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Backpropagation

Backpropagation, short for "backward propagation of errors," is an algorithm for supervised learning of artificial
networks using gradient descent. Given an artificial neural network and an error function, the method calculates
the error function with respect to the neural network's weights. It is a generalization of the delta rule for perceptr
multilayer feedforward neural networks.

The "backwards" part of the name stems from the fact that calculation of the gradient proceeds backwards throu
network, with the gradient of the final layer of weights being calculated first and the gradient of the first layer of 
calculated last. Partial computations of the gradient from one layer are reused in the computation of the gradien
previous layer. This backwards flow of the error information allows for e�cient computation of the gradient at ea
the naive approach of calculating the gradient of each layer separately.

Backpropagation's popularity has experienced a recent resurgence given the widespread adoption of deep neur
image recognition and speech recognition. It is considered an e�cient algorithm, and modern implementations
of specialized GPUs to further improve performance.
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History

Backpropagation was invented in the 1970s as a general optimization method for performing automatic di�erent
complex nested functions. However, it wasn't until 1986, with the publishing of a paper by Rumelhart, Hinton, and
titled "Learning Representations by Back-Propagating Errors," that the importance of the algorithm was apprecia
machine learning community at large.

Researchers had long been interested in finding a way to train multilayer artificial neural networks that could aut
discover good "internal representations," i.e. features that make learning easier and more accurate. Features can
as the stereotypical input to a specific node that activates that node (i.e. causes it to output a positive value near 
node's activation is dependent on its incoming weights and bias, researchers say a node has learned a feature if 
bias cause that node to activate when the feature is present in its input.

By the 1980s, hand-engineering features had become the de facto standard in many fields, especially in compute
experts knew from experiments which features (e.g. lines, circles, edges, blobs in computer vision) made learning
However, hand-engineering successful features requires a lot of knowledge and practice. More importantly, sinc
automatic, it is usually very slow.

https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/gradient-descent/
https://brilliant.org/wiki/artificial-neural-network/#training-the-model
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Backpropagation was one of the first methods able to demonstrate that artificial neural networks could learn goo
representations, i.e. their hidden layers learned nontrivial features. Experts examining multilayer feedforward ne
using backpropagation actually found that many nodes learned features similar to those designed by human exp
found by neuroscientists investigating biological neural networks in mammalian brains (e.g. certain nodes learne
edges, while others computed Gabor filters). Even more importantly, because of the e�ciency of the algorithm a
domain experts were no longer required to discover appropriate features, backpropagation allowed artificial neu
be applied to a much wider field of problems that were previously o�-limits due to time and cost constraints.

Formal Definition

Backpropagation is analogous to calculating the delta rule for a multilayer feedforward network. Thus, like the de
backpropagation requires three things:

DEFINITION

1) Dataset consisting of input-output pairs , where  is the input and  is the desired output of the ne

input . The set of input-output pairs of size  is denoted .

2) A feedforward neural network, as formally defined in the article concerning feedforward neural networks, w
parameters are collectively denoted . In backpropagation, the parameters of primary interest are , the weig

node  in layer  and node  in layer , and , the bias for node  in layer . There are no connections betw
the same layer and layers are fully connected.

3) An error function, , which defines the error between the desired output  and the calculated outpu
neural network on input  for a set of input-output pairs  and a particular value of the paramete

Training a neural network with gradient descent requires the calculation of the gradient of the error function 
respect to the weights  and biases . Then, according to the learning rate , each iteration of gradient desce
weights and biases collectively denoted  according to

where  denotes the parameters of the neural network at iteration  in gradient descent.

What's the Target?

As mentioned in the previous section, one major problem in training multilayer feedforward neural networks is in
to learn good internal representations, i.e. what the weights and biases for hidden layer nodes should be. Unlike
which has the delta rule for approximating a well-defined target output, hidden layer nodes don't have a target 
they are used as intermediate steps in the computation.

Since hidden layer nodes have no target output, one can't simply define an error function that is specific to that 
any error function for that node will be dependent on the values of the parameters in the previous layers (since p
determine the input for that node) and following layers since the output of that node will a�ect the computatio
function  This coupling of parameters between layers can make the math quite messy (primarily as a r
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the product rule, discussed below), and if not implemented cleverly, can make the final gradient descent calculat
Backpropagation addresses both of these issues by simplifying the mathematics of gradient descent, while also 
e�cient calculation.

