Neural Networks

Module?2 : learning with Gradient Descent

module 2: numerical optimization

RAW DATA
housing data
spam data

— FEATURES

LABELS

SUPERVISED
LEARNING

numerical optimization
Logistic Regression
Perceptron

Neural Network

EVALUATION

train/test

error, accuracy
Cross Validation
ROC

formulate problem by model/parameters
formulate error as mathematical objective

optimize numerically the parameters for the given objective

usually algebraic setup

- involves matrices and calculus
probabilistic setup (likelihoods) next module

Module 2 Objectives /Neural Networks

. perceptron rules
. neural network idea, philosophy, construction
- NN weights

. Backpropagation : training NN using gradient
descent

- NN modes, autoencoders
. run NN-autoencoder on a simple problem

The perceptron

gix)

ourput unit

bias unit

input units

The perceptron

. (like with regression) we are looking for a linear

classifier N

hw(X) = XW = Z % w®

d=0

. error different than regression: weighted sum
over misclassified points set M

J(wW) = Z —hw(X) = Z —XW

xeM xeM

Perceptron - geometry

solution solution
region

>
to
-
-

region

. perceptron is a linear (hyperplane) separator

. for simplicity, will transform data points with
y=-1 (left) to y=1 (right) by reversing the sign

The perceptron

. To optimize for perceptron error, use gradient

descent Vad(w)= 3 xT

. with update rule

batch update:
. Init w
. LOOP

get M = set of missclassified data points

W = W+)\erMxT
UNTIL AD e X| <€

Cﬂr-lk.oowr—*

perceptron update - intuition

X2 | L
2 ? P1 0 t= 1
’ , »
y
A an , 7
’ 7
W ¥ O 0 O
-t T '
’ /...-
x5
’ p 0O
0/ 0
Y, g ¥

. perceptron update: the plane (dotted red) normal w (red
arrow) moves in the direction of misclassified pl until pl is
on the correct side.

Perceptron proof of convergence

. if data is indeed linearly separable, the
perceptron will find the separator line.

Proof of perceptron convergence Assuming data is linearly separable , or there is a solution w such
that xw > 0 for all x.
Lets call wi the w obtained at the k-th iteration (update). Fix an o > 0. Then

Wil — QW = (Wi — aW) + X},
where x;. is the datapoint that updated w at iteration £. Then

[Wit1 — aw||? = ||[wy — aW|]® + 2x (Wi — aW) + ||xx||* < ||wi — aW|]* — 2xaW + |[x4||?

Since xpw > 0 all we need is an « sufficiently large to show that this update process cannot go on forever.
When it stops, all datapoints must be classified correctly.

Multilayer perceptrons

Checkpoint: XOR perceptron

. build/explain a 3-layer perceptron that give the
same classification as the logical XOR function

XOR(z,y) = OR(x,y) AND (NOT(AND(x,y)))

. your answer is required! Submit via dropbox.

Neural Networks

. NN is a stack of
connected perceptrons

targett

output z

"« bottom up:
- input layer
- hidden layer
- output layer

. multilayer NN very very
powerful in that they
can approximate
almost any function

- with enough training
data

input x

Neural Networks

. Each unit performs first a

linear combination of inputs
d d

E — E B
netj = LW g4 -1~ W40 = LiWijq = Wj
1=1 1=0

~. Then applies a nonlinear (ex.
logistic) function “f” before
outputting a value

yj — f(netj)
- Three layer NN output can be
expressed mathematically as

Training the NN weights (w,

- 1
. one datapoint J(w) = 3 E;;(tk)2
0J
Awyg = —Aaw :
Pq

. set of weights up (close to output):

oJ 0J Onety 5 onet;y.
Owy,; ~ Onety, Owy; -k Owy;
0, = — = — = (tp — 2z1) ' (nety.
s onety. 0z Onety. (t k)] (net)
8netk B
8wkj B y]

. we obtain the hidden-output weight update rule
wij = wij + Atx — 2k) f' (nety)y;

Training the NN weights (w,

. weight first set of weights (close to input)

oJ 0J 0y; Onet,;
8wj7; B 8yj 8netj 8wj7;

0J Ol5 > itk — 2x)?]
Yy, Yy,

STOCHASTIC TRAINING

Select z; (randomly chosen)
Wi; = Wy + /\53'.’]32'

until | V7 J| < €

BATCH TRAINING
for each iteration:
for each x
511}2'3' — 5’(1)7;3' + /\5]'.’172'
(5wjk — (5wjk + Aékyj
wz-j < ’U)z'j -+ (5wz-j
w]'k < IUjk + 5wjk'
until || Vo J|| < €

Autoencoders

Inputs

Outputs

Input

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

AR

Hidden

Values
89 .04
15 .99
01 .97
99 97
03 .05
01 .11
80 .01
60 .94

08
99
27
Wl
02
.38
98
01

R

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

. network is “rotated”
- from left to right: input-hidden-ouput

. input and output are the same values
- hidden layer encodes the input and decodes back to itself

BackPropagation (;Tom Mitchell book,

BACKPROPAGATION(fraining _.examples, n, Rin, Nout, Nhidden)

Each training example is a pair of the form (%,), where X is the vector of network input
values, and t is the vector of target network output values.

n is the learning rate (e.g., .05). n;, is the number of network inputs, nyiiden the number of
units in the hidden layer, and n,,, the number of output units.

The input from unit i into unit j is denoted xj;, and the weight from unit i to unit j is denoted
Wii.

e Create a feed-forward network with n;, inputs, nj;44.n hidden units, and n,,, output units.

o Initialize all network weights to small random numbers (e.g., between —.05 and .05).

e Until the termination condition is met, Do

e For each (¥,7) in training_examples, Do

Propagate the input forward through the network:

1. Input the instance x to the network and compute the output o, of every unit u in
the network.

Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term §;

Sk — o0 (1 — o) (tx — o) (T4.3)
3. For each hidden unit A, calculate its error term &y
Op «— op(1l — op) Z Wih Ok (T4.4)
k€outputs

4. Update each network weight w;;
wji < wjj + Awj;

where
Awji = nd;j xji (T4.5)

