CMSE 8: HW 3

Matt Piekenbrock

Problem 1

(1) Let $\alpha>0$ be a positive real number. The goal is to show:

$$
\partial(\alpha f)\left(x_{0}\right)=\left\{\alpha s: s \in \partial f\left(x_{0}\right)\right\}
$$

Consider the left hand side. It may be rewritten as follows:

$$
\begin{aligned}
\partial(\alpha f)\left(x_{0}\right) & =\left[\frac{\partial}{\partial x_{0}^{(1)}}(\alpha f), \frac{\partial}{\partial x_{0}^{(2)}}(\alpha f), \ldots, \frac{\partial}{\partial x_{0}^{(n)}}(\alpha f)\right]^{T} \\
& =\left[\alpha \frac{\partial}{\partial x_{0}^{(1)}}(f), \alpha \frac{\partial}{\partial x_{0}^{(2)}}(f), \ldots, \alpha \frac{\partial}{\partial x_{0}^{(n)}}(f)\right]^{T} \\
& =\alpha\left[\frac{\partial}{\partial x_{0}^{(1)}}(f), \frac{\partial}{\partial x_{0}^{(2)}}(f), \ldots, \frac{\partial}{\partial x_{0}^{(n)}}(f)\right]^{T} \\
& =\alpha \frac{\partial}{\partial x_{0}}(f)=\alpha \partial f\left(x_{0}\right)
\end{aligned}
$$

which yields the desired result, where $x_{0}^{(i)}$ represents the $i^{\text {th }}$ component of $x_{0} \in \mathbb{R}^{n}$.
(2) If a function $g(x)$ is differentiable at a point x_{0}, then the derivative of g at x_{0} is determined uniquely and is represented by the $n \times n$ derivative matrix $D_{g}\left(x_{0}\right)$, whose columns give the vector partial derivatives with respect to each component. The gradient of g is characterized as follows:

$$
\partial g(x)=\left[\begin{array}{c}
\frac{\partial g}{\partial x_{0}}(x) \\
\frac{\partial g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial g}{\partial x_{n}}(x)
\end{array}\right]=D_{g}(x)^{T}
$$

Now if one has two differentiable functions f and g whose composite is $h(x)=g(f(x))$, by the definition of the chain rule, we have:

$$
\partial h(x)=D_{g}(f(x))^{T}\left[\begin{array}{c}
\frac{\partial f}{x_{1}}(x) \\
\frac{\partial f}{x_{2}}(x) \\
\vdots \\
\frac{\partial f}{x_{n}}(x)
\end{array}\right]
$$

Replacing $A=D_{g}\left(f\left(x_{0}\right)\right)$ above and noting that $s \in \partial f\left(A x_{0}+b\right)$ yields the desired result.

Problem 2

First, consider the component derivatives:

$$
\begin{aligned}
& \partial f_{1}(x)=2(x+1) \\
& \partial f_{2}(x)=2(x-1)
\end{aligned}
$$

Observe that $f_{1}(x)>f_{2}(x)$ for all $x>0$, and $f_{2}(x)>f_{1}(x)$ for all $x<0$, yielding the characterization of $\partial f(x)$ for those subsets of the domain. The only point in \mathbb{R} not described is the derivative at the point $x=0$. Since f is not differentiable at $x=0, \partial f(x)$ at some fixed point x is defined as the set of vectors s satisfying:

$$
f(\hat{x}) \geq f(x)+s^{T}(\hat{x}-x) \quad \forall \hat{x} \in D(f)
$$

Note that in this case, $f: \mathbb{R} \rightarrow \mathbb{R}$ (presumeably). As a result, if one fixes $x=0$ then for this inequality to be true we have:

$$
\begin{aligned}
& f(\hat{x}) \geq \max (1,1)+s^{T}(\hat{x}-0) \quad \forall \hat{x} \in D(f) \\
& \max \left\{(\hat{x}+1)^{2},(\hat{x}-1)^{2}\right\} \geq 1+s \hat{x} \quad \forall \hat{x} \in D(f) \quad \text { since } s, x \in \mathbb{R} \\
& \Longrightarrow \begin{cases}(\hat{x}+1)^{2}-1 \geq s \hat{x} & \text { if } \hat{x}>0 \\
(\hat{x}-1)^{2}-1 \geq s \hat{x} & \text { if } \hat{x}<0\end{cases} \\
& \Longrightarrow \begin{cases}\hat{x}^{2}+2 \hat{x} \geq s \hat{x} & \text { if } \hat{x}>0 \\
\hat{x}^{2}-2 \hat{x} \geq s \hat{x} & \text { if } \hat{x}<0\end{cases} \\
& \Longrightarrow s \leq \begin{cases}\hat{x}-2 & \text { if } \hat{x}<0 \\
\hat{x}+2 & \text { if } \hat{x}>0\end{cases} \\
& \Longrightarrow s \in \begin{cases}(-\infty, 2) & \text { if } \hat{x}<0 \\
(2,+\infty) & \text { if } \hat{x}>0\end{cases}
\end{aligned}
$$

