Learning Models by Fitting Parameters: Linear and Ridge Regression

Piyush Rai

CS5350/6350: Machine Learning

September 6, 2011

(CS5350/6350)

Linear Models for Regression

September 6, 2011 1 / 17

イロト イヨト イヨト イ

- Given: a set of N input-response pairs
- The inputs (x) and the responses (y) are one dimensional scalars
- **Goal:** Model the relationship between x and y

A (1) × A (1) ×

• Let's assume the relationship between x and y is linear

A D N A P N A P N

- Let's assume the relationship between x and y is linear
- Linear relationship can be defined by a straight line with parameter w
- Equation of the straight line: y = wx

A D > A P > A B > A

- The line may not fit the data *exactly*
- But we can try making the line a reasonable approximation

- The line may not fit the data *exactly*
- But we can try making the line a reasonable approximation
- Error for the pair (x_i, y_i) pair: $e_i = y_i wx_i$

- The line may not fit the data *exactly*
- But we can try making the line a reasonable approximation
- Error for the pair (x_i, y_i) pair: $e_i = y_i wx_i$

• The total squared error:
$$E = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - wx_i)^2$$

- The line may not fit the data *exactly*
- But we can try making the line a reasonable approximation
- Error for the pair (x_i, y_i) pair: $e_i = y_i wx_i$
- The total squared error: $E = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i wx_i)^2$
- The best fitting line is defined by w minimizing the total error E

- The line may not fit the data *exactly*
- But we can try making the line a reasonable approximation
- Error for the pair (x_i, y_i) pair: $e_i = y_i wx_i$
- The total squared error: $E = \sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i wx_i)^2$
- The best fitting line is defined by w minimizing the total error E
- Just requires a little bit of calculus to find it (take derivative, equate to zero..)

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

A (□) ► A (□)

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

• Many planes are possible. Which one is the best?

Image: Image

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
 - Linear regression uses the sum-of-squared error notion of closeness

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
 - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too

Image: A mathematical states and a mathem

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
 - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
 - Fitting a *D*-dimensional hyperplane to the data

Image: A math a math

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
 - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
 - Fitting a D-dimensional hyperplane to the data
 - Hard to visualize in pictures though..

- Analogy to line fitting: In higher dimensions, we will fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- Intuition: Choose the one which is (on average) closest to the responses Y
 - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
 - Fitting a *D*-dimensional hyperplane to the data
 - Hard to visualize in pictures though..
- The hyperplane is defined by parameters \mathbf{w} (a D imes 1 weight vector)

• • • • • • • • • • • • •

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Inputs \mathbf{x}_i : *D*-dimensional vectors (\mathbb{R}^D), responses y_i : scalars (\mathbb{R})

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Inputs \mathbf{x}_i : *D*-dimensional vectors (\mathbb{R}^D) , responses y_i : scalars (\mathbb{R})
- The linear model: response is a linear function of the model parameters

$$y = f(\mathbf{x}, \mathbf{w}) = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x})$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Inputs \mathbf{x}_i : *D*-dimensional vectors (\mathbb{R}^D) , responses y_i : scalars (\mathbb{R})
- The linear model: response is a linear function of the model parameters

$$y = f(\mathbf{x}, \mathbf{w}) = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x})$$

- w_j 's and b are the model parameters (b is an offset)
 - Parameters define the mapping from the inputs to responses

イロト イポト イヨト イヨ

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Inputs \mathbf{x}_i : *D*-dimensional vectors (\mathbb{R}^D) , responses y_i : scalars (\mathbb{R})
- The linear model: response is a linear function of the model parameters

$$y = f(\mathbf{x}, \mathbf{w}) = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x})$$

- w_j 's and b are the model parameters (b is an offset)
 - Parameters define the mapping from the inputs to responses
- Each ϕ_j is called a basis function
 - Allows change of representation of the input x (often desired)

The linear model:

$$y = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = b + \mathbf{w}^T \phi(\mathbf{x})$$

- $\phi = [\phi_1, \dots, \phi_M]$
- $\mathbf{w} = [w_1, \dots, w_M]$, the weight vector (to learn using the training data)

