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Generative vs. Discriminative
Classifiers

e Wantto Learn: h:X— Y
— X -—features
— Y —target classes
* Generative classifier, e.g., Naive Bayes: P(Y | X) oC P(X | Y) P(Y)
— Assume some functional form for P(X]|Y), P(Y)
— Estimate parameters of P(X|Y), P(Y) directly from training data
— Use Bayes rule to calculate P(Y|X= x)
— Thisis a ‘generative’ model
* Indirect computation of P(Y|X) through Bayes rule
* As aresult, can also generate a sample of the data, P(X) = Zy P(y) P(X]y)
* Discriminative classifiers, e.g., Logistic Regression:
— Assume some functional form for P(Y | X)
— Estimate parameters of P(Y|X) directly from training data

— This is the ‘discriminative’ model
* Directly learn P(Y|X)
* But cannot obtain a sample of the data, because P(X) is not available



function J(wy, ..
m W,

Optimization

m Learning task: minimizing or maximizing an evaluation

., Wp) given data D
.., Wy are the parameters that you need to tune.

m Simple example: Try to fit a line to the following data
such that the error is minimized.

m |nput: “x”, desired output “y Linear Regression!
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m Equation of line: y = h(x) = wp + wy x
m Error: J(wo, wi) = 32174 (yi — (Wo + wix;))?

(Point-wise) squared error
Problem: Minimize error
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How to solve the

optimization problem

Question

1000 1
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e Set the derivative of “J” to zero and solve

—1 (Vi — (Wo + w; Xi))?
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How to solve the
optimization problem

Question
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Prove this!

(Messy; algebraic
manipulation)
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Multivariate Linear Regression

Assuming a dummy attribute

m Input: x is a vector; desired output y. Xo=1 for all examples
n n . Inner product or
y=h(X)=wo+ > wxj=) wxj=W'X— dot product
j=1 j=0 (yields a number)

m
Jw) =) (yi—w'x)? y X
—

w=(X"X)""XTY xT

X is a m-by-n matrix



Overfitting

* MLE estimate: Some weights are large
because of chance (coincidental regularities)
* Regularize!!
— Penalize high weights (complex hypothesis)
— Minimize cost: Loss + Complexity

p=1: L1 regularization (Lasso)
p=2: L2 regularization



Regularization
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Gradient Descent

* Closed form solution is not always possible.

* |n that case, we can use the following iterative
approach.

* Algorithm Gradient Descent

m w = Any point in the weight space

m Loop Until Convergence
m Simultaneously update each w; in w as follows:
mwW=w— a\(%J(w)

Learning rate



J(wo, wy)

Gradient Descent: Example
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Gradient Descent: 1-D

Closed-form solutio

| | i | |
2

Remember: Derivative is the slope of the line that is tangent to the
function

Question: What if the learning rate is small? (Slow convergence)

Question: What if the learning rate is large? (Fail to converge; even
diverge) 5
Rule: Wi = Wj—O‘a_ij(W)
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Back to Classification

P(edible[X)=1 Decision Boundary
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Logistic Regression

Learn P(Y|X) directly!
1 Assume a particular functional form
® Not differentiable...

) .. (] : F)(Y):O%j’+
‘RY)=L |t
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Logistic Regression

Learn P(Y|X) directly!

1 Assume a particular functional form 1
0 Logistic Function 1+ exp(—=2)
1 Aka Sigmoid
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Functional Form: Two classes
1

P(Y =1|X) = 1 +exp(wo+ L1 wiX;)
implies
P(Y =0|X) = P L Ly )

I +exp(wo + X wiXi)
Classification Rule: Assign the label Y=0 if

P(Y — O|X) linear classification

1 <
P(Y = 1|X) rule!

Take logs .
and simplify: 0 <wo+ Y wiX;

=1

Y=0 if the RHS>0
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How to learn the weights?

e Evaluation function: Maximize the conditional
log-likelihood

[ indexes the examples

/\

1% P(Y'X! w
Hargm‘gX];I (Y| X°,W)

W = <W(), wi... Wn> Weight vector

* Note that actually we are just computing P(Y|X)
« Wis included in P(Y|X) just to show that the
probability is computed using W
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How to Learn the weights?

1% InP(YYX! W
%argmﬂé}x;n (Y| X", W)



How to Learn the weights?

W « argma ZlnP(Yl\Xl,W)

(W)=Y Y'InPY' =1X""W)+(1-Y)InPY' =0]x" W)
[

Why?

