pi_k)\right)$$

- The parameter μ_k is thus necessary the center $\mu_k = \frac{\sum_i s_{ik} x_i}{\sum_i s_{ik}}$
- The proportions satisfy $\pi_k = \frac{\sum_i s_{ik}}{n}$
- The parameters Σ_k must then minimize

$$F(\Sigma_1, \dots, \Sigma_K) = \sum_k (\operatorname{trace}(W_k \Sigma_k^{-1}) + \# z_k \log |\Sigma_k|)$$

where $W_k = \sum_{i \in z_k} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^T$

Binary data

• For binary data, considering the conditional independence model (independence for each component), the mixture density of the observed data x can be written as

$$f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i} \sum_{k} \pi_{k} \prod_{j} \alpha_{kj}^{\mathbf{x}_{ij}} (1 - \alpha_{kj})^{1 - \mathbf{x}_{ij}}$$

where $x_{ij} \in \{0,1\}$, $\alpha_k = (\alpha_{k1}, \dots, \alpha_{kp})$ and $\alpha_{kj} \in (0,1)$

- Latent Class Model
- The different steps of EM algorithm

• E-step: compute
$$s_{ik}$$

• M-step: $\alpha_k^j = \frac{\sum_i s_{ik} x_i^j}{\sum_i s_{ik}}$ and $\pi_k = \frac{\sum_i s_{ik}}{n}$

• The different steps of CEM algorithm

• E-step: compute
$$s_{ik}$$

• C-step: compute **z**
• M-step: $\alpha_k^j = \frac{\sum_i z_{ik} x_i^j}{\sum_i z_{ik}} = \%1$ and $\pi_k = \frac{\# z_k}{n}$

< ロ > < 同 > < 回 > < 回 >

Parsimonious model

• As for the Gaussian, several parsimonious models can be proposed

$$f(\mathbf{x}_i; \boldsymbol{\theta}) = \sum_k \pi_k \prod_j \varepsilon_{kj}^{|\mathbf{x}_{ij} - \mathbf{a}_{kj}|} (1 - \varepsilon_{kj})^{1 - |\mathbf{x}_{ij} - \mathbf{a}_{kj}|}$$

where

$$\left\{ \begin{array}{ll} a_{kj}=0, \varepsilon_{kj}=\alpha_{kj} & \text{ if } \alpha_{kj}<0.5\\ a_{kj}=1, \varepsilon_{kj}=1-\alpha_{kj} & \text{ if } \alpha_{kj}>0.5 \end{array} \right.$$

- The parameter α_k is replaced by the two parameters a_k and ε_k
 - The binary vector a_k represents the center of the cluster z_k , each a_{kj} indicates the most frequent binary value
 - The binary vector $\varepsilon_k \in]0, 1/2[^p$ represents the degrees of heterogeneity of the cluster z_k , each ε_{kj} represents the probability of j to have the value different from that of the center,

•
$$p(x_{ij} = 1 | a_{kj} = 0) = p(x_{ij} = 0 | a_{kj} = 1) = \varepsilon_{kj}$$

•
$$p(x_{ij} = 0 | a_{kj} = 0) = p(x_{ij} = 1 | a_{kj} = 1) = 1 - \varepsilon_{kj}$$

• 8 Models assuming proportions equal or not : $[\varepsilon_{kj}], [\varepsilon_k], \varepsilon_j, [\varepsilon]$

・ロト ・ 一 ・ ・ ヨ ト ・

Binary data matrix and reorganized data matrix

	а	b	с	d	e		а	b	с	d	е
1	1	0	1	0	1	1	1	0	1	0	1
2	0	1	0	1	0	4	1	0	1	0	0
3	1	0	0	0	0	8	1	0	1	0	1
4	1	0	1	0	0	2	0	1	0	1	0
5	0	1	0	1	1	5	0	1	0	1	1
6	0	1	0	0	1	6	0	1	0	0	1
7	0	1	0	0	0	10	0	1	0	1	0
8	1	0	1	0	1	3	1	0	0	0	0
9	1	0	0	1	0	7	0	1	0	0	0
10	0	1	0	1	0	9	1	0	0	1	0

