Neural Networks

Module2 : learning with Gradient Descent

module 2: numerical optimization

- formulate problem by model/parameters
- · formulate error as mathematical objective
- optimize numerically the parameters for the given objective
- usually algebraic setup
 - involves matrices and calculus
- probabilistic setup (likelihoods) next module

- perceptron rules
- neural network idea, philosophy, construction
- NN weights
- Backpropagation : training NN using gradient descent
- NN modes, autoencoders
- run NN-autoencoder on a simple problem

The perceptron

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}\mathbf{w} = \sum_{d=0}^{D} x^{d} w^{d}$$

(like with regression) we are looking for a linear classifier

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{x}\mathbf{w} = \sum_{d=0}^{D} x^{d} w^{d}$$

 error different than regression: weighted sum over misclassified points set M

$$J(\mathbf{w}) = \sum_{\mathbf{x} \in M} -h_{\mathbf{w}}(\mathbf{x}) = \sum_{\mathbf{x} \in M} -\mathbf{x}\mathbf{w}$$

Perceptron – geometry

- perceptron is a linear (hyperplane) separator
- for simplicity, will transform data points with y=-1 (left) to y=1 (right) by reversing the sign

The perceptron

• To optimize for perceptron error, use gradient descent $\nabla I(\mathbf{w}) = \sum \mathbf{w}^T$

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{\mathbf{x} \in M} -\mathbf{x}^T$$

• with update rule

$$\mathbf{w} := \mathbf{w} + \lambda \sum_{\mathbf{x} \in M} \mathbf{x}^T$$

- batch update:
 - 1. init **w** 2. LOOP 3. get M = set of missclassified data points4. $\mathbf{w} = \mathbf{w} + \lambda \sum_{\mathbf{x} \in M} \mathbf{x}^T$ 5. UNTIL $|\lambda \sum_{\mathbf{x} \in M} \mathbf{x}| < \epsilon$

perceptron update - intuition

 perceptron update: the plane (dotted red) normal w (red arrow) moves in the direction of misclassified p1 until p1 is on the correct side.

Perceptron proof of convergence

• if data is indeed linearly separable, the perceptron will find the separator line.

Proof of perceptron convergence Assuming data is linearly separable, or there is a solution $\bar{\mathbf{w}}$ such that $\mathbf{x}\bar{\mathbf{w}} > 0$ for all \mathbf{x} . Lets call \mathbf{w}_k the \mathbf{w} obtained at the k-th iteration (update). Fix an $\alpha > 0$. Then

$$\mathbf{w}_{k+1} - \alpha \bar{\mathbf{w}} = (\mathbf{w}_k - \alpha \bar{\mathbf{w}}) + \mathbf{x}_k^T$$

where \mathbf{x}_k is the datapoint that updated \mathbf{w} at iteration k. Then

$$||\mathbf{w}_{k+1} - \alpha \bar{\mathbf{w}}||^2 = ||\mathbf{w}_k - \alpha \bar{\mathbf{w}}||^2 + 2\mathbf{x}_k(\mathbf{w}_k - \alpha \bar{\mathbf{w}}) + ||\mathbf{x}_k||^2 \le ||\mathbf{w}_k - \alpha \bar{\mathbf{w}}||^2 - 2\mathbf{x}_k \alpha \bar{\mathbf{w}} + ||\mathbf{x}_k||^2$$

Since $\mathbf{x}_k \bar{\mathbf{w}} > 0$ all we need is an α sufficiently large to show that this update process cannot go on forever. When it stops, all datapoints must be classified correctly.

Multilayer perceptrons

 build/explain a 3-layer perceptron that give the same classification as the logical XOR function

 $XOR(x, y) = OR(x, y) \ AND \ (NOT(AND(x, y)))$

• your answer is required! Submit via dropbox.

Neural Networks

- NN is a stack of connected perceptrons
- bottom up:
 - input layer
 - hidden layer
 - output layer
- multilayer NN very very powerful in that they can approximate almost any function
 - with enough training data

Neural Networks

• Each unit performs first a linear combination of inputs

$$net_j = \sum_{i=1}^d x_i w_{ji} + w_{j0} = \sum_{i=0}^d x_i w_{ji} = \mathbf{w}_j^t \mathbf{x}_i$$

 Then applies a nonlinear (ex. logistic) function "f" before outputting a value

$$y_j = f(net_j)$$

• Three layer NN output can be expressed mathematically as

$$g_k(\mathbf{x}) = z_k = f\left(\sum_j w_{kj} f\left(\sum_i w_{ij} x_i + w_{j0}\right) + w_{k0}\right)$$