If the domain of a variable Y is {0,1}
Then any function f(Y) can be written as:
f(Y) = Yi(Y=1)+(1-Y)f(Y=0)

20



How to learn the weights?

(W) = YY'InPy'=1x" W)+ (1 -Y")InP(Y'=0|X" W)
[

_ l
— Zyllnpgyl (1)}; g—l—lnP( =0[X!, W)

= ZYI W0+ZWX n(1-+exp w0+ZwX

Remember
exp(wo+ Y1 wiX;)
I +exp(wo + Y| wiX;)
1
1 +exp(wo+ Y7 | wiXi)

P(Y =1X) =

P(Y =0|X) =

Log of this = -In(denominator)
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How to Learn the weights?

Bad news: no closed-form solution to maximize (W)
Good news: I(W) is concave function of W!

No local minima

Concave functions easy to optimize using Gradient Ascent

Update w; as follows:
w=w;+(learning rate)*(partial derivate of [(W) w.r.t. w;)

Notice that unlike gradient descent, in
gradient ascent we are interested in the
maximim value and therefore we have a
“+” sign on the RHS of the update rule
instead of “-” sign.

©Carlos Guestrin 2005-2009 22



How to learn the weights?

(W) = ZYl(wo+iwiXil)—1n(1+exp(w0+zn:wiXil))
[ ] 1

8[

ZX’(YZ P(Y'=1)x",w))

The term inside the parenthe5|s Is the prediction error (difference
between the observed value and the predicted probability)

Wi 9wi—|—nZXil(Y’ —ﬁ(Yl = 1|XZ,W))

\l

Learning rate
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Large parameters... | ==
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 a=l R a=10
 Maximum likelihood solution: prefers higher weights

— higher likelihood of (properly classified) examples close to
decision boundary

— larger influence of corresponding features on decision

4

— can cause overfitting!!!
* Regularization: penalize high weights



That’s all MCLE. How about MCAP?

p(w) = l k27

e One common approach is to define priors on W

— Normal distribution, zero mean, identity covariance

— “Pushes” parameters towards zero

* Regularization

— Helps avoid very large weights and overfitting

° I : A
MAP estimate: W<—argmvglenP(Yl\Xl,W)—EIIWHZ
[



MCAP as Regularization

A
1% mPY! X! w)—Z||w]|?
<—al‘grlnvth):rl( XL W) =S|

J

le PY' =1|X"W)) — Aw;

Bwl
* Weight update rule:

wi —wi+nY X/ (Y =P = 11X, W)) —mAw;
[
— Quadratic penalty: drives weights towards zero
— Adds a negative linear term to the gradients

Penalizes high weights, like we did in linear regression



Naive Bayes vs. Logistic Regression

Learning: h:XP— Y X — features
Y — target classes

Generative Discriminative
* Assume functional form for * Assume functional form for
— P(X]Y) assume cond indep — P(Y|X) no assumptions
— P(Y)
— Est params from train data — Est params from training data

e Gaussian NB for cont features  Handles discrete & cont features
e Bayes rule to calc. P(Y|X=x)

— P(Y | X) oc P(X | Y) P(Y)
* Indirect computation e Directly calculate P(Y|X=x)

— Can also generate a sample of — Can’t generate data sample
the data

28



Remember Gaussian Naive Bayes?

Sometimes Assume Variance

— isindependent of Y (i.e., 5,),
— or independent of X, (i.e., 5,)
— or both (i.e., o)

P(Y | X) c P(X|Y) P(Y)

POK =x| Y=y,) = N(ui, o)

N[(TH ) :O-ik\/%



Gaussian Naive Bayes vs. Logistic Regression

Learning: h:X—> Y X — Real-valued features
Y — target classes

Generative What can we say about the
e Assume functional form for form of P(Y=1 | ..X...)?

