Lecture 10
 Supervised Learning
 Decision Trees and Linear Models

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

\checkmark Introduction
\checkmark Artificial Intelligence
\checkmark Intelligent Agents
\checkmark Search
\checkmark Uninformed Search
\checkmark Heuristic Search
\checkmark Uncertain knowledge and Reasoning
\checkmark Probability and Bayesian approach
\checkmark Bayesian Networks
\checkmark Hidden Markov Chains
\checkmark Kalman Filters

- Learning
- Supervised Decision Trees, Neural Networks Learning Bayesian Networks
- Unsupervised

EM Algorithm

- Reinforcement Learning
- Games and Adversarial Search
- Minimax search and

Alpha-beta pruning

- Multiagent search
- Knowledge representation and Reasoning
- Propositional logic
- First order logic
- Inference
- Plannning

Machine Learning

What? Parameters, network structure, hidden concepts,
What from? inductive + unsupervised, reinforcement, supervised
What for? prediction, diagnosis, summarization
How? passive vs active, online vs offline
Type of outputs regression, classification
Details generative, discriminative

Supervised Learning

Given a training set of N example input-output pairs

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}
$$

where each y_{1} was generated by an unknwon function $y=f(x)$, find a hypothesis function h from an hypothesis space \mathcal{H} that approximates the true function f

Measure the accuracy of the hypotheis on a test set made of new examples. We aim a good generalization

Supervised Learning

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Ockham's razor: maximize a combination of consistency and simplicity
if we have a probability on the hypothesis:

$$
h^{*}=\operatorname{argmax}_{h \in \mathcal{H}} \operatorname{Pr}(h \mid \text { data })=\operatorname{argmax}_{h \mathcal{H}} \operatorname{Pr}(\text { data } \mid h) \operatorname{Pr}(h)
$$

Trade off between the expressiveness of a hypothesis space and the complexity of finding a good hypothesis within that space.

Outline

1. Decision Trees

2. k-Nearest Neighbor
3. Linear Models

Learning Decision Trees

A decision tree of a pair (x, y) represents a function that takes the input attribute \times (Boolean, discrete, continuous) and outputs a simple Boolean y.
E.g., situations where I will/won't wait for a table. Training set:

Example	Attributes										Target WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$85	F	T	French	0-10	T
x_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
x_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
${ }^{4}$	T	F	T	T	Full	\$	F	F	Thai	10-30	T
χ_{5}	T	F	T	F	Full	\$5\$	F	T	French	>60	F
x_{6}	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
χ_{7}	F	T	F	F	None	\$	T	F	Burger	$0-10$	F
X_{8}	F	F	F	T	Some	\$8	T	T	Thai	$0-10$	T
\times_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$8	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
χ_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

Classification of examples positive (T) or negative (F)

Decision trees

One possible representation for hypotheses
E.g., here is the "true" tree for deciding whether to wait:

Example

NO.	RISK	CREDIT HISTORY	DEBT	COLLATERAL	INCOME
1.	high	bad	high	none	$\$ 0$ to $\$ 15 \mathrm{k}$
2.	high	unknown	high	none	$\$ 15$ to $\$ 35 \mathrm{k}$
3.	moderate	unknown	low	none	$\$ 15$ to $\$ 35 \mathrm{k}$
4.	high	unknown	low	none	$\$ 0$ to $\$ 15 \mathrm{k}$
5.	low	unknown	low	none	over $\$ 35 \mathrm{k}$
6.	low	unknown	low	adequate	over $\$ 35 \mathrm{k}$
7.	high	bad	low	none	$\$ 0$ to $\$ 15 \mathrm{k}$
8.	moderate	bad	low	adequate	over $\$ 35 \mathrm{k}$
9. low	good	low	none	over $\$ 35 \mathrm{k}$	
10.	low	good	high	adequate	over $\$ 35 \mathrm{k}$
11.	high	good	high	none	$\$ 0$ to $\$ 15 \mathrm{k}$
12.	moderate	good	high	none	$\$ 15$ to $\$ 35 \mathrm{k}$
13.	low	good	high	none	over $\$ 35 \mathrm{k}$
14.	high	bad	high	none	$\$ 15$ to $\$ 35 \mathrm{k}$

Table 10.1 Data from credit history of loan applications

Example

Figure 10.13 A decision tree for credit risk assessment.

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

A	B	A xor B
F	F	F
F	T	T
T	F	T
T	T	F

Trivially, there is a consistent decision tree for any training set w / one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
Prefer to find more compact decision trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$ functions
E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

More expressive hypothesis space

- increases chance that target function can be expressed
- increases number of hypotheses consistent w/ training set
\Longrightarrow may get worse predictions
There is no way to search the smallest consistent tree among $2^{2^{n}}$.

Heuristic approach

Greedy divide-and-conquer:

- test the most important attribute first
- divide the problem up into smaller subproblems that can be solved recursively
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Plurality_Value(examples) else
best \leftarrow Choose-Attribute(attributes, examples)
tree \leftarrow a new decision tree with root test best
for each value v_{i} of best do
examples $_{i} \leftarrow$ \{elements of examples with best $\left.=v_{i}\right\}$
subtree $\leftarrow \mathrm{DTL}\left(\right.$ examples $_{i}$, attributes - best, Mode(examples))
add a branch to tree with label v_{i} and subtree subtree
return tree

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-gives information about the classification

Information

The more clueless I am about the answer initially, the more information is contained in the answer

0 bits to answer a query on a coin with only head
1 bit to answer query to a Boolean question with prior $\langle 0.5,0.5\rangle$
2 bits to answer a query on a fair die with 4 faces a query on a coin with 99% probability of returing head brings less information than the query on a fair coin.

