Marginal and conditional distributions of multivariate normal distribution

Assume an n -dimensional random vector

$$
\mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]
$$

has a normal distribution $N(\mathbf{x}, \mu, \Sigma)$ with

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

where \mathbf{x}_{1} and \mathbf{x}_{2} are two subvectors of respective dimensions p and q with $p+q=n$. Note that $\Sigma=\Sigma^{T}$, and $\Sigma_{21}=\Sigma_{21}^{T}$.

Theorem 4:

Part a The marginal distributions of \mathbf{x}_{1} and \mathbf{x}_{2} are also normal with mean vector μ_{i} and covariance matrix $\Sigma_{i i}($ $i=1,2$), respectively.

Part b The conditional distribution of \mathbf{x}_{i} given \mathbf{x}_{j} is also normal with mean vector

$$
\mu_{i \mid j}=\mu_{i}+\Sigma_{i j} \Sigma_{j j}^{-1}\left(\mathbf{x}_{j}-\mu_{j}\right)
$$

and covariance matrix

$$
\Sigma_{i \mid j}=\Sigma_{j j}-\Sigma_{i j}^{T} \Sigma_{i i}^{-1} \Sigma_{i j}
$$

Proof: The joint density of x is:

$$
f(\mathbf{x})=f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{(2 \pi)^{n / 2|\Sigma|^{1 / 2}}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right]=\frac{1}{(2 \pi)^{n / 2|\Sigma|^{1 / 2}}} \exp \left[-\frac{1}{2} Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right]
$$

where Q is defined as

$$
Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)
$$

$$
\begin{aligned}
& =\left[\left(\mathbf{x}_{1}-\mu_{1}\right)^{T},\left(\mathbf{x}-\mu_{2}\right)^{T}\right]\left[\begin{array}{ll}
\Sigma^{11} & \Sigma^{12} \\
\Sigma^{21} & \Sigma^{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1}-\mu_{1} \\
\mathbf{x}_{2}-\mu_{2}
\end{array}\right] \\
& =\left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma^{11}\left(\mathbf{x}_{1}-\mu_{1}\right)+2\left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma^{12}\left(\mathbf{x}_{2}-\mu_{2}\right)+\left(\mathbf{x}_{2}-\mu_{2}\right)^{T} \Sigma^{22}\left(\mathbf{x}_{2}-\mu_{2}\right)
\end{aligned}
$$

Here we have assumed

$$
\Sigma^{-1}=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\Sigma^{11} & \Sigma^{12} \\
\Sigma^{21} & \Sigma^{22}
\end{array}\right]
$$

According to theorem 2, we have

$$
\begin{gathered}
\Sigma^{11}=\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^{T}\right)^{-1}=\Sigma_{11}^{-1}+\Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-A_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1} \Sigma_{12}^{T} \Sigma_{11}^{-1} \\
\Sigma^{22}=\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}=\Sigma_{22}^{-1}+\Sigma_{22}^{-1} \Sigma_{12}^{T}\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^{T}\right)^{-1} \Sigma_{12} \Sigma_{22}^{-1} \\
\Sigma^{12}=-\Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}=\left(\Sigma^{21}\right)^{T}
\end{gathered}
$$

Substituting the second expression for Σ^{11}, first expression for Σ^{22}, and Σ^{12} into $Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ to get:

$$
\begin{aligned}
Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \left(\mathbf{x}_{1}-\mu_{1}\right)^{T}\left[\Sigma_{11}^{-1}+\Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-A_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1} \Sigma_{12}^{T} \Sigma_{11}^{-1}\right]\left(\mathbf{x}_{1}-\mu_{1}\right) \\
& -2\left(\mathbf{x}_{1}-\mu_{1}\right)^{T}\left[\Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}\right]\left(\mathbf{x}_{2}-\mu_{2}\right) \\
& +\left(\mathbf{x}_{2}-\mu_{2}\right)^{T}\left[\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}\right]\left(\mathbf{x}_{2}-\mu_{2}\right) \\
= & \left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right) \\
& \left.+\left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-A_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1} \Sigma_{12}^{T} \Sigma_{11}^{-1}\right]\left(\mathbf{x}_{1}-\mu_{1}\right) \\
& -2\left(\mathbf{x}_{1}-\mu_{1}\right)^{T}\left[\Sigma_{11}^{-1} \Sigma_{12}\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}\right]\left(\mathbf{x}_{2}-\mu_{2}\right) \\
& +\left(\mathbf{x}_{2}-\mu_{2}\right)^{T}\left[\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}\right]\left(\mathbf{x}_{2}-\mu_{2}\right) \\
= & \left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right) \\
& +\left[\left(\mathbf{x}_{2}-\mu_{2}\right)-\Sigma_{12}^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right)\right]^{T}\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}\left[\left(\mathbf{x}_{2}-\mu_{2}\right)-\Sigma_{12}^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right)\right]
\end{aligned}
$$