イロト イヨト イヨト イヨト

The linear model:

$$y = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = b + \mathbf{w}^T \phi(\mathbf{x})$$

- $\phi = [\phi_1, \dots, \phi_M]$
- $\mathbf{w} = [w_1, \dots, w_M]$, the weight vector (to learn using the training data)
- We consider the simplest case: $\phi(\mathbf{x}) = \mathbf{x}$
 - $\phi_j(\mathbf{x})$ is the *j*-th feature of the data (total *D* features, so M = D)

イロト イ団ト イヨト イヨト

The linear model:

$$y = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = b + \mathbf{w}^T \phi(\mathbf{x})$$

• $\phi = [\phi_1, \dots, \phi_M]$

• $\mathbf{w} = [w_1, \dots, w_M]$, the weight vector (to learn using the training data)

- We consider the simplest case: $\phi(\mathbf{x}) = \mathbf{x}$
 - $\phi_j(\mathbf{x})$ is the *j*-th feature of the data (total *D* features, so M = D)
- The linear model becomes

$$y = b + \sum_{j=1}^{D} w_j x_j = b + \mathbf{w}^T \mathbf{x}$$

イロト イ団ト イヨト イヨト

The linear model:

$$y = b + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = b + \mathbf{w}^T \phi(\mathbf{x})$$

• $\phi = [\phi_1, \dots, \phi_M]$

• $\mathbf{w} = [w_1, \dots, w_M]$, the weight vector (to learn using the training data)

- We consider the simplest case: $\phi(\mathbf{x}) = \mathbf{x}$
 - $\phi_j(\mathbf{x})$ is the *j*-th feature of the data (total *D* features, so M = D)
- The linear model becomes

$$y = b + \sum_{j=1}^{D} w_j x_j = b + \mathbf{w}^T \mathbf{x}$$

 Note: Nonlinear relationships between x and y can be modeled using suitably chosen φ_j's (more when we cover Kernel Methods)

(CS5350/6350)

(a)

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

イロト イヨト イヨト イヨ

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

• A bit of notation abuse: write $\mathbf{w} = [b, \mathbf{w}]$, write $\mathbf{x}_i = [1, \mathbf{x}_i]$

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

イロト イヨト イヨト イヨト

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

• A bit of notation abuse: write $\mathbf{w} = [b, \mathbf{w}]$, write $\mathbf{x}_i = [1, \mathbf{x}_i]$

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

• Switching to matrix notation, the relationship becomes: $\mathbf{Y} = \mathbf{X}\mathbf{w}$

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

• A bit of notation abuse: write $\mathbf{w} = [b, \mathbf{w}]$, write $\mathbf{x}_i = [1, \mathbf{x}_i]$

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

• Switching to matrix notation, the relationship becomes: $\mathbf{Y} = \mathbf{X}\mathbf{w}$

$$\mathbf{Y} = \left(\begin{array}{c} y_1 \\ \vdots \\ y_N \end{array}\right),$$

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

• A bit of notation abuse: write $\mathbf{w} = [b, \mathbf{w}]$, write $\mathbf{x}_i = [1, \mathbf{x}_i]$

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

• Switching to matrix notation, the relationship becomes: $\mathbf{Y} = \mathbf{X}\mathbf{w}$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 \mathbf{x}_1 \\ \vdots \vdots \\ 1 \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} 1 x_{11} \cdots x_{1D} \\ \vdots & \ddots & \vdots \\ 1 x_{N1} \cdots x_{ND} \end{pmatrix},$$

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

• A bit of notation abuse: write $\mathbf{w} = [b, \mathbf{w}]$, write $\mathbf{x}_i = [1, \mathbf{x}_i]$

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

• Switching to matrix notation, the relationship becomes: $\mathbf{Y} = \mathbf{X}\mathbf{w}$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 \mathbf{x}_1 \\ \vdots \vdots \\ 1 \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} 1 x_{11} \cdots x_{1D} \\ \vdots & \ddots & \vdots \\ 1 x_{N1} \cdots x_{ND} \end{pmatrix}, \mathbf{w} = \begin{pmatrix} b \\ w_1 \\ \vdots \\ w_D \end{pmatrix}$$

イロト 不得下 イヨト イヨト

/ . .

