
CS6140 Machine Learning Perceptrons and Neural Networks

Perceptrons and Neural Networks
Virgil Pavlu October 3, 2014

1 The perceptron

Lets suppose we are (as with regression regression) with (xi, yi); i = 1, ..,m the data points and labels. This
is a classification problem with two classes y ∈ {−1, 1}

Like with regression we are looking for a linear predictor (classifier)

hw(x) = xw =

D∑
d=0

xdwd

(we added the x0 = 1 component so we can get the free term w0) such that hw(x) ≥ 0 when y = 1 and
hw(x) ≤ 0 when y = −1.

On y = −1 data points: given that all x and y are numerical, we will make the following transformation:
when y = −1, we will reverse the sign of the input; that is replace x with -x and y = −y. Then the condition
hw(x) ≤ 0 becomes hw(x) ≥ 0 for all data points.

Figure 1: transforming y = −1 datapoints into y = 1 datapoints

The perceptron objective function is a combination of the number of miss-classification points and how
bad the miss-classification is

J(w) =
∑
x∈M

−hw(x) =
∑
x∈M

−xw

1

where M is the set of miss-classified data points. Note that each term of the sum is positive, since miss-
classified implies wx < 0. Using gradient descent, we first differentiate J

∇wJ(w) =
∑
x∈M

−xT

then we write down the gradient descent update rule

w := w + λ
∑
x∈M

xT

(λ is the learning rate). The batch version looks like

1. init w
2. LOOP
3. get M = set of missclassified data points
4. w = w + λ

∑
x∈M xT

5. UNTIL |λ
∑

x∈M x| < ε

Assume the instances are linearly separable. Then we can modify the algorithm

1. init w
2. LOOP
3. get M = set of missclassified data points
4. for each x ∈M do w = w + λxT

5. UNTIL M is empty

Figure 2: perceptron update: the plane normal w moves in the direction of misclassified x until the x is on
the correct side.

Intuitively, the update wnew = wold + x for misclassified points x is the follwoing: if x is on the wrong
side of the plane < wx >= 0, it means that the normal vector to the plane, w, is on the opposite side to

2

x. The update essentially moves w in the direction of x; as long as x remains on the wrong side, w moves
towards it until it w and x are on the same side of the plane (thus x is correctly classified).

Proof of perceptron convergence Assuming data is linearly separable , or there is a solution w̄ such
that xw̄ > 0 for all x.
Lets call wk the w obtained at the k-th iteration (update). Fix an α > 0. Then

wk+1 − αw̄ = (wk − αw̄) + xT
k

where xk is the datapoint that updated w at iteration k. Then

||wk+1 − αw̄||2 = ||wk − αw̄||2 + 2xk(wk − αw̄) + ||xk||2 ≤ ||wk − αw̄||2 − 2xkαw̄ + ||xk||2

Since xkw̄ > 0 all we need is an α sufficiently large to show that this update process cannot go on forever.
When it stops, all datapoints must be classified correctly.

Figure 3: bias unit

2 Multilayer perceptrons

3

Figure 4: multilayer perceptron

2.1 More than linear functions, example: XOR

Perceptrons have been shown to have limited processing power. The decision boundary of a perceptron
is a line (hyper plane), which means perceptrons can only classify objects that are linearly separable. Early
researches discovered that perceptrons are not able to learn a XOR function. As can be seen in Figure 3,
there is no single line that can separate the red points from the black points. Since XOR is an important
function in circuit design, this shows the limited abilities of perceptron in practice.

However, perceptrons can implement AND, OR and NOT gates fairly easily, since the corresponding
problems are linearly separable. We know XOR gates can be constructed using AND, OR and NOT gates:

XOR(x, y) = OR(x, y) AND (NOT (AND(x, y)))

This gives us the hint that by composing perceptrons together, we can get greater processing power. This
leads to multi-layer neural networks (also called multi-layer perceptrons).

2.2 Construction and structure of NNets

Typical neural networks have the following structure. This is a 3-layer neural network. It consists of one
input layer, one hidden layer and one output layer. Each node in the input layer represent a component of
the feature vector. Each hidden unit performs the weighted sum of inputs to form a net activation:

netj =

d∑
i=1

xiwji + wj0 =

d∑
i=0

xiwji = wt
jx

where wji denotes the weight between input node i and hidden node j. Each hidden unit emits an output

yj = f(netj)

4

Figure 5: XOR NNet

Each output unit computes a net activation based on hidden unit outputs

netk =

nH∑
j=1

yjwkj + wk0 =

nH∑
j=0

yjwkj = wt
ky,

and emits an output
zk = f(netk)

For a 3-layer neural network, the outputs can be written as

gk(x) = zk = f

∑
j

wkjf

(∑
i

wijxi + wj0

)
+ wk0

 = F (F (xwj)wk)

Given these discriminant functions, we can predict each datapoint’s label as

arg max
k

gk(x)

5

Figure 6: NNet fully connected

2.3 Kolmogorov theorem, expressive power of NNet

Any function g can be written

g(x) =
∑
j

Ξj

(∑
d

Ψdj(x
d)

)
but there is no practical way to use this theorem in practice. Usually Ξ and Ψ are very complex and not
smooth.

