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Generative vs. Discriminative 
Classifiers 

• Want to Learn: h:X  Y 
– X – features 
– Y – target classes 

• Generative classifier, e.g., Naïve Bayes: 
– Assume some functional form for P(X|Y), P(Y) 
– Estimate parameters of P(X|Y), P(Y) directly from training data 
– Use Bayes rule to calculate P(Y|X= x) 
– This is a ‘generative’ model 

• Indirect computation of P(Y|X) through Bayes rule 
• As a result, can also generate a sample of the data, P(X) = y P(y) P(X|y) 

• Discriminative classifiers, e.g., Logistic Regression: 
– Assume some functional form for P(Y|X) 
– Estimate parameters of P(Y|X) directly from training data 
– This is the ‘discriminative’ model 

• Directly learn P(Y|X) 
• But cannot obtain a sample of the data, because P(X) is not available 
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P(Y | X)  P(X | Y) P(Y) 



Optimization 
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(Point-wise) squared error 

Problem: Minimize error 

Linear Regression! 



Question: How to solve the 
optimization problem 

• Set the derivative of “J” to zero and solve 
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Question: How to solve the 
optimization problem 
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Homework:  

Prove this! 

(Messy; algebraic 

manipulation) 



Multivariate Linear Regression 
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Assuming a dummy attribute 

x0=1 for all examples 

Inner product or 

dot product 

(yields a number) 

X is a m-by-n matrix 



Overfitting 

• MLE estimate: Some weights are large 
because of chance (coincidental regularities) 

• Regularize!! 

– Penalize high weights (complex hypothesis) 

– Minimize cost: Loss + Complexity 
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p=1: L1 regularization (Lasso) 

p=2: L2 regularization 



Regularization 
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L1 L2 



Gradient Descent 

• Closed form solution is not always possible. 

• In that case, we can use the following iterative 
approach. 

• Algorithm Gradient Descent 

 

 

Learning rate 



Gradient Descent: Example 

10 



Gradient Descent: 1-D 

• Remember: Derivative is the slope of the line that is tangent to the 
function 

• Question: What if the learning rate is small? (Slow convergence) 
• Question: What if the learning rate is large? (Fail to converge; even 

diverge) 
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Rule: 



Back to Classification 
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P(edible|X)=1 

P(edible|X)=0 

Decision Boundary 



Logistic Regression 

 Learn P(Y|X) directly! 

 Assume a particular functional form 

 Not differentiable… 
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P(Y)=1 

P(Y)=0 



Logistic Regression 

 Learn P(Y|X) directly! 

 Assume a particular functional form 

 Logistic Function 

 Aka Sigmoid 
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Functional Form: Two classes 

implies 

Classification Rule: Assign the label Y=0 if  

Take logs  

and simplify: 

linear classification 

rule! 

Y=0 if the RHS>0 
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How to learn the weights? 
• Evaluation function: Maximize the conditional 

log-likelihood 
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Weight vector 

   indexes the examples 

• Note that actually we are just computing P(Y|X) 

• W is included in P(Y|X) just to show that the 

probability is computed using W 



How to Learn the weights? 
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How to Learn the weights? 
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Why? 

 

If the domain of a variable Y is {0,1}  

Then any function f(Y) can be written as: 

f(Y) = Yf(Y=1)+(1-Y)f(Y=0) 



How to learn the weights? 
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Remember 

Log of this = -ln(denominator) 



How to Learn the weights? 

Bad news: no closed-form solution to maximize l(W) 

Good news: l(W) is concave function of W!  

 No local minima 

 Concave functions easy to optimize using Gradient Ascent 
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Update wi as follows: 

wi=wi+(learning rate)*(partial derivate of l(W) w.r.t. wi) 

Notice that unlike gradient descent, in 

gradient ascent we are interested in the 

maximim value and therefore we have a 

“+” sign on the RHS of the update rule 

instead of “-” sign. 



How to learn the weights? 
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Learning rate 

The term inside the parenthesis is the prediction error (difference 

between the observed value and the predicted probability) 



Large parameters… 

• Maximum likelihood solution: prefers higher weights 
– higher likelihood of (properly classified) examples close to 

decision boundary  

– larger influence of corresponding features on decision 

– can cause overfitting!!! 

• Regularization: penalize high weights 
 

a=1 a=5 a=10 



That’s all MCLE.  How about MCAP? 