- Given training data $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$
- Fit each training example (\mathbf{x}_i, y_i) using the linear model

$$y_i = b + \mathbf{w}^T \mathbf{x}_i$$

• A bit of notation abuse: write $\mathbf{w} = [b, \mathbf{w}]$, write $\mathbf{x}_i = [1, \mathbf{x}_i]$

$$y_i = \mathbf{w}^T \mathbf{x}_i$$

• Switching to matrix notation, the relationship becomes: $\mathbf{Y} = \mathbf{X}\mathbf{w}$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 \mathbf{x}_1 \\ \vdots \vdots \\ 1 \mathbf{x}_N \end{pmatrix} = \begin{pmatrix} 1 x_{11} \cdots x_{1D} \\ \vdots & \ddots & \vdots \\ 1 x_{N1} \cdots x_{ND} \end{pmatrix}, \mathbf{w} = \begin{pmatrix} b \\ w_1 \\ \vdots \\ w_D \end{pmatrix}$$

• Y: $N \times 1$, X: $N \times (D+1)$, w: $(D+1) \times 1$

(a)

. . .

Linear Regression: The Objective Function

• Parameter w that satisfies $y_i = \mathbf{w}^T \mathbf{x}_i$ exactly for each *i* may not exist

・ロト ・回ト ・ヨト ・

Linear Regression: The Objective Function

- Parameter w that satisfies $y_i = \mathbf{w}^T \mathbf{x}_i$ exactly for each *i* may not exist
- So we look for the closest approximation

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Linear Regression: The Objective Function

- Parameter **w** that satisfies $y_i = \mathbf{w}^T \mathbf{x}_i$ exactly for each *i* may not exist
- So we look for the closest approximation
- Specifically, w that minimizes the following sum-of-squared-differences between the truth (y_i) and the predictions (w^Tx_i), just as we did for the one-dimensional case:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
Linear Regression: The Objective Function

- Parameter **w** that satisfies $y_i = \mathbf{w}^T \mathbf{x}_i$ exactly for each *i* may not exist
- So we look for the closest approximation
- Specifically, w that minimizes the following sum-of-squared-differences between the truth (y_i) and the predictions (w^Tx_i), just as we did for the one-dimensional case:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

• Following the matrix notation, we can write the above as:

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w})$$

A D > A B > A B > A

Linear Regression: Least-Squares Solution

• Taking derivative w.r.t w, and equating to zero, we get

$$\nabla E(\mathbf{w}) = -\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\mathbf{w}) = 0$$
$$\implies \mathbf{X}^{T}\mathbf{X}\mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$

Linear Regression: Least-Squares Solution

 $\bullet\,$ Taking derivative w.r.t w, and equating to zero, we get

$$\nabla E(\mathbf{w}) = -\mathbf{X}^T (\mathbf{Y} - \mathbf{X} \mathbf{w}) = 0$$
$$\implies \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{Y}$$

• Taking inverse on both sides, we get the solution

$$\hat{\boldsymbol{\mathsf{w}}} = (\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})^{-1}\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{Y}}$$

• The above is also called the least-squares solution (since we minimized a sum-of-squared-differences objective)

Linear Regression: Least-Squares Solution

 $\bullet\,$ Taking derivative w.r.t w, and equating to zero, we get

$$\nabla E(\mathbf{w}) = -\mathbf{X}^T (\mathbf{Y} - \mathbf{X} \mathbf{w}) = 0$$
$$\implies \mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{Y}$$

• Taking inverse on both sides, we get the solution

$$\hat{\boldsymbol{\mathsf{w}}} = (\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{X}})^{-1}\boldsymbol{\mathsf{X}}^{\mathsf{T}}\boldsymbol{\mathsf{Y}}$$