The last equal sign is due to the following equations for any vectors u and v and a symmetric matrix $A=A^{T}$:

$$
\begin{aligned}
& u^{T} A u-2 u^{T} A v+v^{T} A v=u^{T} A u-u^{T} A v-u^{T} A v+v^{T} A v \\
= & u^{T} A(u-v)-(u-v)^{T} A v=u^{T} A(u-v)-v^{T} A(u-v) \\
= & (u-v)^{T} A(u-v)=(v-u)^{T} A(v-u)
\end{aligned}
$$

We define

$$
\begin{gathered}
b \triangleq \mu_{2}+\Sigma_{12}^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right) \\
A \triangleq \Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}
\end{gathered}
$$

and

$$
\begin{cases}Q_{1}\left(\mathbf{x}_{1}\right) & \triangleq\left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right) \\ Q_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \triangleq\left[\left(\mathbf{x}_{2}-\mu_{2}\right)-\Sigma_{12}^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right)\right]^{T}\left(\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right)^{-1}\left[\left(\mathbf{x}_{2}-\mu_{2}\right)-\Sigma_{12}^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right)\right] \\ & =\left(\mathbf{x}_{2}-b\right)^{T} A^{-1}\left(\mathbf{x}_{2}-b\right)\end{cases}
$$

and get

$$
Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=Q_{1}\left(\mathbf{x}_{1}\right)+Q_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

Now the joint distribution can be written as:

$$
\begin{aligned}
f(\mathbf{x}) & =f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{\left.(2 \pi)^{n / 2}\right|^{1 / 2}} \exp \left[-\frac{1}{2} Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right] \\
& =\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{11}\right|^{1 / 2}\left|\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right|^{1 / 2}} \exp \left[-\frac{1}{2} Q\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right] \\
& =\frac{1}{(2 \pi)^{p / 2}\left|\Sigma_{11}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right)\right] \frac{1}{(2 \pi)^{q / 2}|A|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{2}-b\right)^{T} A^{-1}\left(\mathbf{x}_{2}-b\right)\right] \\
& =N\left(\mathbf{x}_{1}, \mu_{1}, \Sigma_{11}\right) N\left(\mathbf{x}_{2}, b, A\right)
\end{aligned}
$$

The third equal sign is due to theorem 3:

$$
|\Sigma|=\left|\Sigma_{11}\right|\left|\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}\right|
$$

The marginal distribution of \mathbf{x}_{1} is

$$
f_{1}\left(\mathbf{x}_{1}\right)=\int f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) d \mathbf{x}_{2}=\frac{1}{(2 \pi)^{p / 2}\left|\Sigma_{11}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{1}-\mu_{1}\right)^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right)\right]
$$

and the conditional distribution of \mathbf{x}_{2} given \mathbf{x}_{1} is

$$
f_{2 \mid 1}\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right)=\frac{f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}{f\left(\mathbf{x}_{1}\right)}=\frac{1}{(2 \pi)^{q / 2}|A|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{2}-b\right)^{T} A^{-1}\left(\mathbf{x}_{2}-b\right)\right]
$$

with

$$
\begin{gathered}
b=\mu_{2}+\Sigma_{12}^{T} \Sigma_{11}^{-1}\left(\mathbf{x}_{1}-\mu_{1}\right) \\
A=\Sigma_{22}-\Sigma_{12}^{T} \Sigma_{11}^{-1} \Sigma_{12}
\end{gathered}
$$

next up previous
Next: Appendix B: Kernels and Up: Appendix A: Conditional and Previous: Inverse and determinant of Ruye Wang 2006-11-14

