
CMSE 8: HW 3
Matt Piekenbrock

Problem 1

(1) Let α > 0 be a positive real number. The goal is to show:

∂(αf)(x0) = {αs : s ∈ ∂f(x0)}

Consider the left hand side. It may be rewritten as follows:
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which yields the desired result, where x
(i)
0 represents the ith component of x0 ∈ Rn.

(2) If a function g(x) is differentiable at a point x0, then the derivative of g at x0 is determined uniquely and is rep-
resented by the n × n derivative matrix Dg(x0), whose columns give the vector partial derivatives with respect to each
component. The gradient of g is characterized as follows:
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Now if one has two differentiable functions f and g whose composite is h(x) = g(f(x)), by the definition of the chain rule,
we have:

∂h(x) = Dg(f(x))T
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Replacing A = Dg(f(x0)) above and noting that s ∈ ∂f(Ax0 + b) yields the desired result.

Problem 2

First, consider the component derivatives:
∂f1(x) = 2(x+ 1)

∂f2(x) = 2(x− 1)

Observe that f1(x) > f2(x) for all x > 0, and f2(x) > f1(x) for all x < 0, yielding the characterization of ∂f(x) for those
subsets of the domain. The only point in R not described is the derivative at the point x = 0. Since f is not differentiable
at x = 0, ∂f(x) at some fixed point x is defined as the set of vectors s satisfying:

f(x̂) ≥ f(x) + sT (x̂− x) ∀ x̂ ∈ D(f)
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Note that in this case, f : R→ R (presumeably). As a result, if one fixes x = 0 then for this inequality to be true we have:

f(x̂) ≥ max (1, 1) + sT (x̂− 0) ∀ x̂ ∈ D(f)

max {(x̂+ 1)2, (x̂− 1)2} ≥ 1 + sx̂ ∀ x̂ ∈ D(f) since s, x ∈ R

=⇒

{
(x̂+ 1)2 − 1 ≥ sx̂ if x̂ > 0

(x̂− 1)2 − 1 ≥ sx̂ if x̂ < 0

=⇒

{
x̂2 + 2x̂ ≥ sx̂ if x̂ > 0

x̂2 − 2x̂ ≥ sx̂ if x̂ < 0

=⇒ s ≤

{
x̂− 2 if x̂ < 0

x̂+ 2 if x̂ > 0

=⇒ s ∈

{
(−∞, 2) if x̂ < 0

(2,+∞) if x̂ > 0

I conclude that the characterization of the subdifferential of f is given by:

∂f(x) =


1 + sx̂ if x = 0

2(x− 1) if x < 0

2(x+ 1) if x > 0

where s is parameterized by some choice of x̂, as described above.

Problem 3

(1) Showing the (one-sided) limit given below
lim
p→0+

‖x‖pp = ‖x‖0

holds is equivalent to proving that for any number ε > 0, there is a corresponding number δ > 0 such that for all x we have:

0 < x < 0 + δ =⇒ |‖x‖pp − ‖x‖0| < ε

Rewriting this statement, this is equivalent to showing that the one sided-limit holds:

lim
p→0+

n∑
j=1

|xj |p = ‖x‖0

Consider the case where xj ∈ (0, 1] for each j ∈ [1, n]. Observe that the power function |·|p : (0, 1] → R is monotonically
non-decreasing for every choice of p, and that for any choice of powers 0 < p < p̂ < 1, the graph of the function of p in the
interval (0, 1] is completely above the graph of p̂. As p → 0+, graph becomes a constant function, where for every input
x ∈ (0, 1] the function returns 1. The case is similar when each xj > 1, however instead as p → 0+, each entry necessary
converges to 1, as anything raised to the 0th power must be 1.

(2) Recall that for a given function f to be considered a convex function, its domain D(f) must be a convex set, and
it must obey the inequality:

f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′)

To show that the function ‖x‖p =
n∑
j=1

|xj |p obeys this only for p ≥ 1, I first recall the properties of vector norms. By definition,

if ‖·‖ is a vector norm, it satisfies the following three conditions [1] for some vectors x, x′ ∈ Rn, α ∈ R:

‖x‖ ≥ 0, and ‖x‖ = 0 only if x = 0, (1)

‖x+ x′‖ ≤ ‖x‖+ ‖x′‖, (2)

‖αx‖ = |α|‖x‖ (3)

For any two vectors x, x̂ ∈ Rn, by the triangle inequality (second above), we have:

‖tx+ (1− t)x̂‖p ≤ ‖tx‖p + ‖(1− t)x̂‖p ∀ t ∈ [0, 1]
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and by the scaling property (three above), we have:

‖tx‖p + ‖(1− t)x̂‖p = t‖x‖p + (1− t)‖x̂‖p ∀ t ∈ [0, 1]

Giving the desired result that any vector norm is convex. To show that ‖x‖p if and only if p ≥ 1, one needs to show that the
above three listed properties hold for p ≥ 1, and that they don’t hold for p < 1: but this is given by Minkowski’s inequality,
which states that for any two measurable functions f, g : Rn → R, we have:

‖f + g‖p ≤ ‖f‖p + ‖g‖p 1 ≤ p ≤ ∞

The fact that this inequality is only obeyed when p ≥ 1 indicates that only p-norms with p ≥ 1 obey the vector norm
conditions above, and thus only those such p-norms are convex.

(4) Define β0 by:
β0 := arg min

β
‖y −XTβ‖2 + λ‖β‖22 + τ‖β‖1

Using the notational techniques used in the lecture, and treating the inner terms to optimize as f(β) we have that the cost
function f is to minimize:

f(β) = (y −XTβ)T (y −XTβ) + yT y + λ‖β‖22 + τ‖β‖1
= βTXXTβ − 2yTXTβ + yT y + λ‖β‖22 + τ‖β‖1
= βTβ − 2βls(T )β + λ‖β‖22 + τ‖β‖1 + yT y

=

p∑
j=1

β2
j − 2

p∑
j=1

βlsj βj + λ

p∑
j=1

β2
j + τ

p∑
j=1

|βj |+ yT y

=

p∑
j=1

(
β2
j − 2βlsj βj + λβ2

j + τ |βj |
)

+ yT y

At this point, notice that yT y is independent of β, and that it suffices to minimize the above for each j independently.
Therefore, from now on, assume a fixed choice of j (such as 0). Taking the derivative of f(β) with respect to some fixed β0,
we have:

∂f(β0) = ∂
(
β2
j − 2βlsj βj + λβ2

j + τ |βj |
)

(β0)

= ∂(β2
j )(β0)− ∂(2βlsj βj)(β0) + ∂(λβ2

j )(β0) + ∂(τ |βj |)(β0)

= 4λβ0 − 2βlsj +


τ β0 > 0

τ [−1, 1] β0 = 0

−τ β0 < 0

Now, for 0 ∈ ∂f(β0), we have the following two cases when β0 6= 0:

β0 =

{
1
2λβ

ls
j + τ

4λ if β0 > 0
1
2λβ

ls
j − τ

4λ if β0 < 0

If β0 = 0, then for 0 ∈ ∂f(β) =⇒ 0 ∈ [−2βlsj − τ,−2βlsj + τ ], which implies that τ ≥ −2βlsj and τ ≥ 2βlsj , leading to the
final expression:

β0 =


1
2λβ

ls
j + τ

4λ if 1
2λβ

ls
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4λ > 0

0 − τ2 ≤ β
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j ≤ τ

2
1
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This pattern clearly expression β0 in a form identical to soft thresholding function S τ
4λ

(βlsj ).
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