• One common approach is to define priors on W 

– Normal distribution, zero mean, identity covariance 

– “Pushes” parameters towards zero 

• Regularization 

– Helps avoid very large weights and overfitting 
 

• MAP estimate: 
 



MCAP as Regularization 

Penalizes high weights, like we did in linear regression 

 

• Weight update rule: 
 

 

 

– Quadratic penalty: drives weights towards zero 

– Adds a negative linear term to the gradients 



Naïve Bayes    vs.   Logistic Regression 

Generative  

• Assume functional form for  

– P(X|Y)  assume cond indep  

– P(Y) 

– Est params from train data 

• Gaussian NB for cont features 

• Bayes rule to calc. P(Y|X= x) 

– P(Y | X)  P(X | Y) P(Y) 

• Indirect computation  
– Can also generate a sample of 

the data 
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Discriminative 

• Assume functional form for  

– P(Y|X)   no assumptions 

 

– Est params from training data 

• Handles discrete & cont features 

 

 

• Directly calculate P(Y|X=x) 

– Can’t generate data sample 

Learning: h:X  Y      X – features 

         Y – target classes 



Remember Gaussian Naïve Bayes? 

P(Xi =x| Y=yk) = N(ik, ik) 

 

P(Y | X)  P(X | Y) P(Y) 

N(ik, ik) =  

 

Sometimes Assume Variance 
– is independent of Y (i.e., i),  

– or independent of Xi (i.e., k) 

– or both (i.e., ) 

 



Gaussian Naïve Bayes    vs.   Logistic Regression 

Generative  

• Assume functional form for  

– P(X|Y)  assume Xi cond indep given Y 

– P(Y) 

– Est params from train data 

• Gaussian NB for continuous features 

– model P(Xi | Y = yk) as Gaussian N(ik,i) 

– model P(Y) as Bernoulli (𝜋,1-𝜋) 

• Bayes rule to calc. P(Y|X= x) 

– P(Y | X)  P(X | Y) P(Y) 
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Learning: h:X  Y      X – Real-valued features 

         Y – target classes 

What can we say about the 
form of P(Y=1 | …Xi…)? 

Cool!!!! 



Derive form for P(Y|X) for continuous Xi  

only for Naïve Bayes models 

up to now, all arithmetic 

Can we solve for wi ? 

• Yes, but only in Gaussian case  Looks like a setting for w0? 



Ratio of class-conditional probabilities 

Linear function! 

Coefficients 

expressed with 

original Gaussian 

parameters! 



Derive form for P(Y|X) for continuous Xi  

Just like Logistic 

Regression!!! 



Gaussian Naïve Bayes vs. Logistic Regression 

• Representation equivalence 
– But only in a special case!!! (GNB with class-independent variances) 

• But what’s the difference??? 

• LR makes no assumptions about P(X|Y) in learning!!! 
---- Optimize different functions ! Obtain different solutions 

Set of Gaussian  

Naïve Bayes parameters 

(feature variance  

independent of class label) 

Set of Logistic  

Regression parameters 
Can go both 

ways, we only 

did one way 



 Naïve Bayes vs. Logistic Regression 

• Generative vs. Discriminative classifiers 

•  Asymptotic comparison  

(# training examples  infinity) 

–  when model correct 

•  GNB (with class independent variances) and  
LR produce identical classifiers 

–  when model incorrect 

•  LR is less biased – does not assume conditional independence 

– therefore LR expected to outperform GNB 

[Ng & Jordan, 2002] 



Naïve Bayes vs. Logistic Regression 

• Generative vs. Discriminative classifiers 

• Non-asymptotic analysis 
–  convergence rate of parameter estimates,  

   (n = # of attributes in X) 

• Size of training data to get close to infinite data solution 

• Naïve Bayes needs O(log n) samples 

• Logistic Regression needs O(n) samples 

– GNB converges more quickly to its (perhaps less 
helpful) asymptotic estimates 

 

[Ng & Jordan, 2002] 



Some 
experiments 

from UCI data 
sets 
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Naïve bayes 

Logistic Regression 



What you should know about Logistic 
Regression (LR) 

• Gaussian Naïve Bayes with class-independent variances 
representationally equivalent to LR 
– Solution differs because of objective (loss) function 

• In general, NB and LR make different assumptions 
– NB: Features independent given class ! assumption on P(X|Y) 
– LR: Functional form of P(Y|X), no assumption on P(X|Y) 

• LR is a linear classifier 
– decision rule is a hyperplane 

• LR optimized by conditional likelihood 
– no closed-form solution 
– concave ! global optimum with gradient ascent 
– Maximum conditional a posteriori corresponds to regularization 

• Convergence rates 
– GNB (usually) needs less data 
– LR (usually) gets to better solutions in the limit 