Centers a_k and Degree of heterogeneity ε_k

	а	b	с	d	e		а	b	с	d	e
a1	1	0	1	0	1	ε_1	0	0	0	0	0.33
a2	0	1	0	1	0	ε_2	0	0	0	0.25	0.5
a3	1	0	0	0	0	ε3	0.33	0.33	0	0.33	0

・ロト ・部ト ・ヨト ・ヨト

CEM for the simplest model $[\varepsilon]$

• Exercise: When the proportions are supposed equal The classification log-likelihood to maximize

$$L_{\mathcal{C}}(\theta) = L(\theta; \mathbf{x}, \mathbf{z}) = \log(\frac{\varepsilon}{1-\varepsilon}) \sum_{k} \sum_{i \in \mathbf{z}_{k}} d(\mathbf{x}_{i}, \mathbf{a}_{k}) + np \log(1-\varepsilon)$$

where $d(\mathbf{x}_i, \mathbf{a}_k) = \sum_j |x_{ij} - a_{kj}|$

• The parameter ε is fixed for each cluster and for each variable, as $(\log(\frac{\varepsilon}{1-\varepsilon}) \le 0)$ this maximization leads to the minimization of

$$W(\mathsf{z},\mathsf{a}) = \sum_{k} \sum_{i \in \mathsf{z}_{k}} d(x_{i},\mathsf{a}_{k})$$

• Exercise: The CEM algorithm is equivalent to the dynamical clustering method

CEM and EM for the other models

- Exercise: Describe the different steps of CEM for the models $[\varepsilon_j]$, $[\varepsilon_k]$ and $[\varepsilon_{kj}]$
- Exercise: Deduce the different steps of EM for these models

イロト イポト イヨト イヨト

Nominal categorical data

- Categorical data are a generalization of binary data
- Generally this kind of data are represented by a *complete disjunctive table* where the categories are represented by their indicators
- A variable j with h categories is represented by a binary vector such as

$$\begin{cases} x_i^{jh} = 1 & \text{if } i \text{ takes the categorie } h \text{ for } j \\ x_i^{jh} = 0 & \text{otherwise} \end{cases}$$

• The probability of the mixture can be written

$$f(\mathbf{x}_i; \boldsymbol{\theta}) = \sum_k \pi_k \prod_{j,h} (\alpha_k^{jh})^{\mathbf{x}_{ij}}$$

where α_k^{jh} is the probability that the variable *j* takes the categorie *h* when an object belongs to the cluster *k*.

< ロ > < 同 > < 回 > < 回 >

Notation

• $d_k^{jh} = \sum_{i \in z_k} x_i^{jh}$ • $d^{jh} = \sum_i x_i^{jh}$ • $d_k = \sum_{j,h} d_k^{jh}$ • $d = \sum_k d_k = \sum_{k,j,h} x_i^{jh} = np$

Example

	а	ь		a1	a2	a3	b1	b2	b3		a1	a2	a3	b1	b2	b3
1	1	2	1	1	0	0	0	1	0	3	0	1	0	0	0	1
2	3	2	2	0	0	1	0	1	0	7	0	0	1	0	0	1
3	2	3	3	0	1	0	0	0	1	9	0	1	0	0	1	0
4	1	1	4	1	0	0	1	0	0	10	0	1	0	0	0	1
5	1	2	5	1	0	0	0	1	0	1	1	0	0	0	1	0
6	3	2	6	0	0	1	0	1	0	4	1	0	0	1	0	0
7	3	3	7	0	0	1	0	0	1	5	1	0	0	0	1	0
8	1	1	8	1	0	0	1	0	0	8	1	0	0	1	0	0
9	2	2	9	0	1	0	0	1	0	2	0	0	1	0	1	0
10	2	3	10	0	1	0	0	0	1	6	0	0	1	0	1	0

- $d_1^{a1} = 0, d_1^{a2} = 3, \ d_1^{a3} = 1, \ d_1^{b1} = 0, d_1^{b2} = 1, \ d_1^{b3} = 3$
- $d_1 = 8$, $d_2 = 8$, $d_3 = 4$
- $d = 8 + 8 + 4 = 10 \times 2$

Interpretation of the model

• The different steps of EM algorithm

• E-step: compute
$$s_{ik}$$

• M-step: $\alpha_k^{jh} = \frac{\sum_i s_{ik} x_i^{jh}}{\sum_i s_{ik}}$ and $\pi_k = \frac{\sum_{i,k} s_{ik}}{n}$