Formal Definition

The formulation below is for a neural network with one output, but the algorithm can be applied to a network wit
of outputs by consistent application of the chain rule and power rule. Thus, for all the following examples, input-
be of the form , i.e. the target value  is not a vector.

Remembering the general formulation for a feedforward neural network,

DEFINITION

 weight for node  in layer  for incoming node 
 bias for node  in layer 
 product sum plus bias (activation) for node  in layer 
 output for node  in layer 
 number of nodes in layer 

 activation function for the hidden layer nodes
 activation function for the output layer nodes

The error function in classic backpropagation is the mean squared error

where  is the target value for input-output pair  and  is the computed output of the network on input
other error functions can be used, but the mean squared error's historical association with backpropagation and
mathematical properties make it a good choice for learning the method.

Deriving the Gradients

The derivation of the backpropagation algorithm is fairly straightforward. It follows from the use of the chain rule
rule in di�erential calculus. Application of these rules is dependent on the di�erentiation of the activation functio
reasons the heaviside step function is not used (being discontinuous and thus, non-di�erentiable).

Preliminaries

For the rest of this section, the derivative of a function  will be denoted , so that the sigmoid function's
.

To simplify the mathematics further, the bias  for node  in layer  will be incorporated into the weights as  
output of  for node  in layer . Thus,
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To see that this is equivalent to the original formulation, note that

where the le� side is the original formulation and the right side is the new formulation.

Using the notation above, backpropagation a�empts to minimize the following error function with respect to the
network's weights:

by calculating, for each weight  the value of . Since the error function can be decomposed into a sum ov

error terms for each individual input-output pair, the derivative can be calculated with respect to each input-out
individually and then combined at the end (since the derivative of a sum of functions is the sum of the derivative
function):

Thus, for the purposes of derivation, the backpropagation algorithm will concern itself with only one input-outpu
this is derived, the general form for all input-output pairs in  can be generated by combining the individual gr
the error function in question for derivation is

where the subscript  in , , and  is omi�ed for simplification.

Error Function Derivatives

The derivation of the backpropagation algorithm begins by applying the chain rule to the error function partial d

where  is the activation (product-sum plus bias) of node  in layer  before it is passed to the nonlinear activat
this case, the sigmoid function) to generate the output. This decomposition of the partial derivative basically say
change in the error function due to a weight is a product of the change in the error function  due to the activat

the change in the activation  due to the weight .

The first term is usually called the error, for reasons discussed below. It is denoted
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The second term can be calculated from the equation for  above:

Thus, the partial derivative of the error function  with respect to a weight  is

Thus, the partial derivative of a weight is a product of the error term  at node  in layer , and the output  

layer . This makes intuitive sense since the weight  connects the output of node  in layer  to the in
in layer  in the computation graph.

It is important to note that the above partial derivatives have all been calculated without any consideration of a p
function or activation function. However, since the error term  still needs to be calculated, and is dependent on

function , at this point it is necessary to introduce specific functions for both of these. As mentioned previously
backpropagation uses the mean squared error function (which is the squared error function for the single input-
case) and the sigmoid activation function.

The calculation of the error  will be shown to be dependent on the values of error terms in the next layer. Thus,
the error terms will proceed backwards from the output layer down to the input layer. This is where backpropaga
backwards propagation of errors, gets its name.

The Output Layer

Starting from the final layer, backpropagation a�empts to define the value , where  is the final layer the su
not  because this derivation concerns a one-output neural network, so there is only one output node  Fo

four-layer neural network will have  for the final layer,  for the second to last layer, and so on. Expre
function  in terms of the value  since  is a partial derivative with respect to  gives

where  is the activation function for the output layer.

