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Outline of the lecture
This lecture provides an introduction to decision trees. It discusses:

! Decision trees
! Using reduction in entropy as a criterion for constructing 
decision trees.
! The application of decision trees to classificationThe application of decision trees to classification

Trees can be used for regression, classification, clustering and density estimation 
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This lecture provides an introduction to decision trees. It discusses:

! Decision trees
! Using reduction in entropy as a criterion for constructing 
decision trees.
! The application of decision trees to classificationThe application of decision trees to classification

Applications:  

• Face detection, tagging, Kinect 

• Text classification, email spam detection 


Trees can be used for regression, classification, clustering and density estimation 



Motivation example 1:
object detection



Motivation example 2: Kinect



• A sensor projects infrared grid on the subject


• Get a depth image


• Detects which point on the image is a hand or a shoulder 
or etc, with a Random Forest



Image classification example

[MSR Tutorial on decision forests by Criminisi et al, 2011]
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Image classification example

[MSR Tutorial on decision forests by Criminisi et al, 2011]
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A histogram at each node 
denotes Probability of each class

A decision tree is a structure that

Split the data into bins


• Start from a root node 
• Apply a decision

• Split the data 



Image classification example

[MSR Tutorial on decision forests by Criminisi et al, 2011]
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Goal is to build the rules/questions  
in the tree.

Once we have the tree, passing a new

point is straight-forward.
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Image classification example

[MSR Tutorial on decision forests by Criminisi et al, 2011]



How to build the tree?



• We can learn the trees in a greedy fashion


• Two ways:


• Breadth First


• Depth First



• We can learn the trees is a greedy fashion


• Two ways:


• Breadth First


• Depth First

First question: How to build the root?



From a spreadsheet 
to a decision node

[AI book of Stuart Russell and Peter Norvig]Data Matrix

• Assume a marketing agency wants to know if a customer will wait or not in a line.

• It is helpful to design strategies to increase the revenue of a restaurant.

• The following data is collected:



From a spreadsheet 
to a decision node

[AI book of Stuart Russell and Peter Norvig]Data Matrix

• We can use any feature to create a Node in the tree.



A learned decision tree

[AI book of Stuart Russell and Peter Norvig]



A learned decision tree

[AI book of Stuart Russell and Peter Norvig]

interpretability Dealing with mixed Features



A learned decision tree

[AI book of Stuart Russell and Peter Norvig]

Marketing Strategy:



• Why learn the trees in a greedy fashion?


• Are the trees unique?


• Which attribute to use first?
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• Why learn the trees in a greedy fashion?


• Are the trees unique?


• Which attribute to use first?
The one with maximum information!



How do we construct the tree ?
i.e., how to pick attribute (nodes)?
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For a training set containing p positive examples and n negative examples, we have:



How do we construct the tree ?
i.e., how to pick attribute (nodes)?

np
n

np
n

np
p

np
p

np
n

np
pH

++
−

++
−=

++ 22 loglog),(

For a training set containing p positive examples and n negative examples, we have:



Entropy & Information Gain
• Entropy concept: A measure of how quickly the molecules are moving


• In the probability sense, assume we have three buckets with identical same color balls:



Entropy & Information Gain
• Entropy concept: How much can we rearrange  each bucket to get unique sequences?


• Information concept: How much am I certain a ball I’m choosing is red?


• Important: same color balls are identical.



Entropy & Information Gain
• Let’s play a game: Can we guess the correct sequence for sampling with replacement?


• What’s the winning probability?

Assuming independent events:       p(a, b) = p(a) × p(b)
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Entropy & Information Gain
• Let’s play a game: Can we guess the correct sequence?


• What’s the winning probability?

Issue: increasing number of events shrinks the probability.
Solution: use  logarithm of probability instead and take the average.



Entropy & Information Gain
• Why a logarithm function?


log(p1 × p2) = log(p1) + log(p2)

Issue: increasing number of events shrinks the probability.
Solution: use  logarithm of probability instead and take the average.

• Shannon Entropy: 

H(p1, …, pN) = −
N

∑
i=1

pi . log(pi)



How do we construct the tree ?
i.e., how to pick attribute (nodes)?
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! A chosen attribute A, with K distinct values, divides the training set 
E into subsets E1, … , EK. 

! The Expected Entropy (EH) remaining after trying attribute A
(with branches i=1,2,…,K) is
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How to pick nodes?

! Information gain (I) or reduction in entropy for this attribute is:

! Choose the attribute with the largest I
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[Hwee Tou Ng & Stuart Russell]

= Entropy in the parent node - remaining Expected Entropy in the child nodes
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! Convention: For the training set, p = n = 6,  H(6/12, 6/12) = 1 bit

! Consider the attributes Patrons and Type (and others too):
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Entropy of a fair coin at the point of highest uncertainty ( ) equals 1 bit.p =
1
2



Classification tree

[Criminisi et al, 2011]

• How to deal with continuous features?


• Create the splits randomly 

• Compute information gain for each split


• Choose the one with maximum gain



Classification tree

[Criminisi et al, 2011]

• How to deal with continuous features?


• Create the splits randomly 

• Compute information gain for each split


• Choose the one with maximum gain



Classification tree

[Criminisi et al, 2011]

• Note that the histogram shows the posterior distribution for each class:

p(Class |Data)



Use information gain to decide splits

[Criminisi et al, 2011]

Prior Distribution

Posterior Distribution



• Decision Trees are interesting because:


• Interpretable             easy to understand for  ML practitioners 


• Scales well                can deal with data with many features


• But does NOT generalize well             High variance 

• Solution: Random Forest 

• Remove variance by averaging over trees        
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