It can be shown that neural networks are universal approximators. A feed-forward network with a single
hidden layer containing a finite number of neurons, can approximate any continuous functions, under mild
assumptions.

3 Training, Error backpropagation

In this section, we’ll discuss how to learn a multi-layer neural network using a special kind of gradient descent
algorithm – back propagation algorithm.

Similarly to linear regression, we try to minimize the squared error between the true labels and the
predicted values. To make gradient descent easier, we often choose sigmoid(logistic) function as the activation
function, because sigmoid function is differentiable.

Let’s consider a 3-layer neural network:
- error
For one datapoint x:

J(w) =
1

2

∑
k

(tk − zk)2

6

∆wpq = −λ ∂J

∂wpq
,

where λ is the learning rate.
- propagation to last set of weights (close to output)

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

= −δk
∂netk
∂wkj

δk = − ∂J

∂netk
= − ∂J

∂zk

∂zk
∂netk

= (tk − zk)f ′(netk)

∂netk
∂wkj

= yj

So we get the update rule for hidden-to-output weights:

wkj = wkj + λ(tk − zk)f ′(netk)yj

- propagation to first set of weights (close to input)
Using chain rule, we get

∂J

∂wji
=

∂J

∂yj

∂yj
∂netj

∂netj
∂wji

∂J

∂yj
=
∂[12

∑
k(tk − zk)2]

∂yj

=−
∑
k

(tk − zk)
∂zk
∂netk

∂netk
∂yj

∂hj
∂netj

= f ′(netj)

∂netj
∂wji

= xi

wji ← wji + λ[
∑
k

(tk − zk)f ′(netk)wkj]f
′(netj)xi

- stochastic VS batch
Based on the above derivation, we get the following two algorithms:

Stochastic training
Select xt (randomly chosen)

wij = wij + λδjxi
wjk = wjk + λδkyj

until | 5w J | < ε

Batch training
for each iteration:

for each xt
δwij = δwij + λδjxi
δwjk = δwjk + λδkyj

wij ← wij + δwij

wjk ← wjk + δwjk

until || 5w J || < ε

7

4 Toy Example

Figure 7: NN Example

Now, we will give an example on Feed Forward and Back Propagation in Neural Network. And we have

8

following assumptions:

• Two inputs x1 = −3 and x2 = 1.

• One output y = 0.

• Need to learn 9 parameters, wij for nodes i ∈ {1, 2, 3} and j ∈ {0, 1, 2}. For each node i, we set up an
implicit bias wi0 to xi0 = 1. And we initialize the wij = i.

• Let si be output of Σ for node i.

• Let oi be output of sigmoid
∫

for node i.

• Add pij = wij ∗ (input).

• For each δz = ∂E
∂z .

After we get all these assumptions, we could look at the Feed Forward and Back Propagation processing
now.

4.1 Feed Forward

• s1 = w10 · x0 + w11 · x1 + w12 · x2 = p10 + p11 + p12 = 1 · 1 + 1 · −3 + 1 · 1 = −1

• s2 = w20 · x0 + w21 · x1 + w22 · x2 = p20 + p21 + p22 = 2 · 1 + 2 · −3 + 2 · 1 = −2

• o1 = 1
1+e−s1

= 0.268941421

• o2 = 1
1+e−s2

= 0.119202922

• s3 = w30 · x0 + w31 · o1 + w32 · o2 = p30 + p31 + p32 = 4.164433029

• o3 = 1
1+e−s3

= 0.984699229

• E = (y − o3)2 = 0.969632521

4.2 Back Propagation

• δo3 = ∂E
∂o3

= 2 · (y − o3) · −1 = 1.969398458

• δs3 = ∂E
∂s3

= ∂E
∂o3
· ∂o3∂s3

= δo3 · o3(1− o3) = 0.029672351

• δp30 = ∂E
∂p30 = ∂E

∂s3
· ∂s3
∂p30 = δs3 · 1 = δs3

• δp31 = ∂E
∂p31 = ∂E

∂s3
· ∂s3
∂p31 = δs3 · 1 = δs3

• δp32 = ∂E
∂p32 = ∂E

∂s3
· ∂s3
∂p32 = δs3 · 1 = δs3

• δw30 = ∂E
∂p30 · ∂p30

∂w30 = δp30 · 1 = 0.029672351

• δw31 = ∂E
∂p31 · ∂p31

∂w31 = δp31 · o1 = 0.007980097348

• δw32 = ∂E
∂p32 · ∂p32

∂w32 = δp32 · o2 = 0.003537019022

• δo1 = δp31 · w31 = 0.089016753

• . . .

• Then you can update the weights wij by each δ

9