Thus, applying the partial derivative and using the chain rule gives

Pu�ing it all together, the partial derivative of the error function  with respect to a weight in the final layer  

The Hidden Layers
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Now the question arises of how to calculate the partial derivatives of layers other than the output layer. Luckily, th
multivariate functions comes to the rescue again. Observe the following equation for the error term  in layer 

where  ranges from  to  (the number of nodes in the next layer). Note that, because the bias input  corre
 is fixed, its value is not dependent on the outputs of previous layers, and thus  does not take on the value 

Plugging in the error term  gives the following equation:

Remembering the definition of 

where  is the activation function for the hidden layers,

Plugging this into the above equation yields a final equation for the error term  in the hidden layers, called the
backpropagation formula:

Pu�ing it all together, the partial derivative of the error function  with respect to a weight in the hidden layers 

 is

Backpropagation as Backwards Computation

This equation is where backpropagation gets its name. Namely, the error  at layer  is dependent on the errors
next layer . Thus, errors flow backward, from the last layer to the first layer. All that is needed is to compute 
terms based on the computed output  and target output . Then, the error terms for the previous lay
computed by performing a product sum weighted by  of the error terms for the next layer and scaling it b

repeated until the input layer is reached.
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This backwards propagation of errors is very similar to the forward computation that calculates the neural networ
Thus, calculating the output is o�en called the forward phase while calculating the error terms and derivatives is
the backward phase. While going in the forward direction, the inputs are repeatedly recombined from the first la
by product sums dependent on the weights  and transformed by nonlinear activation functions  and 

backward direction, the "inputs" are the final layer's error terms, which are repeatedly recombined from the last 
by product sums dependent on the weights  and transformed by nonlinear scaling factors  and 

Furthermore, because the computations for backwards phase are dependent on the activations  and outputs 

in the previous (the non-error term for all layers) and next layer (the error term for hidden layers), all of these val
computed before the backwards phase can commence. Thus, the forward phase precedes the backward phase fo
iteration of gradient descent. In the forward phase, activations  and outputs  will be remembered for use in 
phase. Once the backwards phase is completed and the partial derivatives are known, the weights and associat

 can be updated by gradient descent. This process is repeated until a local minimum is found or convergenc
met.

The Backpropagation Algorithm

Using the terms defined in the section titled Formal Definition and the equations derived in the section titled De
Gradients, the backpropagation algorithm is dependent on the following five equations:

DEFINITION

For the partial derivatives,

DEFINITION

For the final layer's error term,

DEFINITION

For the hidden layers' error terms,

DEFINITION

For combining the partial derivatives for each input-output pair,
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DEFINITION

For updating the weights,

The General Algorithm

The backpropagation algorithm proceeds in the following steps, assuming a suitable learning rate  and random
of the parameters 

DEFINITION

1) Calculate the forward phase for each input-output pair  and store the results , , and  for each
layer  by proceeding from layer , the input layer, to layer , the output layer.

2) Calculate the backward phase for each input-output pair  and store the results  for each weight

connecting node  in layer  to node  in layer  by proceeding from layer , the output layer, to layer , t
layer.

a) Evaluate the error term for the final layer  by using the second equation.
b) Backpropagate the error terms for the hidden layers , working backwards from the final hidden layer

by repeatedly using the third equation.
c) Evaluate the partial derivatives of the individual error  with respect to  by using the first equation

3) Combine the individual gradients for each input-output pair  to get the total gradient  for the e

input-output pairs  by using the fourth equation (a simple average of the indiv
gradients).

4) Update the weights according to the learning rate  and total gradient  by using the fi�h equation (

direction of the negative gradient).

Backpropagation In Sigmoidal Neural Networks

The classic backpropagation algorithm was designed for regression problems with sigmoidal activation units. Wh
backpropagation can be applied to classification problems as well as networks with non-sigmoidal activation fun
sigmoid function has convenient mathematical properties which, when combined with an appropriate output ac
function, greatly simplify the algorithm's understanding. Thus, in the classic formulation, the activation function 
nodes is sigmoidal  and the output activation function is the identity function  (the 
is just a weighted sum of its hidden layer, i.e. the activation).
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Backpropagation is actually a major motivating factor in the historical use of sigmoid activation functions due to 
derivative:

Thus, calculating the derivative of the sigmoid function requires nothing more than remembering the output 
plugging it into the equation above.

