
Neural Networks



Module2 : learning with Gradient Descent

• formulate problem by model/parameters 
• formulate error as mathematical objective  
• optimize numerically the parameters for the given objective 
• usually algebraic setup 
- involves matrices and calculus 

• probabilistic setup (likelihoods) next module
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module 2: numerical optimization



Module 2 Objectives/Neural Networks

• perceptron rules 
• neural network idea, philosophy, construction 
• NN weights 
• Backpropagation : training NN using gradient 

descent 
• NN modes, autoencoders 
• run NN-autoencoder on a simple problem



The perceptron



The perceptron

• (like with regression) we are looking for a linear 
classifier 
!

!

• error different than regression: weighted sum 
over misclassified points set M



Perceptron - geometry

• perceptron is a linear (hyperplane) separator  
• for simplicity, will transform data points with 

y=-1 (left) to y=1 (right) by reversing the sign



The perceptron

• To optimize for perceptron error, use gradient 
descent 
!

• with update rule 
!

!

• batch update: 
!



perceptron update - intuition

• perceptron update: the plane (dotted red) normal w (red 
arrow) moves in the direction of misclassified p1 until p1 is 
on the correct side.



Perceptron proof of convergence

• if data is indeed linearly separable, the 
perceptron will find the separator line.



Multilayer perceptrons



Checkpoint: XOR perceptron

• build/explain a 3-layer perceptron that give the 
same classification as the logical XOR function 
!

!

!

!

• your answer is required! Submit via dropbox.



Neural Networks

• NN is a stack of 
connected perceptrons 
!

• bottom up: 
- input layer 
- hidden layer 
- output layer 

!

• multilayer NN very very 
powerful in that they 
can approximate 
almost any function 
- with enough training 

data



Neural Networks

• Each unit performs first a 
linear combination of inputs 
!

!

• Then applies a nonlinear (ex. 
logistic) function “f” before 
outputting a value 
!

• Three layer NN output can be 
expressed mathematically as  
!



Training the NN weights (w)

• one datapoint 
!

!

!

• set of weights up (close to output): 
!

!

!

!

• we obtain the hidden-output weight update rule



Training the NN weights (w)

• weight first set of weights (close to input)



NN training



Autoencoders

• network is “rotated”  
- from left to right: input-hidden-ouput 

• input and output are the same values 
- hidden layer encodes the input and decodes back to itself



BackPropagation (Tom Mitchell book)




