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In statistics, maximum-likelihood estimation (MLE) is a method of estimating the parameters of a
statistical model. When applied to a data set and given a statistical model, maximum-likelihood
estimation provides estimates for the model's parameters.

The method of maximum likelihood corresponds to many well-known estimation methods in statistics.
For example, one may be interested in the heights of adult female penguins, but be unable to
measure the height of every single penguin in a population due to cost or time constraints. Assuming
that the heights are normally (Gaussian) distributed with some unknown mean and variance, the
mean and variance can be estimated with MLE while only knowing the heights of some sample of the
overall population. MLE would accomplish this by taking the mean and variance as parameters and
finding particular parametric values that make the observed results the most probable (given the
model).

In general, for a fixed set of data and underlying statistical model, the method of maximum likelihood
selects the set of values of the model parameters that maximizes the likelihood function. Intuitively,
this maximizes the "agreement" of the selected model with the observed data, and for discrete
random variables it indeed maximizes the probability of the observed data under the resulting
distribution. Maximum-likelihood estimation gives a unified approach to estimation, which is well-
defined in the case of the normal distribution and many other problems. However, in some
complicated problems, difficulties do occur: in such problems, maximum-likelihood estimators are
unsuitable or do not exist.
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Principles
Suppose there is a sample x1, x2, …, xn of n independent and identically distributed observations,
coming from a distribution with an unknown probability density function f0(·). It is however surmised
that the function f0 belongs to a certain family of distributions { f(·| θ), θ ∈ Θ } (where θ is a vector of
parameters for this family), called the parametric model, so that f0 = f(·| θ0). The value θ0 is
unknown and is referred to as the true value of the parameter. It is desirable to find an estimator 
which would be as close to the true value θ0 as possible. Either or both the observed variables xi and
the parameter θ can be vectors.

To use the method of maximum likelihood, one first specifies the joint density function for all
observations. For an independent and identically distributed sample, this joint density function is

Now we look at this function from a different perspective by considering the observed values x1, x2,
…, xn to be fixed "parameters" of this function, whereas θ will be the function's variable and allowed
to vary freely; this function will be called the likelihood:

Note  denotes a separation between the two input arguments:  and the vector-valued input 
.

In practice it is often more convenient to work with the logarithm of the likelihood function, called the
log-likelihood:

or the average log-likelihood:

The hat over ℓ indicates that it is akin to some estimator. Indeed,  estimates the expected log-
likelihood of a single observation in the model.

The method of maximum likelihood estimates θ0 by finding a value of θ that maximizes . This
method of estimation defines a maximum-likelihood estimator (MLE) of θ0 …

… if any maximum exists. An MLE estimate is the same regardless of whether we maximize the
likelihood or the log-likelihood function, since log is a strictly monotonically increasing function.
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For many models, a maximum likelihood estimator can be found as an explicit function of the
observed data x1, …, xn. For many other models, however, no closed-form solution to the
maximization problem is known or available, and an MLE has to be found numerically using
optimization methods. For some problems, there may be multiple estimates that maximize the
likelihood. For other problems, no maximum likelihood estimate exists (meaning that the log-
likelihood function increases without attaining the supremum value).

In the exposition above, it is assumed that the data are independent and identically distributed. The
method can be applied however to a broader setting, as long as it is possible to write the joint density
function f(x1, …, xn | θ), and its parameter θ has a finite dimension which does not depend on the
sample size n. In a simpler extension, an allowance can be made for data heterogeneity, so that the
joint density is equal to f1(x1|θ) · f2(x2|θ) · ··· · fn(xn | θ). Put another way, we are now assuming
that each observation xi comes from a random variable that has its own distribution function fi. In the
more complicated case of time series models, the independence assumption may have to be dropped
as well.

A maximum likelihood estimator coincides with the most probable Bayesian estimator given a uniform
prior distribution on the parameters. Indeed, the maximum a posteriori estimate is the parameter θ
that maximizes the probability of θ given the data, given by Bayes' theorem:

where  is the prior distribution for the parameter θ and where  is the probability
of the data averaged over all parameters. Since the denominator is independent of θ, the Bayesian
estimator is obtained by maximizing  with respect to θ. If we further assume
that the prior  is a uniform distribution, the Bayesian estimator is obtained by maximizing the
likelihood function . Thus the Bayesian estimator coincides with the maximum-
likelihood estimator for a uniform prior distribution .

