Learning Models by Fitting Parameters:
 Linear and Ridge Regression

Piyush Rai

CS5350/6350: Machine Learning

September 6, 2011

Linear Regression: One-Dimensional Case

- Given: a set of N input-response pairs
- The inputs (x) and the responses (y) are one dimensional scalars
- Goal: Model the relationship between x and y

Linear Regression: One-Dimensional Case

- Let's assume the relationship between x and y is linear

Linear Regression: One-Dimensional Case

- Let's assume the relationship between x and y is linear
- Linear relationship can be defined by a straight line with parameter w
- Equation of the straight line: $y=w x$

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$
- The total squared error: $E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-w x_{i}\right)^{2}$

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$
- The total squared error: $E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-w x_{i}\right)^{2}$
- The best fitting line is defined by w minimizing the total error E

Linear Regression: One-Dimensional Case

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation
- Error for the pair $\left(x_{i}, y_{i}\right)$ pair: $e_{i}=y_{i}-w x_{i}$
- The total squared error: $E=\sum_{i=1}^{N} e_{i}^{2}=\sum_{i=1}^{N}\left(y_{i}-w x_{i}\right)^{2}$
- The best fitting line is defined by w minimizing the total error E
- Just requires a little bit of calculus to find it (take derivative, equate to zero..)

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
- Fitting a D-dimensional hyperplane to the data

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
- Fitting a D-dimensional hyperplane to the data
- Hard to visualize in pictures though..

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
- Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
- Fitting a D-dimensional hyperplane to the data
- Hard to visualize in pictures though..
- The hyperplane is defined by parameters \mathbf{w} (a $D \times 1$ weight vector)

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs $\mathbf{x}_{i}: D$-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}:$ scalars (\mathbb{R})

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs $\mathbf{x}_{i}: D$-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}: \operatorname{scalars}(\mathbb{R})$
- The linear model: response is a linear function of the model parameters

$$
y=f(\mathbf{x}, \mathbf{w})=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs $\mathbf{x}_{i}: D$-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}: \operatorname{scalars}(\mathbb{R})$
- The linear model: response is a linear function of the model parameters

$$
y=f(\mathbf{x}, \mathbf{w})=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

- w_{j} 's and b are the model parameters (b is an offset)
- Parameters define the mapping from the inputs to responses

Linear Regression: In Higher Dimensions (Formally)

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Inputs \mathbf{x}_{i} : D-dimensional vectors $\left(\mathbb{R}^{D}\right)$, responses $y_{i}: \operatorname{scalars}(\mathbb{R})$
- The linear model: response is a linear function of the model parameters

$$
y=f(\mathbf{x}, \mathbf{w})=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})
$$

- w_{j} 's and b are the model parameters (b is an offset)
- Parameters define the mapping from the inputs to responses
- Each ϕ_{j} is called a basis function
- Allows change of representation of the input \mathbf{x} (often desired)

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x})=\mathbf{x}$
- $\phi_{j}(\mathbf{x})$ is the j-th feature of the data (total D features, so $M=D$)

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x})=\mathbf{x}$
- $\phi_{j}(\mathbf{x})$ is the j-th feature of the data (total D features, so $M=D$)
- The linear model becomes

$$
y=b+\sum_{j=1}^{D} w_{j} x_{j}=b+\mathbf{w}^{T} \mathbf{x}
$$

Linear Regression: In Higher Dimensions

The linear model:

$$
y=b+\sum_{j=1}^{M} w_{j} \phi_{j}(\mathbf{x})=b+\mathbf{w}^{T} \phi(\mathbf{x})
$$

- $\phi=\left[\phi_{1}, \ldots \phi_{M}\right]$
- $\mathbf{w}=\left[w_{1}, \ldots, w_{M}\right]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x})=\mathbf{x}$
- $\phi_{j}(\mathbf{x})$ is the j-th feature of the data (total D features, so $M=D$)
- The linear model becomes

$$
y=b+\sum_{j=1}^{D} w_{j} x_{j}=b+\mathbf{w}^{T} \mathbf{x}
$$

- Note: Nonlinear relationships between \mathbf{x} and \mathbf{y} can be modeled using suitably chosen ϕ_{j} 's (more when we cover Kernel Methods)