• The different steps of CEM algorithm

Interpretation of the model

• The classification log-likelihood can be written as

$$L_{\mathcal{C}}(\mathsf{z}, oldsymbol{ heta}) = \sum_{k, j, h} d_k^{jh} \log(lpha_k^{jh}) + \sum_k \# z_k \log(\pi_k)$$

• When the proportions are supposed equal, the restricted likelihood

$$L_{CR}(\theta) = \sum_{k,j,h} d_k^{jh} \log(\alpha_k^{jh})$$

• Given $\alpha_k^{jh} = \frac{d_k^{jh}}{\frac{d_k}{z_k}}$, it can be shown that the CEM algorithm maximizes $H(\mathbf{z})$

$$I(\mathbf{z}, \mathbf{)} = \sum_{k,j,h} \frac{d_k^{jh}}{d} \log \frac{d_k^{jh} d}{d_k d^{jh}}$$

This expression is very close to

$$\chi^{2}(\mathbf{z},J) = \sum_{k,j,h} \frac{(d_{k}^{jh}d - d_{k}d^{jh})^{2}}{d_{k}d^{jh}d}$$

• To assume that the date derive form the latent class model where the proportions are assumed equal is approximatively equivalent to use the χ^2 criterion Nadif (LIPADE) EPAT, May, 2010 Course 3 33/40

Parsimonious model

- Number of the parameters in latent class model is equal $(K 1) + K * \sum_{j} m_j 1$ where m_j is the number of categories of j
- This number is smaller than ∏_j m_j required by the complete log-linear model, example (p = 10, K=5, m_j = 4 for each j), this number is equal to (5 − 1) + 5 * (40 − 10) = 154
- This number can reduced by using parsimonious model by imposing constraints on the paremetre α_{kj} . Instead to have a probability for each categorie, we associate for a categorie of *j* having the same of value that the center for *j* the probability $(1 \varepsilon_{kj})$ and the others categories the probability $\varepsilon_{kj}/(m_j 1)$
- Then the distribution depends on \mathbf{a}_k and ε_k defined by

$$\left\{ \begin{array}{ll} (1 - \varepsilon_{kj}) & \text{ for } x_i^j = a_k^j \\ \varepsilon_{kj}/(m_j - 1) & \text{ for } x_i^j \neq a_k^j \end{array} \right.$$

- The parametrization concerns only the variables instead of all categories, the number of parameters becomes (K 1) + 2Kp
- This model is an extension of the Bernoulli model

・ロト ・四ト ・ヨト ・ヨト

The simplest model

• We assume that $(1 - \varepsilon_{kj})$ does not depend the cluster k and the variable j

$$\left(egin{array}{cc} (1-arepsilon) & ext{for } x_i^j = a_k^j \ arepsilon/(m_j-1) & ext{for } x_i^j
eq a_k^j \end{array}
ight.$$

• The restricted classification log-likelihood takes the following form

$$L_{CR}(\theta) = L(\theta; \mathbf{x}, \mathbf{z}) = \sum_{k} \sum_{i \in \mathbf{z}_{k}} \left(\sum_{j} \log(\frac{\varepsilon}{1 - \varepsilon} (m_{j} - 1)) \delta(\mathbf{x}_{i}, \mathbf{a}_{k}) \right) + np \log(1 - \varepsilon)$$

or,

$$\mathcal{L}_{CR}(heta) = \sum_k \sum_{i \in z_k} d(oldsymbol{x}_i, oldsymbol{a}_k) + np \log(1 - arepsilon)$$

where $d(\mathbf{x}_i, \mathbf{a}_k) = \sum_j \log(\frac{1-\varepsilon}{\varepsilon}(m_j - 1))\delta(x_{ij}, a_{kj})$

- If all variables have the same number of categories, the criterion to minimize is $\sum_{k} \sum_{i \in \mathbf{z}_{k}} d(\mathbf{x}_{i}, \mathbf{a}_{k})$, why ?
- The CEM is an extension of k-modes