Furthermore, the derivative of the output activation function is also very simple:

Thus, using these two activation functions removes the need to remember the activation values  and  in add

output values  and , greatly reducing the memory footprint of the algorithm. This is because the derivative f
activation function in the backwards phase only needs to recall the output of that function in the forward phase, 
dependent on the actual activation value, which is the case in the more general formulation of backpropagation 

must be calculated. Similarly, the derivative for the identity activation function doesn't depend on anything since

Thus, for a feedforward neural network with sigmoidal hidden units and an identity output unit, the error term eq
follows:

DEFINITION

For the final layer's error term,

DEFINITION

For the hidden layers' error terms,

Code Example

The following code example is for a sigmoidal neural network as described in the previous subsection. It has one
and one output node in the output layer. The code is wri�en in Python3 and makes heavy use of the NumPy libra
performing matrix math. Because the calculations of the gradient for individual input-output pairs  can b
parallel, and many calculations are based on taking the dot product of two vectors, matrices are a natural way to 
input data, output data, and layer weights. NumPy's e�cient computation of matrix products and the ability to u
GPUs (which are optimized for matrix operations) can give significant speedups in both the forward and backwa
computation.
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import numpy as np

# define the sigmoid function
def sigmoid(x, derivative=False):

    if (derivative == True):
        return sigmoid(x,derivative=False) * (1 - sigmoid(x,derivative=False))
    else:
        return 1 / (1 + np.exp(-x))

# choose a random seed for reproducible results
np.random.seed(1)

# learning rate
alpha = .1

# number of nodes in the hidden layer
num_hidden = 3

# inputs
X = np.array([  
    [0, 0, 1],
    [0, 1, 1],
    [1, 0, 0],
    [1, 1, 0],
    [1, 0, 1],
    [1, 1, 1],
])

# outputs
# x.T is the transpose of x, making this a column vector
y = np.array([[0, 1, 0, 1, 1, 0]]).T

# initialize weights randomly with mean 0 and range [-1, 1]
# the +1 in the 1st dimension of the weight matrices is for the bias weight
hidden_weights = 2*np.random.random((X.shape[1] + 1, num_hidden)) - 1
output_weights = 2*np.random.random((num_hidden + 1, y.shape[1])) - 1

# number of iterations of gradient descent
num_iterations = 10000

# for each iteration of gradient descent
for i in range(num_iterations):

    # forward phase
    # np.hstack((np.ones(...), X) adds a fixed input of 1 for the bias weight
    input_layer_outputs = np.hstack((np.ones((X.shape[0], 1)), X))
    hidden_layer_outputs = np.hstack((np.ones((X.shape[0], 1)), sigmoid(np.dot(input_layer_outputs, hidden_weights))
    output_layer_outputs = np.dot(hidden_layer_outputs, output_weights)

    # backward phase
    # output layer error term
    output_error = output_layer_outputs - y
    # hidden layer error term
    # [:, 1:] removes the bias term from the backpropagation
    hidden_error = hidden_layer_outputs[:, 1:] * (1 - hidden_layer_outputs[:, 1:]) * np.dot(output_error, output_wei

    # partial derivatives
    hidden_pd = input_layer_outputs[:, :, np.newaxis] * hidden_error[: , np.newaxis, :]
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Cite as: Backpropagation. Brilliant.org. Retrieved 11:30, October 5, 2023, from h�ps://brilliant.org/wiki/backpropagation/

The matrix X  is the set of inputs  and the matrix y  is the set of outputs . The number of nodes in the hidden la

customized by se�ing the value of the variable num_hidden . The learning rate  is controlled by the variable alpha

iterations of gradient descent is controlled by the variable num_iterations .

By changing these variables and comparing the output of the program to the target values y , one can see how t

control how well backpropagation can learn the dataset X  and y . For example, more nodes in the hidden layer a

iterations of gradient descent will generally improve the fit to the training dataset. However, using too large or to
learning rate can cause the model to diverge or converge too slowly, respectively.

    output_pd = hidden_layer_outputs[:, :, np.newaxis] * output_error[:, np.newaxis, :]

    # average for total gradients
    total_hidden_gradient = np.average(hidden_pd, axis=0)
    total_output_gradient = np.average(output_pd, axis=0)

    # update weights
    hidden_weights += - alpha * total_hidden_gradient
    output_weights += - alpha * total_output_gradient

# print the final outputs of the neural network on the inputs X
print("Output After Training: \n{}".format(output_layer_outputs))
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