- The above is also called the least-squares solution (since we minimized a sum-of-squared-differences objective)
- Note: The same solution holds even if the responses are vector-valued (assume K responses per input)
 - **Y** will be an $N \times K$ matrix (assuming K responses per input)
 - w will be a $D \times K$ matrix (k-th column is the weight vector for the k-th response variable)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- We minimized the sum-of-squares objective for linear regression $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w})$
- $\bullet\,$ There is no control on the values the elements of w can take

イロト イポト イヨト イヨ

- We minimized the sum-of-squares objective for linear regression $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w})$
- There is no control on the values the elements of ${\bf w}$ can take
- Problem: The w_i's can get very large trying to fit training data
 - Implications: The model becomes complex
 - Result: The model may lead to overfitting

< ロ > < 同 > < 三 > < 三

- We minimized the sum-of-squares objective for linear regression $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w})$
- There is no control on the values the elements of ${\bf w}$ can take
- Problem: The w_i's can get very large trying to fit training data
 - Implications: The model becomes complex
 - Result: The model may lead to overfitting
- Solution: Penalize large values of the parameters/coefficients wi's
 - Penalizing amounts to doing complexity control (also called regularization)
 - Leads to better generalization

イロト 不得下 イヨト イヨト

- We minimized the sum-of-squares objective for linear regression $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w})$
- There is no control on the values the elements of ${\bf w}$ can take
- Problem: The w_i's can get very large trying to fit training data
 - Implications: The model becomes complex
 - Result: The model may lead to overfitting
- Solution: Penalize large values of the parameters/coefficients wi's

١

- Penalizing amounts to doing complexity control (also called regularization)
- Leads to better generalization
- Penalizing the squared norm $\mathbf{w}^T \mathbf{w}$ is a common choice (called ℓ_2 norm)

$$\mathbf{w}^T \mathbf{w} = \sum_{j=1}^D w_j^2$$

イロト 不得下 イヨト イヨト

- We minimized the sum-of-squares objective for linear regression $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w})$
- There is no control on the values the elements of ${\bf w}$ can take
- Problem: The w_i's can get very large trying to fit training data
 - Implications: The model becomes complex
 - Result: The model may lead to overfitting
- Solution: Penalize large values of the parameters/coefficients w_i's
 - Penalizing amounts to doing complexity control (also called regularization)
 - Leads to better generalization
- Penalizing the squared norm $\mathbf{w}^T \mathbf{w}$ is a common choice (called ℓ_2 norm)

$$\mathbf{w}^T \mathbf{w} = \sum_{j=1}^D w_j^2$$

- Note: other form of penalization are also possible. For example:
 - Sum of absolute values of the coefficients: $\sum_{j=1}^{D} |w_j|$ (called ℓ_1 norm)

• The modified objective becomes

$$E(\mathbf{w}) = rac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + rac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

• We minimize the sum of a loss function and a regularizer term

• The modified objective becomes

$$E(\mathbf{w}) = rac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + rac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

- We minimize the sum of a loss function and a regularizer term
- The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$E(\mathbf{w}) = \ell(\mathbf{X}, \mathbf{Y}, \mathbf{w}) + R(\mathbf{w})$$

Image: A mathematical and A mathematica A mathematical and A mathem

• The modified objective becomes

$$E(\mathbf{w}) = rac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + rac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

- We minimize the sum of a loss function and a regularizer term
- $\bullet\,$ The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$E(\mathbf{w}) = \ell(\mathbf{X}, \mathbf{Y}, \mathbf{w}) + R(\mathbf{w})$$

• The loss function $\ell(X, Y, w)$ is a measure of model-fit on the training data

• The modified objective becomes

$$E(\mathbf{w}) = rac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + rac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

- We minimize the sum of a loss function and a regularizer term
- $\bullet\,$ The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$E(\mathbf{w}) = \ell(\mathbf{X}, \mathbf{Y}, \mathbf{w}) + R(\mathbf{w})$$

- The loss function $\ell(X, Y, w)$ is a measure of model-fit on the training data
- The regularizer $R(\mathbf{w})$ prevents the model from becoming too complex