Training the NN weights (W)

one datapoint

$$J(w) = \frac{1}{2} \sum_{k} (t_k - z_k)^2$$
$$\Delta w_{pq} = -\lambda \frac{\partial J}{\partial w_{pq}},$$

• set of weights up (close to output): $\frac{\partial J}{\partial w_{kj}} = \frac{\partial J}{\partial net_k} \frac{\partial net_k}{\partial w_{kj}} = -\delta_k \frac{\partial net_k}{\partial w_{kj}}$

$$\delta_k = -\frac{\partial J}{\partial net_k} = -\frac{\partial J}{\partial z_k} \frac{\partial z_k}{\partial net_k} = (t_k - z_k)f'(net_k)$$
$$\frac{\partial net_k}{\partial w_{kj}} = y_j$$

• we obtain the hidden-output weight update rule

$$w_{kj} = w_{kj} + \lambda(t_k - z_k)f'(net_k)y_j$$

-

• weight first set of weights (close to input)

$$\frac{\partial J}{\partial w_{ji}} = \frac{\partial J}{\partial y_j} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$\begin{split} \frac{\partial J}{\partial y_j} &= \frac{\partial [\frac{1}{2} \sum_k (t_k - z_k)^2]}{\partial y_j} \\ &= -\sum_k (t_k - z_k) \frac{\partial z_k}{\partial net_k} \frac{\partial net_k}{\partial y_j} \\ &\frac{\partial h_j}{\partial net_j} = f'(net_j) \\ &\frac{\partial net_j}{\partial w_{ji}} = x_i \end{split}$$

$$w_{ji} \leftarrow w_{ji} - \lambda \left[\sum_{k} (t_k - z_k) f'(net_k) w_{kj}\right] f'(net_j) x_i$$

NN training

STOCHASTIC TRAINING Select x_t (randomly chosen) $w_{ij} = w_{ij} + \lambda \delta_j x_i$ $w_{jk} = w_{jk} + \lambda \delta_k y_j$ until $|\bigtriangledown w J| < \epsilon$

BATCH TRAINING for each iteration: for each x_t $\delta w_{ij} = \delta w_{ij} + \lambda \delta_j x_i$ $\delta w_{jk} = \delta w_{jk} + \lambda \delta_k y_j$ $w_{ij} \leftarrow w_{ij} + \delta w_{ij}$ $w_{jk} \leftarrow w_{jk} + \delta w_{jk}$ until $|| \bigtriangledown w J || < \epsilon$

Autoencoders

		<u> </u>	97. 192		100		47	
Inputs	Outputs	Input Hidden						Output
0h	P	Values						
A	40	10000000	\rightarrow	.89	.04	.08	\rightarrow	1000000
AL A	HA	01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000
		00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
		00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
O CAR		00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
		00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100
	AF-	00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
	- K	00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001
\mathbf{O}	\mathbf{O}	N 190 - 190 - 199			20 - 556720	2	30%	- <u> </u>

- network is "rotated"
 - from left to right: input-hidden-ouput
- · input and output are the same values
 - hidden layer encodes the input and decodes back to itself

BackPropagation (Tom Mitchell book)

BACKPROPAGATION(*training_examples*, η , n_{in} , n_{out} , n_{hidden})

Each training example is a pair of the form $\langle \vec{x}, \vec{t} \rangle$, where \vec{x} is the vector of network input values, and \vec{t} is the vector of target network output values.

 η is the learning rate (e.g., .05). n_{in} is the number of network inputs, n_{hidden} the number of units in the hidden layer, and n_{out} the number of output units.

The input from unit i into unit j is denoted x_{ji} , and the weight from unit i to unit j is denoted w_{ji} .

- Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units.
- Initialize all network weights to small random numbers (e.g., between -.05 and .05).
- Until the termination condition is met, Do
 - For each $\langle \vec{x}, \vec{t} \rangle$ in training_examples, Do

Propagate the input forward through the network:

1. Input the instance \vec{x} to the network and compute the output o_u of every unit u in the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term δ_k

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k) \tag{T4.3}$$

3. For each hidden unit h, calculate its error term δ_h

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k \tag{T4.4}$$

4. Update each network weight w_{ji}

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$

where

$$\Delta w_{ji} = \eta \, \delta_j \, x_{ji} \tag{T4.5}$$