Properties
A maximum-likelihood estimator is an extremum estimator obtained by maximizing, as a function of
θ, the objective function (c.f., the loss function)

this being the sample analogue of the expected log-likelihood , where this
expectation is taken with respect to the true density .

Maximum-likelihood estimators have no optimum properties for finite samples, in the sense that
(when evaluated on finite samples) other estimators have greater concentration around the true
parameter-value.[1] However, like other estimation methods, maximum-likelihood estimation
possesses a number of attractive limiting properties: As the sample size increases to infinity,
sequences of maximum-likelihood estimators have these properties:

Consistency: the sequence of MLEs converges in probability to the value being estimated.
Asymptotic normality: as the sample size increases, the distribution of the MLE tends to the
Gaussian distribution with mean  and covariance matrix equal to the inverse of the Fisher
information matrix.
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Efficiency, i.e., it achieves the Cramér–Rao lower bound when the sample size tends to infinity.
This means that no consistent estimator has lower asymptotic mean squared error than the MLE
(or other estimators attaining this bound).
Second-order efficiency after correction for bias.

Consistency

Under the conditions outlined below, the maximum likelihood estimator is consistent. The
consistency means that having a sufficiently large number of observations n, it is possible to find the
value of θ0 with arbitrary precision. In mathematical terms this means that as n goes to infinity the
estimator  converges in probability to its true value:

Under slightly stronger conditions, the estimator converges almost surely (or strongly) to:

To establish consistency, the following conditions are sufficient:[2]

1. Identification of the model:

In other words, different parameter values θ correspond to different distributions within the
model. If this condition did not hold, there would be some value θ1 such that θ0 and θ1 generate
an identical distribution of the observable data. Then we wouldn't be able to distinguish between
these two parameters even with an infinite amount of data — these parameters would have been
observationally equivalent.

The identification condition is absolutely necessary for the ML estimator to be consistent. When
this condition holds, the limiting likelihood function ℓ(θ|·) has unique global maximum at θ0.

2. Compactness: the parameter space Θ of the model is compact.

The identification condition establishes that the log-likelihood
has a unique global maximum. Compactness implies that the
likelihood cannot approach the maximum value arbitrarily close
at some other point (as demonstrated for example in the picture
on the right).

Compactness is only a sufficient condition and not a necessary condition. Compactness can be
replaced by some other conditions, such as:

both concavity of the log-likelihood function and compactness of some (nonempty) upper
level sets of the log-likelihood function, or
existence of a compact neighborhood N of θ0 such that outside of N the log-likelihood

function is less than the maximum by at least some ε > 0.
3. Continuity: the function ln f(x|θ) is continuous in θ for almost all values of x:
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The continuity here can be replaced with a slightly weaker condition of upper semi-continuity.
4. Dominance: there exists D(x) integrable with respect to the distribution f(x|θ0) such that

By the uniform law of large numbers, the dominance condition together with continuity establish
the uniform convergence in probability of the log-likelihood:

The dominance condition can be employed in the case of i.i.d. observations. In the non-i.i.d. case the
uniform convergence in probability can be checked by showing that the sequence  is
stochastically equicontinuous.

If one wants to demonstrate that the ML estimator  converges to θ0 almost surely, then a stronger
condition of uniform convergence almost surely has to be imposed:

Asymptotic normality

Maximum-likelihood estimators can lack asymptotic normality and can be inconsistent if there is a
failure of one (or more) of the below regularity conditions:

Estimate on boundary. Sometimes the maximum likelihood estimate lies on the boundary of the set
of possible parameters, or (if the boundary is not, strictly speaking, allowed) the likelihood gets larger
and larger as the parameter approaches the boundary. Standard asymptotic theory needs the
assumption that the true parameter value lies away from the boundary. If we have enough data, the
maximum likelihood estimate will keep away from the boundary too. But with smaller samples, the
estimate can lie on the boundary. In such cases, the asymptotic theory clearly does not give a
practically useful approximation. Examples here would be variance-component models, where each
component of variance, σ2, must satisfy the constraint σ2 ≥0.