I conclude that the characterization of the subdifferential of f is given by:

$$
\partial f(x)= \begin{cases}1+s \hat{x} & \text { if } x=0 \\ 2(x-1) & \text { if } x<0 \\ 2(x+1) & \text { if } x>0\end{cases}
$$

where s is parameterized by some choice of \hat{x}, as described above.

Problem 3

(1) Showing the (one-sided) limit given below

$$
\lim _{p \rightarrow 0+}\|x\|_{p}^{p}=\|x\|_{0}
$$

holds is equivalent to proving that for any number $\epsilon>0$, there is a corresponding number $\delta>0$ such that for all x we have:

$$
0<x<0+\delta \Longrightarrow\left|\|x\|_{p}^{p}-\|x\|_{0}\right|<\epsilon
$$

Rewriting this statement, this is equivalent to showing that the one sided-limit holds:

$$
\lim _{p \rightarrow 0+} \sum_{j=1}^{n}\left|x_{j}\right|^{p}=\|x\|_{0}
$$

Consider the case where $x_{j} \in(0,1]$ for each $j \in[1, n]$. Observe that the power function $|\cdot|^{p}:(0,1] \rightarrow \mathbb{R}$ is monotonically non-decreasing for every choice of p, and that for any choice of powers $0<p<\hat{p}<1$, the graph of the function of p in the interval $(0,1]$ is completely above the graph of \hat{p}. As $p \rightarrow 0^{+}$, graph becomes a constant function, where for every input $x \in(0,1]$ the function returns 1 . The case is similar when each $x_{j}>1$, however instead as $p \rightarrow 0^{+}$, each entry necessary converges to 1 , as anything raised to the $0^{\text {th }}$ power must be 1 .
(2) Recall that for a given function f to be considered a convex function, its domain $D(f)$ must be a convex set, and it must obey the inequality:

$$
f\left(t x+(1-t) x^{\prime}\right) \leq t f(x)+(1-t) f\left(x^{\prime}\right)
$$

To show that the function $\|x\|_{p}=\sum_{j=1}^{n}\left|x_{j}\right|^{p}$ obeys this only for $p \geq 1$, I first recall the properties of vector norms. By definition, if $\|\cdot\|$ is a vector norm, it satisfies the following three conditions 1$]$ for some vectors $x, x^{\prime} \in \mathbb{R}^{n}, \alpha \in \mathbb{R}$:

$$
\begin{align*}
& \|x\| \geq 0, \text { and }\|x\|=0 \text { only if } x=0 \tag{1}\\
& \left\|x+x^{\prime}\right\| \leq\|x\|+\left\|x^{\prime}\right\| \tag{2}\\
& \|\alpha x\|=|\alpha|\|x\| \tag{3}
\end{align*}
$$

For any two vectors $x, \hat{x} \in \mathbb{R}^{n}$, by the triangle inequality (second above), we have:

$$
\|t x+(1-t) \hat{x}\|_{p} \leq\|t x\|_{p}+\|(1-t) \hat{x}\|_{p} \quad \forall t \in[0,1]
$$

and by the scaling property (three above), we have:

$$
\|t x\|_{p}+\|(1-t) \hat{x}\|_{p}=t\|x\|_{p}+(1-t)\|\hat{x}\|_{p} \quad \forall t \in[0,1]
$$

Giving the desired result that any vector norm is convex. To show that $\|x\|_{p}$ if and only if $p \geq 1$, one needs to show that the above three listed properties hold for $p \geq 1$, and that they don't hold for $p<1$: but this is given by Minkowski's inequality, which states that for any two measurable functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we have:

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} \quad 1 \leq p \leq \infty
$$

The fact that this inequality is only obeyed when $p \geq 1$ indicates that only p-norms with $p \geq 1$ obey the vector norm conditions above, and thus only those such p-norms are convex.
(4) Define β_{0} by:

$$
\beta_{0}:=\underset{\beta}{\arg \min }\left\|y-X^{T} \beta\right\|^{2}+\lambda\|\beta\|_{2}^{2}+\tau\|\beta\|_{1}
$$

