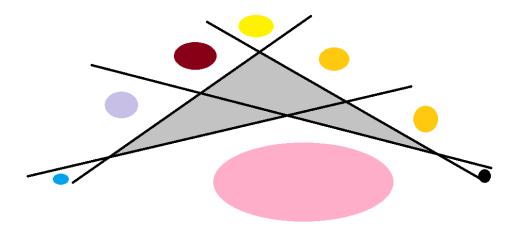
Problem 4:

No, it can be non-convex.



Problem 8:

Show that if the transfer function of the hidden units is linear, a three-layer network is equivalent to a two-layer one. Explain why, therefore, that a three-layer network with linear hidden units cannot solve a non-linearly separable problem such as XOR or n-bit parity.

A three-layer network can be represented as follow:

 $y1 = f_{i-h}(input)$ $y2 = tf_h(y1)$ $y3 = f_{h-o}(y2)$ output = $tf_o(y3)$

where f_{i-h} is the linear function from input layer to hidden layer, tf_h is the transfer function in hidden layer, f_{h-o} is the linear function from hidden layer to output layer, tf_h is the transfer function in output layer

So output = $tf_o(f_{h\text{-}o}(tf_h(f_{i\text{-}h}(input))))$

If the $tf_h()$ is linear, we can also find $f'(output) = f_{h\text{-}o}(tf_h(f_{i\text{-}h}(input)))$, and f'() is also a linear function.(because the combination of linear functions will always be a linear one). And we can have a new network N', who has only two layers and $f_{i\text{-}o} = f'$

In conclusion, a three-layer network is equivalent to a two-layer one.