A D > A P > A B > A

• The modified objective becomes

$$E(\mathbf{w}) = rac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + rac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

- We minimize the sum of a loss function and a regularizer term
- $\bullet\,$ The hyperparameter λ controls the amount of regularization
- Important: It's a standard way to control overfitting in supervised learning
- Common form of a penalized loss function in supervised learning looks like:

$$E(\mathbf{w}) = \ell(\mathbf{X}, \mathbf{Y}, \mathbf{w}) + R(\mathbf{w})$$

- The loss function $\ell(X, Y, w)$ is a measure of model-fit on the training data
- The regularizer $R(\mathbf{w})$ prevents the model from becoming too complex
- Regularization is particularly important for small N, large D

(CS5350/6350)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Coming back to the penalized least-squares objective for linear regression

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

Image: A match a ma

Coming back to the penalized least-squares objective for linear regression

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

 $\bullet\,$ Taking derivative w.r.t. w and equating to zero gives:

$$\nabla E(\mathbf{w}) = -\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w} = 0$$
$$\implies \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda \mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$
$$\implies (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$

Coming back to the penalized least-squares objective for linear regression

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

• Taking derivative w.r.t. w and equating to zero gives:

$$\nabla E(\mathbf{w}) = -\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w} = 0$$
$$\implies \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda \mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$
$$\implies (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$

• Taking inverse on both sides, we get the solution

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$$

Coming back to the penalized least-squares objective for linear regression

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

• Taking derivative w.r.t. w and equating to zero gives:

$$\nabla E(\mathbf{w}) = -\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w} = 0$$
$$\implies \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda \mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$
$$\implies (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$

• Taking inverse on both sides, we get the solution

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

• Penalized linear regression is also known as ridge regression

Coming back to the penalized least-squares objective for linear regression

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} - \mathbf{X}\mathbf{w})^T (\mathbf{Y} - \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

• Taking derivative w.r.t. w and equating to zero gives:

$$\nabla E(\mathbf{w}) = -\mathbf{X}^{T}(\mathbf{Y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w} = 0$$
$$\implies \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda \mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$
$$\implies (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}^{T}\mathbf{Y}$$

• Taking inverse on both sides, we get the solution

$$\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{Y}$$

- Penalized linear regression is also known as ridge regression
- Ridge regression also useful when $\mathbf{X}^T \mathbf{X}$ is not invertible
 - Standard least-squares solution $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$ will not be valid
 - Adding the $\lambda \mathbf{I}$ makes $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$ invertibe

- Recall: solving for w requires inverting $D \times D$ matrices $\mathbf{X}^T \mathbf{X}$ or $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$
- Matrix inversion can be expensive if data dimensionality D is large

Image: A match a ma

- Recall: solving for w requires inverting $D \times D$ matrices $\mathbf{X}^T \mathbf{X}$ or $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w})$: Linear Regression

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Recall: solving for w requires inverting $D \times D$ matrices $\mathbf{X}^T \mathbf{X}$ or $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w})$: Linear Regression
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$: Ridge Regression

A D > A B > A B > A

- Recall: solving for w requires inverting $D \times D$ matrices $\mathbf{X}^T \mathbf{X}$ or $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w})$: Linear Regression
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$: Ridge Regression
- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions

イロト 不得下 イヨト イヨト

- Recall: solving for w requires inverting $D \times D$ matrices $\mathbf{X}^T \mathbf{X}$ or $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$
- Matrix inversion can be expensive if data dimensionality D is large
- One solution: Iterative minimization of the loss function
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w})$: Linear Regression
 - $E(\mathbf{w}) = \frac{1}{2} (\mathbf{Y} \mathbf{X}\mathbf{w})^T (\mathbf{Y} \mathbf{X}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$: Ridge Regression
- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions
- Gradient Descent rule:
 - Initialize the weight vector $\mathbf{w} = \mathbf{w}^0$
 - Update **w** by moving along the direction of negative gradient $-\frac{\partial E}{\partial w}$