Using the notational techniques used in the lecture, and treating the inner terms to optimize as $f(\beta)$ we have that the cost function f is to minimize:

$$
\begin{aligned}
f(\beta) & =\left(y-X^{T} \beta\right)^{T}\left(y-X^{T} \beta\right)+y^{T} y+\lambda\|\beta\|_{2}^{2}+\tau\|\beta\|_{1} \\
& =\beta^{T} X X^{T} \beta-2 y^{T} X^{T} \beta+y^{T} y+\lambda\|\beta\|_{2}^{2}+\tau\|\beta\|_{1} \\
& =\beta^{T} \beta-2 \beta^{l s(T)} \beta+\lambda\|\beta\|_{2}^{2}+\tau\|\beta\|_{1}+y^{T} y \\
& =\sum_{j=1}^{p} \beta_{j}^{2}-2 \sum_{j=1}^{p} \beta_{j}^{l s} \beta_{j}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}+\tau \sum_{j=1}^{p}\left|\beta_{j}\right|+y^{T} y \\
& =\sum_{j=1}^{p}\left(\beta_{j}^{2}-2 \beta_{j}^{l s} \beta_{j}+\lambda \beta_{j}^{2}+\tau\left|\beta_{j}\right|\right)+y^{T} y
\end{aligned}
$$

At this point, notice that $y^{T} y$ is independent of β, and that it suffices to minimize the above for each j independently. Therefore, from now on, assume a fixed choice of j (such as 0). Taking the derivative of $f(\beta)$ with respect to some fixed β_{0}, we have:

$$
\begin{aligned}
\partial f\left(\beta_{0}\right) & =\partial\left(\beta_{j}^{2}-2 \beta_{j}^{l s} \beta_{j}+\lambda \beta_{j}^{2}+\tau\left|\beta_{j}\right|\right)\left(\beta_{0}\right) \\
& =\partial\left(\beta_{j}^{2}\right)\left(\beta_{0}\right)-\partial\left(2 \beta_{j}^{l s} \beta_{j}\right)\left(\beta_{0}\right)+\partial\left(\lambda \beta_{j}^{2}\right)\left(\beta_{0}\right)+\partial\left(\tau\left|\beta_{j}\right|\right)\left(\beta_{0}\right) \\
& =4 \lambda \beta_{0}-2 \beta_{j}^{l s}+ \begin{cases}\tau & \beta_{0}>0 \\
\tau[-1,1] & \beta_{0}=0 \\
-\tau & \beta_{0}<0\end{cases}
\end{aligned}
$$

Now, for $0 \in \partial f\left(\beta_{0}\right)$, we have the following two cases when $\beta_{0} \neq 0$:

$$
\beta_{0}= \begin{cases}\frac{1}{2 \lambda} \beta_{j}^{l s}+\frac{\tau}{4 \lambda} & \text { if } \beta_{0}>0 \\ \frac{1}{2 \lambda} \beta_{j}^{l s}-\frac{\tau}{4 \lambda} & \text { if } \beta_{0}<0\end{cases}
$$

If $\beta_{0}=0$, then for $0 \in \partial f(\beta) \Longrightarrow 0 \in\left[-2 \beta_{j}^{l s}-\tau,-2 \beta_{j}^{l s}+\tau\right]$, which implies that $\tau \geq-2 \beta_{j}^{l s}$ and $\tau \geq 2 \beta_{j}^{l s}$, leading to the final expression:

$$
\beta_{0}= \begin{cases}\frac{1}{2 \lambda} \beta_{j}^{l s}+\frac{\tau}{4 \lambda} & \text { if } \frac{1}{2 \lambda} \beta_{j}^{l s}+\frac{\tau}{4 \lambda}>0 \\ 0 & -\frac{\tau}{2} \leq \beta_{j}^{l s} \leq \frac{\tau}{2} \\ \frac{1}{2 \lambda} \beta_{j}^{l s}-\frac{\tau}{4 \lambda} & \text { if } \frac{1}{2 \lambda} \beta_{j}^{l s}-\frac{\tau}{4 \lambda}<0\end{cases}
$$

This pattern clearly expression β_{0} in a form identical to soft thresholding function $S_{\frac{\tau}{4 \lambda}}\left(\beta_{j}^{l s}\right)$.

References

[1] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

