

.

DS4400

Decision trees

* This presentation is highly inspired by Nando de Freitas lecture notes the blog post by Luis Serrano on Udacity.

Outline of the lecture

This lecture provides an introduction to decision trees. It discusses:

Decision trees
Using reduction in entropy as a criterion for constructing decision trees.

□ The application of decision trees to classification

• Trees can be used for **regression**, **classification**, **clustering** and **density estimation**

Outline of the lecture

This lecture provides an introduction to decision trees. It discusses:

Decision trees
Using reduction in entropy as a criterion for constructing decision trees.

□ The application of decision trees to classification

• Trees can be used for **regression**, **classification**, **clustering** and **density estimation**

Applications:

- Face detection, tagging, Kinect
- Text classification, email spam detection

Motivation example 1: object detection

Motivation example 2: Kinect

- A sensor projects infrared grid on the subject
- Get a depth image
- Detects which point on the image is a hand or a shoulder or etc, with a Random Forest

.

[MSR Tutorial on decision forests by Criminisi et al, 2011]

.

A decision tree is a structure that **Split** the data into bins

A decision tree is a structure that Split the data into bins

- Start from a **root node**
- Apply a decision
- Split the data

A decision tree is a structure that Split the data into bins

- Start from a root node
- Apply a decision
- Split the data

A histogram at each node denotes Probability of each class

.

[MSR Tutorial on decision forests by Criminisi et al, 2011]

How to build the tree?

• We can learn the trees in a greedy fashion

- We can learn the trees is a greedy fashion
- Two ways:
 - Breadth First
 - Depth First

First question: How to build the *root*?

- Assume a marketing agency wants to know if a customer will wait or not in a line.
- It is helpful to *design strategies* to increase the revenue of a restaurant.
- The following data is collected:

Classification of examples is positive (T) or negative (F)

Data Matrix

[AI book of Stuart Russell and Peter Norvig]

• We can use any feature to create a Node in the tree.

Classification of examples is positive (T) or negative (F)

Data Matrix

[AI book of Stuart Russell and Peter Norvig]

[AI book of Stuart Russell and Peter Norvig]

[AI book of Stuart Russell and Peter Norvig]

Dealing with mixed Features

• Why learn the trees in a greedy fashion?

- Why learn the trees in a **greedy** fashion?
- Are the trees **unique**?

- Why learn the trees in a **greedy** fashion?
- Are the trees **unique**?
- Which attribute to use first?

- Why learn the trees in a **greedy** fashion?
- Are the trees **unique**?
- Which **attribute** to use **first**? The one with **maximum information!**

How do we construct the tree ? i.e., how to pick attribute (nodes)?

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

How do we construct the tree ? i.e., how to pick attribute (nodes)?

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives **information** about the classification

• Entropy concept: A measure of how quickly the molecules are moving

• In the probability sense, assume we have three buckets with *identical same color* balls:

• Entropy concept: How much can we rearrange each bucket to get unique sequences?

- Information concept: How much am I certain a ball I'm choosing is red?
 - Important: same color balls are identical.

- Let's play a game: Can we guess the correct sequence for sampling with **replacement**?
- What's the winning probability?

- Let's play a game: Can we guess the correct sequence for sampling with **replacement**?
- What's the winning probability?

Assuming **independent** events: $p(a,b) = p(a) \times p(b)$

- Let's play a game: Can we guess the correct sequence for sampling with **replacement**?
- What's the winning probability?

Assuming **independent** events: $p(a,b) = p(a) \times p(b)$

- Let's play a game: Can we guess the correct sequence?
- What's the winning probability?

Issue: increasing number of events shrinks the probability. **Solution:** use **logarithm of probability** instead and take **the average**.

• Why a logarithm function?

 $log(p_1 \times p_2) = log(p_1) + log(p_2)$

• Shannon Entropy:

$$H(p_1, \dots, p_N) = -\sum_{i=1}^{N} p_i \cdot \log(p_i)$$

Issue: increasing number of events shrinks the probability. **Solution:** use **Iogarithm of probability** instead and take **the average**.

How do we construct the tree ? i.e., how to pick attribute (nodes)?

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives **information** about the classification

For a training set containing p positive examples and n negative examples, we have: $H(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$

How to pick nodes?

□ A chosen attribute A, with K distinct values, divides the training set E into subsets E_1, \ldots, E_K .

□ The Expected Entropy (EH) remaining after trying attribute A (with branches i=1,2,...,K) is points in child i

$$EH(A) = \sum_{i=1}^{K} \underbrace{\frac{p_i + n_i}{p_i + n_i}}_{p_i + n_i} H(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

□ Information gain (I) or reduction in entropy for this attribute is:

$$I(A) = H(\underbrace{\frac{p}{p+n}, \frac{n}{p+n}}_{p+n}) - \underbrace{EH(A)}^{\blacktriangleright}$$

= Entropy in the parent node - remaining Expected Entropy in the child nodes

[Hwee Tou Ng & Stuart Russell]

How to pick nodes?

□ A chosen attribute A, with K distinct values, divides the training set E into subsets E_1, \ldots, E_K .

The Expected Entropy (EH) remaining after trying attribute A (with branches i=1,2,...,K) is points in child i

$$EH(A) = \sum_{i=1}^{K} \underbrace{\frac{p_i + n_i}{p_i + n_i}}_{p_i + n_i} H(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

□ Information gain (I) or reduction in entropy for this attribute is:

$$I(A) = H(\underbrace{\frac{p}{p+n}, \frac{n}{p+n}}_{p+n}) - \underbrace{EH(A)}^{\blacktriangleright}$$

Choose the attribute with the largest I

[Hwee Tou Ng & Stuart Russell]

[Hwee Tou Ng & Stuart Russell]

[Hwee Tou Ng & Stuart Russell]

Entropy of a fair coin at the point of highest uncertainty ($p = \frac{1}{2}$) equals 1 bit.

Classification tree

• How to deal with *continuous features*?

A generic data point is denoted by a vector $\mathbf{v} = (x_1, x_2, \cdots, x_d)$

Classification tree

- How to deal with *continuous features*?
 - Create the splits **randomly**
 - Compute information gain for each split
 - Choose the one with **maximum gain**

A generic data point is denoted by a vector $\mathbf{v} = (x_1, x_2, \cdots, x_d)$

Classification tree

Note that the histogram shows the posterior distribution for each class:

p(Class | Data)

Use information gain to decide splits

[Criminisi et al, 2011]

- Decision Trees are **interesting** because:
 - **Interpretable** easy to understand for ML practitioners

• Scales well _____ can deal with data with many features

• But does NOT generalize well High variance

Tree :

- Decision Trees are **interesting** because:
 - **Interpretable** easy to understand for ML practitioners
 - Scales well _____ can deal with data with many features

- But does NOT generalize well High variance
- Solution: Random Forest
 - **Remove** variance by **averaging** over trees