Data boundary parameter-dependent. For the theory to apply in a simple way, the set of data
values which has positive probability (or positive probability density) should not depend on the
unknown parameter. A simple example where such parameter-dependence does hold is the case of
estimating θ from a set of independent identically distributed when the common distribution is
uniform on the range (0,θ). For estimation purposes the relevant range of θ is such that θ cannot be
less than the largest observation. Because the interval (0,θ) is not compact, there exists no maximum
for the likelihood function: For any estimate of theta, there exists a greater estimate that also has
greater likelihood. In contrast, the interval [0,θ] includes the end-point θ and is compact, in which
case the maximum-likelihood estimator exists. However, in this case, the maximum-likelihood
estimator is biased. Asymptotically, this maximum-likelihood estimator is not normally distributed.[3]

Nuisance parameters. For maximum likelihood estimations, a model may have a number of
nuisance parameters. For the asymptotic behaviour outlined to hold, the number of nuisance
parameters should not increase with the number of observations (the sample size). A well-known
example of this case is where observations occur as pairs, where the observations in each pair have a
different (unknown) mean but otherwise the observations are independent and normally distributed
with a common variance. Here for 2N observations, there are N+1 parameters. It is well known that
the maximum likelihood estimate for the variance does not converge to the true value of the variance.
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Increasing information. For the asymptotics to hold in cases where the assumption of independent
identically distributed observations does not hold, a basic requirement is that the amount of
information in the data increases indefinitely as the sample size increases. Such a requirement may
not be met if either there is too much dependence in the data (for example, if new observations are
essentially identical to existing observations), or if new independent observations are subject to an
increasing observation error.

Some regularity conditions which ensure this behavior are:

1. The first and second derivatives of the log-likelihood function must be defined.
2. The Fisher information matrix must not be zero, and must be continuous as a function of the

parameter.
3. The maximum likelihood estimator is consistent.

Suppose that conditions for consistency of maximum likelihood estimator are satisfied, and[4]

1. θ0 ∈ interior(Θ);

2. f(x|θ) > 0 and is twice continuously differentiable in θ in some neighborhood N of θ0;

3. ∫ supθ∈N||∇θf(x|θ)||dx < ∞, and ∫ supθ∈N||∇θθf(x|θ)||dx < ∞;

4. I = E[∇θlnf(x|θ0) ∇θlnf(x|θ0)′] exists and is nonsingular;

5. E[ supθ∈N||∇θθlnf(x|θ)||] < ∞.

Then the maximum likelihood estimator has asymptotically normal distribution:

Proof, skipping the technicalities:

Since the log-likelihood function is differentiable, and θ0 lies in the interior of the parameter set, in
the maximum the first-order condition will be satisfied:

When the log-likelihood is twice differentiable, this expression can be expanded into a Taylor series
around the point θ = θ0:

where  is some point intermediate between θ0 and . From this expression we can derive that

Here the expression in square brackets converges in probability to H = E[−∇ ln f(x|θ0)] by the law of
large numbers. The continuous mapping theorem ensures that the inverse of this expression also
converges in probability, to H−1. The second sum, by the central limit theorem, converges in

θθ
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distribution to a multivariate normal with mean zero and variance matrix equal to the Fisher
information I. Thus, applying Slutsky's theorem to the whole expression, we obtain that

Finally, the information equality guarantees that when the model is correctly specified, matrix H will
be equal to the Fisher information I, so that the variance expression simplifies to just I−1.

Functional invariance

The maximum likelihood estimator selects the parameter value which gives the observed data the
largest possible probability (or probability density, in the continuous case). If the parameter consists
of a number of components, then we define their separate maximum likelihood estimators, as the
corresponding component of the MLE of the complete parameter. Consistent with this, if  is the MLE
for θ, and if g(θ) is any transformation of θ, then the MLE for α = g(θ) is by definition

It maximizes the so-called profile likelihood:

The MLE is also invariant with respect to certain transformations of the data. If Y = g(X) where g is
one to one and does not depend on the parameters to be estimated, then the density functions satisfy

and hence the likelihood functions for X and Y differ only by a factor that does not depend on the
model parameters.

For example, the MLE parameters of the log-normal distribution are the same as those of the normal
distribution fitted to the logarithm of the data.

