
Neural Networks

Module2 : learning with Gradient Descent

• formulate problem by model/parameters
• formulate error as mathematical objective
• optimize numerically the parameters for the given objective
• usually algebraic setup
- involves matrices and calculus

• probabilistic setup (likelihoods) next module

RAW DATA
housing data
spam data

LABELS

FEATURES

SUPERVISED
LEARNING
numerical optimization
Logistic Regression
Perceptron
Neural Network

CLUSTERING
 EVALUATION

ANALYSIS

SELECTION

DIMENSIONSDATA
PROCESSING TUNING

DATA PROBLEM REPRESENTATION LEARNING PERFORMANCE

train/test
error, accuracy
Cross Validation
ROC

module 2: numerical optimization

Module 2 Objectives/Neural Networks

• perceptron rules
• neural network idea, philosophy, construction
• NN weights
• Backpropagation : training NN using gradient

descent
• NN modes, autoencoders
• run NN-autoencoder on a simple problem

The perceptron

The perceptron

• (like with regression) we are looking for a linear
classifier
!

!

• error different than regression: weighted sum
over misclassified points set M

Perceptron - geometry

• perceptron is a linear (hyperplane) separator
• for simplicity, will transform data points with

y=-1 (left) to y=1 (right) by reversing the sign

The perceptron

• To optimize for perceptron error, use gradient
descent
!

• with update rule
!

!

• batch update:
!

perceptron update - intuition

• perceptron update: the plane (dotted red) normal w (red
arrow) moves in the direction of misclassified p1 until p1 is
on the correct side.

Perceptron proof of convergence

• if data is indeed linearly separable, the
perceptron will find the separator line.

Multilayer perceptrons

Checkpoint: XOR perceptron

• build/explain a 3-layer perceptron that give the
same classification as the logical XOR function
!

!

!

!

• your answer is required! Submit via dropbox.

Neural Networks

• NN is a stack of
connected perceptrons
!

• bottom up:
- input layer
- hidden layer
- output layer

!

• multilayer NN very very
powerful in that they
can approximate
almost any function
- with enough training

data

Neural Networks

• Each unit performs first a
linear combination of inputs
!

!

• Then applies a nonlinear (ex.
logistic) function “f” before
outputting a value
!

• Three layer NN output can be
expressed mathematically as
!

Training the NN weights (w)

• one datapoint
!

!

!

• set of weights up (close to output):
!

!

!

!

• we obtain the hidden-output weight update rule

Training the NN weights (w)

• weight first set of weights (close to input)

NN training

Autoencoders

• network is “rotated”
- from left to right: input-hidden-ouput

• input and output are the same values
- hidden layer encodes the input and decodes back to itself

BackPropagation (Tom Mitchell book)