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{\top} \mathbf{x}_{i}
$$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}
$$

- Switching to matrix notation, the relationship becomes: $\mathbf{Y}=\mathbf{X w}$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}
$$

- Switching to matrix notation, the relationship becomes: $\mathbf{Y}=\mathbf{X w}$

$$
\mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right)
$$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}
$$

- Switching to matrix notation, the relationship becomes: $\mathbf{Y}=\mathbf{X w}$

$$
\mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right), \mathbf{X}=\left(\begin{array}{c}
1 \mathbf{x}_{1} \\
\vdots \\
1 \mathbf{x}_{N}
\end{array}\right)=\left(\begin{array}{ccc}
1 x_{11} \cdots & x_{1 D} \\
\vdots & \ddots & \vdots \\
1 x_{N 1} \cdots & x_{N D}
\end{array}\right)
$$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}
$$

- Switching to matrix notation, the relationship becomes: $\mathbf{Y}=\mathbf{X w}$

$$
\mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right), \mathbf{X}=\left(\begin{array}{c}
1 \mathbf{x}_{1} \\
\vdots \\
1 \mathbf{x}_{N}
\end{array}\right)=\left(\begin{array}{ccc}
1 x_{11} \cdots & x_{1 D} \\
\vdots & \ddots & \vdots \\
1 x_{N 1} \cdots & x_{N D}
\end{array}\right), \mathbf{w}=\left(\begin{array}{c}
b \\
w_{1} \\
\vdots \\
w_{D}
\end{array}\right)
$$

Linear Regression: In Higher Dimensions

- Given training data $\mathcal{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Fit each training example (\mathbf{x}_{i}, y_{i}) using the linear model

$$
y_{i}=b+\mathbf{w}^{T} \mathbf{x}_{i}
$$

- A bit of notation abuse: write $\mathbf{w}=[b, \mathbf{w}]$, write $\mathbf{x}_{i}=\left[1, \mathbf{x}_{i}\right]$

$$
y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}
$$

- Switching to matrix notation, the relationship becomes: $\mathbf{Y}=\mathbf{X w}$

$$
\mathbf{Y}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right), \mathbf{X}=\left(\begin{array}{c}
1 \mathbf{x}_{1} \\
\vdots \\
1 \mathbf{x}_{N}
\end{array}\right)=\left(\begin{array}{ccc}
1 x_{11} \cdots & x_{1 D} \\
\vdots & \ddots & \vdots \\
1 x_{N 1} \cdots & x_{N D}
\end{array}\right), \mathbf{w}=\left(\begin{array}{c}
b \\
w_{1} \\
\vdots \\
w_{D}
\end{array}\right)
$$

- $\mathbf{Y}: N \times 1, \mathbf{X}: N \times(D+1), \mathbf{w}:(D+1) \times 1$

Linear Regression: The Objective Function

- Parameter \mathbf{w} that satisfies $y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}$ exactly for each i may not exist

Linear Regression: The Objective Function

- Parameter \mathbf{w} that satisfies $y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}$ exactly for each i may not exist
- So we look for the closest approximation

Linear Regression: The Objective Function

- Parameter \mathbf{w} that satisfies $y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}$ exactly for each i may not exist
- So we look for the closest approximation
- Specifically, w that minimizes the following sum-of-squared-differences between the truth $\left(y_{i}\right)$ and the predictions ($\mathbf{w}^{T} \mathbf{x}_{i}$), just as we did for the one-dimensional case:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

Linear Regression: The Objective Function

- Parameter \mathbf{w} that satisfies $y_{i}=\mathbf{w}^{T} \mathbf{x}_{i}$ exactly for each i may not exist
- So we look for the closest approximation
- Specifically, w that minimizes the following sum-of-squared-differences between the truth $\left(y_{i}\right)$ and the predictions ($\mathbf{w}^{\top} \mathbf{x}_{i}$), just as we did for the one-dimensional case:

$$
E(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

- Following the matrix notation, we can write the above as:

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})
$$

Linear Regression: Least-Squares Solution

- Taking derivative w.r.t w, and equating to zero, we get

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

Linear Regression: Least-Squares Solution

- Taking derivative w.r.t w, and equating to zero, we get

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

- Taking inverse on both sides, we get the solution

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- The above is also called the least-squares solution (since we minimized a sum-of-squared-differences objective)

Linear Regression: Least-Squares Solution

- Taking derivative w.r.t w, and equating to zero, we get

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

- Taking inverse on both sides, we get the solution

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- The above is also called the least-squares solution (since we minimized a sum-of-squared-differences objective)
- Note: The same solution holds even if the responses are vector-valued (assume K responses per input)
- \mathbf{Y} will be an $N \times K$ matrix (assuming K responses per input)
- \mathbf{w} will be a $D \times K$ matrix (k-th column is the weight vector for the k-th response variable)

Linear Regression: Complexity Control

- We minimized the sum-of-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})
$$

- There is no control on the values the elements of \mathbf{w} can take

Linear Regression: Complexity Control

- We minimized the sum-of-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})
$$

- There is no control on the values the elements of \mathbf{w} can take
- Problem: The w_{i} 's can get very large trying to fit training data
- Implications: The model becomes complex
- Result: The model may lead to overfitting

Linear Regression: Complexity Control

- We minimized the sum-of-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})
$$

- There is no control on the values the elements of \mathbf{w} can take
- Problem: The w_{i} 's can get very large trying to fit training data
- Implications: The model becomes complex
- Result: The model may lead to overfitting
- Solution: Penalize large values of the parameters/coefficients w_{i} 's
- Penalizing amounts to doing complexity control (also called regularization)
- Leads to better generalization

Linear Regression: Complexity Control

- We minimized the sum-of-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})
$$

- There is no control on the values the elements of \mathbf{w} can take
- Problem: The w_{i} 's can get very large trying to fit training data
- Implications: The model becomes complex
- Result: The model may lead to overfitting
- Solution: Penalize large values of the parameters/coefficients w_{i} 's
- Penalizing amounts to doing complexity control (also called regularization)
- Leads to better generalization
- Penalizing the squared norm $\mathbf{w}^{T} \mathbf{w}$ is a common choice (called ℓ_{2} norm)

$$
\mathbf{w}^{\top} \mathbf{w}=\sum_{j=1}^{D} w_{j}^{2}
$$

Linear Regression: Complexity Control

- We minimized the sum-of-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})
$$

- There is no control on the values the elements of \mathbf{w} can take
- Problem: The w_{i} 's can get very large trying to fit training data
- Implications: The model becomes complex
- Result: The model may lead to overfitting
- Solution: Penalize large values of the parameters/coefficients w_{i} 's
- Penalizing amounts to doing complexity control (also called regularization)
- Leads to better generalization
- Penalizing the squared norm $\mathbf{w}^{T} \mathbf{w}$ is a common choice (called ℓ_{2} norm)

$$
\mathbf{w}^{T} \mathbf{w}=\sum_{j=1}^{D} w_{j}^{2}
$$

- Note: other form of penalization are also possible. For example:
- Sum of absolute values of the coefficients: $\sum_{j=1}^{D}\left|w_{j}\right|$ (called ℓ_{1} norm)

Linear Regression: The Regularized Objective Function

- The modified objective becomes

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- We minimize the sum of a loss function and a regularizer term

Linear Regression: The Regularized Objective Function

- The modified objective becomes

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}
$$

- We minimize the sum of a loss function and a regularizer term
- The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$
E(\mathbf{w})=\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})+R(\mathbf{w})
$$

Linear Regression: The Regularized Objective Function

- The modified objective becomes

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}
$$

- We minimize the sum of a loss function and a regularizer term
- The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$
E(\mathbf{w})=\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})+R(\mathbf{w})
$$

