EM algorithm for coin flipping problem

Cheng Li

We have K coins. The mixing proportions are $\pi_{1}, \pi_{2}, \ldots, \pi_{K}$. The probability of the k 's coin getting heads is q_{k}. First we randomly pick a coin, then we flip this coin for d times. And we repeat this process for N times. In this way, we can generate N data points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$, each of which is a d dimensional vector. $x_{i} \in\{\text { Head, Tail }\}^{d}$. Suppose the number of heads in x_{k} is y_{k}. We define the hidden variables z_{n}, representing the component assignment for data point x_{n} using a vector of size K. If x_{n} is drawn from the k th component, $z_{n k}=1$ while the remaining are all 0 .

- E step: Compute $\gamma\left(z_{n k}\right)$ with current parameters $\theta=\left\{\pi_{k}, q_{k}\right\}$.

$$
\gamma\left(z_{n k}\right)=p\left(z_{n k}=1 \mid x_{n}, \theta\right)=\frac{\pi_{k} p\left(x_{n} \mid q_{k}\right)}{\sum_{j=1}^{K} \pi_{j} p\left(x_{n} \mid q_{j}\right)}
$$

- M step: update π_{k} and q_{k}

$$
\begin{gathered}
\pi_{k}=\frac{\sum_{n=1}^{N} \gamma\left(z_{n k}\right)}{N} \\
q_{k}=\frac{\sum_{n=1}^{N} \gamma\left(z_{n k}\right) y_{n}}{\sum_{n=1}^{N} \gamma\left(z_{n k}\right) d}
\end{gathered}
$$

References

[1] Dawen Liang, Technical Details about the Expectation Maximization (EM) Algorithm, 2012