— P(X]Y) assume X, cond indep given Y

1
o
— Est params from train data + exp(wo + 3 wiX;)

e Gaussian NB for continuous features

— model P(X, | Y =y,) as Gaussian N(L,,,G;) Cool!lll
— model P(Y) as Bernoulli (mr,1-m)

e Bayes rule to calc. P(Y|X=x)
— P(Y | X) oc P(X | Y) P(Y)

30



Derive form for P(Y | X) for continuous X,

PY=1)PX|Y =1)

P(Y =1)P(X|Y =1)+P(Y =0)P(X|Y =0)

P(Y =1]X) =

1

P(Y=0)P(X|Y=0) @ up to now, all arithmetic
I +exp(In 5= 7=1)

P(Y = 1|X) =

1

1 +exp(In ig;?g +Y.In ﬁgﬁ:g )
1 only for Naive Bayes models

_ P(X;|Y=0
1 +exp(In IT“ +Y.,ln —PEXE-IY=1§)

/N

_ _ Can we solve for w; ?
Looks like a setting for w,? » Yes, but only in Gaussian case

P(Y=1|X) =




Ratio of class-conditional probabilities

1
1+ exp(wg + X; w; X;)

I _(Xi—#io)z)
P(Xi’YZO) B 21 2167 GXp( 20}
PXly=1) exp( (Xi_élil)z)
\/2%’0 20;

(X; — 1i1)? — (X; — pip)?
_ Zlnexp( Mi1) 2( i — Mio) )
: 20

i

) ((Xz‘ —,Uil)zz—z(Xi —Hio)2>

; G;

Y ((Xiz — 2Xiptin +447,) — (X7 — 2Xitio + 1) )
; 20;'2

. (ZXI'(’*‘!'O_’?); Hii _“1'20) Linear function!
i ©i o Coefficients

= Y (H iy HiHo expressed with
l- c? 262

’ ’ original Gaussian
parameters!



Derive form for P(Y|X) for continuous X

1
PY =11X) = -7 0— Ui i —1%)
I+ eXp(h‘l = + Zi (HIOG—IQIIXI + —1120?10 ))
1 Just like Logistic
PY=1X)= 08
1 +exp(wo+ Y™, wiX;) Regression!!!
W; = Hio _zuil luzl lJlO

o) 202
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Gaussian Naive Bayes vs. Logistic Regression

Set of Gaussian o
Naive Bayes parameters ﬁ Set of Logistic
(feature variance Regression parameters
independent of class label) <2 90 both
ways, we only

did one way

* Representation equivalence

— But only in a special case!!! (GNB with class-independent variances)
* But what’s the difference???

* LR makes no assumptions about P(X|Y) in learning!!!
---- Optimize different functions ! Obtain different solutions



Naive Bayes vs. Logistic Regression
[Ng & Jordan, 2002]

e Generative vs. Discriminative classifiers

* Asymptotic comparison
(# training examples =2 infinity)

— when model correct

* GNB (with class independent variances) and
LR produce identical classifiers

— when model incorrect
* LR is less biased —does not assume conditional independence
—therefore LR expected to outperform GNB



Naive Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

 Generative vs. Discriminative classifiers
* Non-asymptotic analysis
— convergence rate of parameter estimates,
(n = # of attributes in X)
* Size of training data to get close to infinite data solution

* Naive Bayes needs O(log n) samples
* Logistic Regression needs O(n) samples

— GNB converges more quickly to its (perhaps less
helpful) asymptotic estimates



pima (sontinuous)y

Sdult (zanfinuaLe) boston (predict if = median prics, conlinuous)
05 05 : e
' .
ol — Naive bayes
0.4 . . .
Boss -...== LOgIStic Regression
= b
03 0.3
025 D25
°3 10 20 30 83
m
opidigits (2's and 3's, conlinuous) iorosphene (conbruous) sonar (oorfinuoLs) adult {decrede)
B4 ' ' ' o5 ; 5 — 07 :
0.3
i
i
i
En.z-‘.
II
i
II\.
0k 5
|
50 o ;‘Eﬂ 200
m

Some

experiments

from UCI data
sets
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Fipure 1: Results of 15 experiments on datasets from the UCT Machine Learnin
repogitory. Plots are of generalization error vs. m (averaged over 1000 randor
train/test splits). Dashed line is logistic regression; solid Line is naive Bayes.



What you should know about Logistic
Regression (LR)

Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR

— Solution differs because of objective (loss) function

In general, NB and LR make different assumptions

— NB: Features independent given class ! assumption on P(X]|Y)
— LR: Functional form of P(Y|X), no assumption on P(X]Y)

LR is a linear classifier

— decision rule is a hyperplane

LR optimized by conditional likelihood

— no closed-form solution

— concave ! global optimum with gradient ascent

— Maximum conditional a posteriori corresponds to regularization
Convergence rates

— GNB (usually) needs less data

— LR (usually) gets to better solutions in the limit