- The loss function $\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})$ is a measure of model-fit on the training data

Linear Regression: The Regularized Objective Function

- The modified objective becomes

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- We minimize the sum of a loss function and a regularizer term
- The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$
E(\mathbf{w})=\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})+R(\mathbf{w})
$$

- The loss function $\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})$ is a measure of model-fit on the training data
- The regularizer $R(\mathbf{w})$ prevents the model from becoming too complex

Linear Regression: The Regularized Objective Function

- The modified objective becomes

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- We minimize the sum of a loss function and a regularizer term
- The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$
E(\mathbf{w})=\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})+R(\mathbf{w})
$$

- The loss function $\ell(\mathbf{X}, \mathbf{Y}, \mathbf{w})$ is a measure of model-fit on the training data
- The regularizer $R(\mathbf{w})$ prevents the model from becoming too complex
- Regularization is particularly important for small N, large D

Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}
$$

- Taking derivative w.r.t. \mathbf{w} and equating to zero gives:

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w}+\lambda \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y} \\
\Longrightarrow\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- Taking derivative w.r.t. \mathbf{w} and equating to zero gives:

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w}+\lambda \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y} \\
\Longrightarrow\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

- Taking inverse on both sides, we get the solution

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- Taking derivative w.r.t. \mathbf{w} and equating to zero gives:

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w}+\lambda \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y} \\
\Longrightarrow\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

- Taking inverse on both sides, we get the solution

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- Penalized linear regression is also known as ridge regression

Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

$$
E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- Taking derivative w.r.t. \mathbf{w} and equating to zero gives:

$$
\begin{aligned}
\nabla E(\mathbf{w}) & =-\mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}=0 \\
\Longrightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w}+\lambda \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y} \\
\Longrightarrow\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{w} & =\mathbf{X}^{T} \mathbf{Y}
\end{aligned}
$$

- Taking inverse on both sides, we get the solution

$$
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- Penalized linear regression is also known as ridge regression
- Ridge regression also useful when $\mathbf{X}^{T} \mathbf{X}$ is not invertible
- Standard least-squares solution $\hat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}$ will not be valid
- Adding the $\lambda \mathbf{I}$ makes $\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)$ invertibe

Linear Regression: Gradient Descent Solution

- Recall: solving for \mathbf{w} requires inverting $D \times D$ matrices $\mathbf{X}^{\top} \mathbf{X}$ or $\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)$
- Matrix inversion can be expensive if data dimensionality D is large

Linear Regression: Gradient Descent Solution

- Recall: solving for \mathbf{w} requires inverting $D \times D$ matrices $\mathbf{X}^{T} \mathbf{X}$ or $\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X w})^{T}(\mathbf{Y}-\mathbf{X w})$: Linear Regression

Linear Regression: Gradient Descent Solution

- Recall: solving for \mathbf{w} requires inverting $D \times D$ matrices $\mathbf{X}^{T} \mathbf{X}$ or $\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})$: Linear Regression
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$: Ridge Regression

Linear Regression: Gradient Descent Solution

- Recall: solving for \mathbf{w} requires inverting $D \times D$ matrices $\mathbf{X}^{T} \mathbf{X}$ or $\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})$: Linear Regression
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$: Ridge Regression
- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions

Linear Regression: Gradient Descent Solution

- Recall: solving for \mathbf{w} requires inverting $D \times D$ matrices $\mathbf{X}^{T} \mathbf{X}$ or $\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})$: Linear Regression
- $E(\mathbf{w})=\frac{1}{2}(\mathbf{Y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}$: Ridge Regression
- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions
- Gradient Descent rule:
- Initialize the weight vector $\mathbf{w}=\mathbf{w}^{0}$
- Update \mathbf{w} by moving along the direction of negative gradient $-\frac{\partial \mathbf{E}}{\partial \mathbf{w}}$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w}=\mathbf{w}^{0}$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w}=\mathbf{w}^{0}$
- Repeat until convergence:

$$
\mathbf{w}=\mathbf{w}-\alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}}
$$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w}=\mathbf{w}^{0}$
- Repeat until convergence:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}-\alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\alpha \mathbf{X}^{T}(\mathbf{X} \mathbf{w}-\mathbf{Y})
\end{aligned}
$$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w}=\mathbf{w}^{0}$
- Repeat until convergence:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}-\alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\alpha \mathbf{X}^{T}(\mathbf{X} \mathbf{w}-\mathbf{Y}) \\
& =\mathbf{w}-\alpha \sum_{i=1}^{N} \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)
\end{aligned}
$$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w}=\mathbf{w}^{0}$
- Repeat until convergence:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}-\alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\alpha \mathbf{X}^{T}(\mathbf{X} \mathbf{w}-\mathbf{Y}) \\
& =\mathbf{w}-\alpha \sum_{i=1}^{N} \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)
\end{aligned}
$$

- α is the learning rate
- Stop: When some criteria is met (e.g., max. \# of iterations), or the rate of decrease of \mathbf{E} falls below some threshold
- Small α : slow convergence but small residual error
- Large α : fast convergence but large residual error

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w}=\mathbf{w}^{0}$
- Repeat until convergence:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}-\alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\alpha \mathbf{X}^{T}(\mathbf{X} \mathbf{w}-\mathbf{Y}) \\
& =\mathbf{w}-\alpha \sum_{i=1}^{N} \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)
\end{aligned}
$$

- α is the learning rate
- Stop: When some criteria is met (e.g., max. \# of iterations), or the rate of decrease of \mathbf{E} falls below some threshold
- Small α : slow convergence but small residual error
- Large α : fast convergence but large residual error
- Note that convergence rate depends on the error at each iteration
- Error over all examples: $\sum_{i=1}^{N} \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)$

Linear Regression: Gradient Descent Solution

- The least-squares linear regression objective is a convex function
- It has a unique minimum

Linear Regression: Gradient Descent Solution

- The least-squares linear regression objective is a convex function
- It has a unique minimum
- Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)

Linear Regression: Gradient Descent Solution

- The least-squares linear regression objective is a convex function
- It has a unique minimum
- Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
- For general functions, GD can only find a local minimum

Linear Regression: Gradient Descent Solution

- The least-squares linear regression objective is a convex function
- It has a unique minimum
- Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
- For general functions, GD can only find a local minimum
- Effect of the learning rate α (left: small α, right: large α)

Linear Regression: Gradient Descent Solution

- The least-squares linear regression objective is a convex function
- It has a unique minimum
- Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
- For general functions, GD can only find a local minimum
- Effect of the learning rate α (left: small α, right: large α)

- Stochastic Gradient Descent (SGD): Variant of GD which computes the gradient of $E(\mathbf{w})$ w.r.t. a single training example and thus allows updating \mathbf{w} using one example at a time (unlike GD which uses all the data to make each update of \mathbf{w}). SGD for linear regression looks like:
- repeat-while-converged $\left\{\right.$ for $\left.\mathrm{i}=1: \mathrm{N}\left\{\mathbf{w}-\alpha \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)\right\}\right\}$

Linear Regression: Gradient Descent Solution

- The least-squares linear regression objective is a convex function
- It has a unique minimum
- Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
- For general functions, GD can only find a local minimum
- Effect of the learning rate α (left: small α, right: large α)

- Stochastic Gradient Descent (SGD): Variant of GD which computes the gradient of $E(\mathbf{w})$ w.r.t. a single training example and thus allows updating \mathbf{w} using one example at a time (unlike GD which uses all the data to make each update of \mathbf{w}). SGD for linear regression looks like:
- repeat-while-converged $\left\{\right.$ for $\left.\mathrm{i}=1: \mathrm{N}\left\{\mathbf{w}-\alpha \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)\right\}\right\}$
- Note: SGD is usually more efficient than GD and also converges faster

Next class.

- Linear Classifiers
- Hyperplane based class separators
- The Perceptron algorithm
- Maximum Margin Hyperplanes: Introduction to Support Vector Machines