イロト 不得下 イヨト イヨト

• Initialize $\mathbf{w} = \mathbf{w}^0$

・ロト ・回ト ・ヨト ・

- Initialize w = w⁰
- Repeat until convergence:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}}$$

- Initialize w = w⁰
- Repeat until convergence:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}}$$
$$= \mathbf{w} - \alpha \mathbf{X}^{T} (\mathbf{X} \mathbf{w} - \mathbf{Y})$$

- Initialize w = w⁰
- Repeat until convergence:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}}$$
$$= \mathbf{w} - \alpha \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{Y})$$
$$= \mathbf{w} - \alpha \sum_{i=1}^{\mathsf{N}} \mathbf{x}_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)$$

- Initialize w = w⁰
- Repeat until convergence:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}}$$
$$= \mathbf{w} - \alpha \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{Y})$$
$$= \mathbf{w} - \alpha \sum_{i=1}^{N} \mathbf{x}_{i} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} - y_{i})$$

- α is the learning rate
- **Stop:** When some criteria is met (e.g., max. # of iterations), or the rate of decrease of **E** falls below some threshold
 - Small α : slow convergence but small residual error
 - $\bullet\,$ Large $\alpha:$ fast convergence but large residual error

- Initialize $\mathbf{w} = \mathbf{w}^0$
- Repeat until convergence:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial \mathbf{E}}{\partial \mathbf{w}}$$

= $\mathbf{w} - \alpha \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{Y})$
= $\mathbf{w} - \alpha \sum_{i=1}^{N} \mathbf{x}_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i - y_i)$

- α is the learning rate
- **Stop:** When some criteria is met (e.g., max. # of iterations), or the rate of decrease of **E** falls below some threshold
 - Small α : slow convergence but small residual error
 - Large $\alpha:$ fast convergence but large residual error
- Note that convergence rate depends on the error at each iteration
 - Error over all examples: $\sum_{i=1}^{N} \mathbf{x}_i (\mathbf{w}^T \mathbf{x}_i y_i)$

- The least-squares linear regression objective is a convex function
 - It has a unique minimum

A D > A B > A B > A

- The least-squares linear regression objective is a convex function
 - It has a unique minimum
 - Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)

• • • • • • • • • • • • •

- The least-squares linear regression objective is a convex function
 - It has a unique minimum
 - Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
 - For general functions, GD can only find a local minimum

• • • • • • • • • • • • •

- The least-squares linear regression objective is a convex function
 - It has a unique minimum
 - Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
 - For general functions, GD can only find a local minimum
- Effect of the learning rate α (left: small α , right: large α)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The least-squares linear regression objective is a convex function
 - It has a unique minimum
 - Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
 - For general functions, GD can only find a local minimum
- Effect of the learning rate α (left: small α , right: large α)

- Stochastic Gradient Descent (SGD): Variant of GD which computes the gradient of E(w) w.r.t. a single training example and thus allows updating w using one example at a time (unlike GD which uses all the data to make each update of w). SGD for linear regression looks like:
 - repeat-while-converged {for i=1:N { $\mathbf{w} \alpha \mathbf{x}_i (\mathbf{w}^T \mathbf{x}_i y_i)$ }}

(a)

- The least-squares linear regression objective is a convex function
 - It has a unique minimum
 - Gradient descent will find the unique minimum (or get very close it to, depending in the learning rate α)
 - For general functions, GD can only find a local minimum
- Effect of the learning rate α (left: small α , right: large α)

- Stochastic Gradient Descent (SGD): Variant of GD which computes the gradient of E(w) w.r.t. a single training example and thus allows updating w using one example at a time (unlike GD which uses all the data to make each update of w). SGD for linear regression looks like:
 - repeat-while-converged {for i=1:N { $\mathbf{w} \alpha \mathbf{x}_i (\mathbf{w}^T \mathbf{x}_i y_i)$ }}
- Note: SGD is usually more efficient than GD and also converges faster

イロト 不得下 イヨト イヨト
- Linear Classifiers
 - Hyperplane based class separators
 - The Perceptron algorithm
 - Maximum Margin Hyperplanes: Introduction to Support Vector Machines

A D > A B > A B > A