EM algorithm for coin flipping problem

Cheng Li

We have K coins. The mixing proportions are $w_{1}, w_{2}, \ldots, w_{K}$. The probability of the k 's coin getting heads is p_{k}. First we randomly pick a coin, then we flip this coin for D times. And we repeat this process for N rows. In this way, we can generate N data points $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$, each of which is a D dimensional vector. $x_{i} \in\{\text { Head, Tail }\}^{d}$. Suppose the number of heads in x_{i} is H_{i}. We define the hidden variables $z_{i k}$, representing the component assignment for data point x_{i} using a vector of size K. If x_{i} is drawn from the k th component, $z_{i k}=1$ while the remaining are all 0 .

- E step: Compute $<z_{i k}>$ with current parameters $\theta=\left\{p_{k}, w_{k}\right\}$.

$$
<z_{i k}>=\operatorname{prob}\left(z_{i k}=1 \mid x_{n}, \theta\right)=\frac{w_{k} \cdot p d f\left(x_{i} \mid p_{k}\right)}{\sum_{j=1}^{K} w_{j} \cdot p d f\left(x_{i} \mid p_{j}\right)}
$$

- M step: update w_{k} and p_{k}

$$
\begin{gathered}
w_{k}=\frac{\sum_{i=1}^{N}<z_{i k}>}{N} \\
p_{k}=\frac{\sum_{i=1}^{N}<z_{i k}>H_{i}}{\sum_{i=1}^{N}<z_{i k}>D}
\end{gathered}
$$

To match coind H / T distribution, you will need to use binomial distributions for $p d f(x \mid$ bias, $D)$

References

[1] Dawen Liang, Technical Details about the Expectation Maximization (EM) Algorithm, 2012