・ロト ・ 同ト ・ ヨト ・ ヨト …

Contingency table

- We can associate a multinomial model(Govaert and Nadif 2007), then the density of the model φ(x_i; θ) = A∑_k π_kα^{x_{i1}}_{k1}...α^{x_{ip}}_{kp}(A does not depend on θ)
- Without log(A) we have $L_C(\mathbf{z}, \theta) = \sum_i \sum_k z_{ik} \left(\log \pi_k + \sum_j x_{ij} \log(\alpha_{kj}) \right)$
- The mutual information quantifying the information shared between z and J:

$$I(\mathbf{z}, J) = \sum_{kj} f_{kj} \log(\frac{f_{kj}}{f_{k.} f_{.j}})$$

- We have the relation $\sum_{k,j} \frac{(f_{kj}-f_k,f_j)^2}{f_k,f_j} = \sum_{k,j} \left((\frac{f_{kj}}{f_k,f_j})^2 1 \right)$
- Using the following approximation : x² − 1 ≈ 2x log(x) excellent in the neighborhood of 1 and good in [0, 3], we have

$$\sum_{k,j} \left(\left(\frac{f_{kj}}{f_{k.}f_{.j}} \right)^2 - 1 \right) \approx 2 \sum_{k,j} f_{kj} \log(\frac{f_{kj}}{f_{k.}f_{.j}})$$

- Then $I(\mathbf{z}, J) \approx \frac{N}{2}\chi^2(\mathbf{z}, J)$
- When the proportions are assumed equal, the maximization of $L_C(\mathbf{z}, \theta)$ is equivalent to the maximization of $I(\mathbf{z}, J)$ and approximately equivalent to the maximization of $\chi^2(\mathbf{z}, J)$

Outline

Introduction

Mixture Approach

2 Finite Mixture Model

- Definition of the model
- Example
- Different approaches

3 ML and CML approaches

- EM algorithm
- CEM algorithm
- Others variants of EM

Applications

- Gaussian mixture model
- Bernoulli mixture
- Multinomial Mixture

5 Model Selection

Conclusion

・ロト ・ 日 ・ ・ ヨ ト ・

Model Selection

Different approaches

- In Finite mixture model, the problem of the choice of the model include the problem of the number of clusters
- To simplify the problem, we distinguish the two problems and we consider the model fixed and K is unknown. Let be tow models M_A and M_B . $\Theta(M_A)$ and $\Theta(M_B)$ indicates the "domain" of free parameters. if $L_{max}(M) = L(\hat{\theta}_M)$ where $\hat{\theta}_M = \operatorname{argmax} L(\theta)$ then we have

$$\mathbf{\Theta}(M_{\mathcal{A}}) \subset \mathbf{\Theta}(M_{\mathcal{B}}) \Rightarrow L_{max}(M_{\mathcal{A}}) \leq L_{max}(M_{\mathcal{B}})$$

For example $L_{max}[\pi_k \lambda_k I]_{K=2} \leq L_{max}[\pi_k \lambda_k I]_{K=3}$. Generally the likelihood increases with the number of clusters.

- First solution: Plot (Likelihood*number of clusters) and use the elbows
- Second solution: Minimize the classical criteria (Criteria in competition) taking this form

$$C(M) = -2L_{max}(M) + \tau_C n_p(M)$$

where n_p indicates the number of parameters of the model M, it represents the complexity of the model

• Different variants of this criterion AIC with $\tau_{AIC} = 2$, AIC3 with $\tau_{AIC} = 3$ and the famous

$$BIC(M) = -2L_{max}(M) + \log(n)n_p(M)$$

Nadif (LIPADE)

Conclusion

Outline

Introduction

Mixture Approach

2 Finite Mixture Model

- Definition of the model
- Example
- Different approaches

3 ML and CML approaches

- EM algorithm
- CEM algorithm
- Others variants of EM

Applications

- Gaussian mixture model
- Bernoulli mixture
- Multinomial Mixture

Model Selection

Conclusion

・ロト ・ 日 ・ ・ ヨ ト ・

Conclusion

- Finite mixture approach is interesting
- The CML approach gives interesting criteria and generalizes the classical criteria
- The different variants of EM offer good solutions
- The CEM algorithm is an extension of k-means and other variants
- The choice of the model is performed by using the maximum likelihood penalized by the number of parameters
- See MIXMOD
- Other Mixture models adapted to the nature of data (Text mining)