Higher-order properties

The standard asymptotics tells that the maximum-likelihood estimator is √n-consistent and
asymptotically efficient, meaning that it reaches the Cramér–Rao bound:

where I is the Fisher information matrix:

In particular, it means that the bias of the maximum-likelihood estimator is equal to zero up to the
order n−1/2. However when we consider the higher-order terms in the expansion of the distribution of
this estimator, it turns out that θmle has bias of order n−1. This bias is equal to (componentwise)[5]
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where Einstein's summation convention over the repeating indices has been adopted; I jk denotes the
j,k-th component of the inverse Fisher information matrix I−1, and

Using these formulas it is possible to estimate the second-order bias of the maximum likelihood
estimator, and correct for that bias by subtracting it:

This estimator is unbiased up to the terms of order n−1, and is called the bias-corrected maximum
likelihood estimator.

This bias-corrected estimator is second-order efficient (at least within the curved exponential family),
meaning that it has minimal mean squared error among all second-order bias-corrected estimators,
up to the terms of the order n−2. It is possible to continue this process, that is to derive the third-
order bias-correction term, and so on. However as was shown by Kano (1996), the maximum-
likelihood estimator is not third-order efficient.

Examples

Discrete uniform distribution

Consider a case where n tickets numbered from 1 to n are placed in a box and one is selected at
random (see uniform distribution); thus, the sample size is 1. If n is unknown, then the maximum-
likelihood estimator  of n is the number m on the drawn ticket. (The likelihood is 0 for n < m, 1/n for
n ≥ m, and this is greatest when n = m. Note that the maximum likelihood estimate of n occurs at
the lower extreme of possible values {m, m + 1, ...}, rather than somewhere in the "middle" of the
range of possible values, which would result in less bias.) The expected value of the number m on the
drawn ticket, and therefore the expected value of , is (n + 1)/2. As a result, with a sample size of 1,
the maximum likelihood estimator for n will systematically underestimate n by (n − 1)/2.

Discrete distribution, finite parameter space

Suppose one wishes to determine just how biased an unfair coin is. Call the probability of tossing a
HEAD p. The goal then becomes to determine p.

Suppose the coin is tossed 80 times: i.e., the sample might be something like x1 = H, x2 = T, …,
x80 = T, and the count of the number of HEADS "H" is observed.

The probability of tossing TAILS is 1 − p (so here p is θ above). Suppose the outcome is 49 HEADS
and 31 TAILS, and suppose the coin was taken from a box containing three coins: one which gives
HEADS with probability p = 1/3, one which gives HEADS with probability p = 1/2 and another which
gives HEADS with probability p = 2/3. The coins have lost their labels, so which one it was is
unknown. Using maximum likelihood estimation the coin that has the largest likelihood can be
found, given the data that were observed. By using the probability mass function of the binomial
distribution with sample size equal to 80, number successes equal to 49 but different values of p (the
"probability of success"), the likelihood function (defined below) takes one of three values:
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likelihood function for
proportion value of a
binomial process (n = 10)

The likelihood is maximized when p = 2/3, and so this is the maximum likelihood estimate for p.

Discrete distribution, continuous parameter space

Now suppose that there was only one coin but its p could have been any value 0 ≤ p ≤ 1. The
likelihood function to be maximised is

and the maximisation is over all possible values 0 ≤ p ≤ 1.

One way to maximize this function is by differentiating with respect to p
and setting to zero:

which has solutions p = 0, p = 1, and p = 49/80. The solution which maximizes the likelihood is
clearly p = 49/80 (since p = 0 and p = 1 result in a likelihood of zero). Thus the maximum likelihood
estimator for p is 49/80.

This result is easily generalized by substituting a letter such as t in the place of 49 to represent the
observed number of 'successes' of our Bernoulli trials, and a letter such as n in the place of 80 to
represent the number of Bernoulli trials. Exactly the same calculation yields the maximum likelihood
estimator t / n for any sequence of n Bernoulli trials resulting in t 'successes'.

Continuous distribution, continuous parameter space

For the normal distribution  which has probability density function

the corresponding probability density function for a sample of n independent identically distributed
normal random variables (the likelihood) is
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or more conveniently:

where  is the sample mean.

This family of distributions has two parameters: θ = (µ, σ), so we maximize the likelihood, 
, over both parameters simultaneously, or if possible, individually.

Since the logarithm is a continuous strictly increasing function over the range of the likelihood, the
values which maximize the likelihood will also maximize its logarithm. Since maximizing the logarithm
often requires simpler algebra, it is the logarithm which is maximized below. (Note: the log-likelihood
is closely related to information entropy and Fisher information.)

which is solved by

This is indeed the maximum of the function since it is the only turning point in µ and the second
derivative is strictly less than zero. Its expectation value is equal to the parameter µ of the given
distribution,

which means that the maximum-likelihood estimator  is unbiased.

Similarly we differentiate the log likelihood with respect to σ and equate to zero:
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which is solved by

Inserting  we obtain

To calculate its expected value, it is convenient to rewrite the expression in terms of zero-mean
random variables (statistical error) . Expressing the estimate in these variables yields

Simplifying the expression above, utilizing the facts that  and , allows us to
obtain

This means that the estimator  is biased. However,  is consistent.

Formally we say that the maximum likelihood estimator for  is:

In this case the MLEs could be obtained individually. In general this may not be the case, and the
MLEs would have to be obtained simultaneously.

Non-independent variables
It may be the case that variables are correlated, that is, not independent. Two random variables X
and Y are independent only if their joint probability density function is the product of the individual
probability density functions, i.e.

Suppose one constructs an order-n Gaussian vector out of random variables , where each
variable has means given by . Furthermore, let the covariance matrix be denoted by .

The joint probability density function of these n random variables is then given by:

In the two variable case, the joint probability density function is given by:
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In this and other cases where a joint density function exists, the likelihood function is defined as
above, in the section Principles, using this density.

Iterative procedures
Consider problems where both states  and parameters such as  require to be estimated. Iterative
procedures such as Expectation-maximization algorithms may be used to solve joint state-parameter
estimation problems.

For example, suppose that n samples of state estimates  together with a sample mean  have been
calculated by either a minimum-variance Kalman filter or a minimum-variance smoother using a
previous variance estimate . Then the next variance iterate may be obtained from the maximum
likelihood estimate calculation

The convergence of MLEs within filtering and smoothing EM algorithms are studied in [6] [7] .[8]

Applications
Maximum likelihood estimation is used for a wide range of statistical models, including:

linear models and generalized linear models;
exploratory and confirmatory factor analysis;
structural equation modeling;
many situations in the context of hypothesis testing and confidence interval \

discrete choice models;

These uses arise across applications in widespread set of fields, including:

communication systems;
psychometrics;
econometrics;
time-delay of arrival (TDOA) in acoustic or electromagnetic detection;
data modeling in nuclear and particle physics;
magnetic resonance imaging;[9][10]

computational phylogenetics;
origin/destination and path-choice modeling in transport networks;
geographical satellite-image classification.

History
Maximum-likelihood estimation was recommended, analyzed (with flawed attempts at proofs) and
vastly popularized by R. A. Fisher between 1912 and 1922[11] (although it had been used earlier by
Gauss, Laplace, T. N. Thiele, and F. Y. Edgeworth).[12] Reviews of the development of maximum
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likelihood have been provided by a number of authors.[13]

Much of the theory of maximum-likelihood estimation was first developed for Bayesian statistics, and
then simplified by later authors.[11]

See also

Other estimation methods
Generalized method of moments are methods related to the likelihood equation in maximum
likelihood estimation.
M-estimator, an approach used in robust statistics.
Maximum a posteriori (MAP) estimator, for a contrast in the way to calculate estimators
when prior knowledge is postulated.
Maximum spacing estimation, a related method that is more robust in many situations.
Method of moments (statistics), another popular method for finding parameters of
distributions.
Method of support, a variation of the maximum likelihood technique.
Minimum distance estimation
Quasi-maximum likelihood estimator, an MLE estimator that is misspecified, but still
consistent.
Restricted maximum likelihood, a variation using a likelihood function calculated from a
transformed set of data.

Related concepts:
The BHHH algorithm is a non-linear optimization algorithm that is popular for Maximum
Likelihood estimations.
Extremum estimator, a more general class of estimators to which MLE belongs.
Fisher information, information matrix, its relationship to covariance matrix of ML estimates
Likelihood function, a description on what likelihood functions are.
Mean squared error, a measure of how 'good' an estimator of a distributional parameter is
(be it the maximum likelihood estimator or some other estimator).
The Rao–Blackwell theorem, a result which yields a process for finding the best possible
unbiased estimator (in the sense of having minimal mean squared error). The MLE is often a
good starting place for the process.
Sufficient statistic, a function of the data through which the MLE (if it exists and is unique)
will depend on the data.
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