Shannon formalized this concept with the concept of entropy. For a random variable X with values x_{k} and probability $\operatorname{Pr}\left(x_{k}\right)$ has entropy:

$$
H(X)=-\sum_{k} \operatorname{Pr}\left(x_{k}\right) \log _{2} \operatorname{Pr}\left(x_{k}\right)
$$

- Suppose we have p positive and n negative examples is a training set, then the entropy is $H(\langle p /(p+n), n /(p+n)\rangle)$
E.g., for 12 restaurant examples, $p=n=6$ so we need 1 bit to classify a new example information of the table
- An attribute A splits the training set E into subsets E_{1}, \ldots, E_{d}, each of which (we hope) needs less information to complete the classification
- Let E_{i} have p_{i} positive and n_{i} negative examples $\rightsquigarrow H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)$ bits needed to classify a new example on that branch
\rightsquigarrow expected entropy after branching is

$$
\operatorname{Remainder}(A)=\sum_{i} \frac{p_{i}+n_{i}}{p+n} H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)
$$

- The information gain from attribute A is

$$
\operatorname{Gain}(A)=H(\langle p /(p+n), n /(p+n)\rangle)-\operatorname{Remainder}(A)
$$

\Longrightarrow choose the attribute that maximizes the gain

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree-a more complex hypothesis isn't justified by small amount of data

Performance measurement

Learning curve $=\%$ correct on test set as a function of training set size

Restaurant data; graph averaged over 20 trials

Overfitting and Pruning

Pruning by statistical testing under the null hyothesis expected numbers, \hat{p}_{k} and \hat{n}_{k} :

$$
\begin{aligned}
\hat{p}_{k} & =p \cdot \frac{p_{k}+n_{k}}{p+n} \quad \hat{n}_{k}=n \cdot \frac{p_{k}+n_{k}}{p+n} \\
\Delta & =\sum_{k=1}^{d} \frac{\left(p_{k}-\hat{p}_{k}\right) 2}{\hat{p}_{k}}+\frac{\left(n_{k}-\hat{n}_{k}\right) 2}{\hat{n}_{k}}
\end{aligned}
$$

χ^{2} distribution with $p+n-1$ degrees of freedom
Early stopping misses combinations of attributes that are informative.

Further Issues

- Missing data
- Multivalued attributes
- Continuous input attributes
- Continuous-valued output attributes

Decision Trees

Decision Tree Types

- Classification tree analysis is when the predicted outcome is the class to which the data belongs. Iterative Dichotomiser 3 (ID3), C4.5, (Quinlan, 1986)
- Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
- Classification And Regression Tree (CART) analysis is used to refer to both of the above procedures, first introduced by (Breiman et al., 1984)
- CHi-squared Automatic Interaction Detector (CHAID). Performs multi-level splits when computing classification trees. (Kass, G. V. 1980).
- A Random Forest classifier uses a number of decision trees, in order to improve the classification rate.
- Boosting Trees can be used for regression-type and classification-type problems.
Used in data mining (most are included in R , see rpart and party packages, and in Weka, Waikato Environment for Knowledge Analysis)

1. Decision Trees

2. k-Nearest Neighbor
3. Linear Models

Non-parametric learning

- When little data available \rightsquigarrow parametric learning (restricted from the model selected)
- When massive data we can let hypothesis grow from data \rightsquigarrow non parametric learning
instance based: construct from training instances

Predicting Bankruptcy

L	R	B
3	0.2	No
1	0.3	No
4	0.5	No
2	0.7	No
0	1.0	No
1	1.2	No
1	1.7	No
6	0.2	Yes
7	0.3	Yes
6	0.7	Yes
3	1.1	Yes
2	1.5	Yes
4	1.7	Yes
2	1.9	Yes

L: \#late payments / year
R: expenses / income

Nearest Neighbor

Basic idea:

- Remember all your data
- When someone asks a question
- find nearest old data point
- return answer associated with it

- Find k observations closest to x and average the response

$$
\hat{Y}=\frac{1}{k} \sum_{x_{i} \in N_{k}(x)} y_{i}
$$

- For qualitative use majority rule
- Needed a distance measure:
- Euclidean
- Standardization $x^{\prime}=\frac{x-\bar{x}}{\sigma_{x}}$ (Mahalanobis, scale invariant)
- Hamming

Predicting Bankruptcy

$$
D\left(x^{\prime}, x^{k}\right)=\sqrt{\sum_{j}\left(L^{\prime}-L^{k}\right)^{2}+\left(5 R^{\prime}-5 R^{k}\right)^{2}}
$$

Predicting Bankruptcy

- Learning is fast
- Lookup takes about n computations with k-d trees can be faster
- Memory can fill up with all that data
- Problem: Course of dimensionality $b^{d}=\frac{k}{N} 1 \Longrightarrow b=\frac{k^{\frac{1}{d}}}{}{ }^{\frac{1}{2}}$

k-Nearest Neighbor

- Find the k nearest points
- Predict output according to the majority
- Choose k using cross-validation

Backruptcy Example

1-Nearest Neighbor

Outline

1. Decision Trees

2. k-Nearest Neighbor
3. Linear Models

Linear Models

Univariate case

Hypotheisis space made by linear functions

$$
h_{w}(x)=w_{1} x+w_{0}
$$

Find w by min squared loss function:

$$
\begin{aligned}
& \mathcal{L}\left(h_{w}\right)=\sum_{j=1}^{N} L_{2}\left(y_{j}, h_{w}\left(x_{j}\right)\right)=\sum_{j=1}^{N}\left(y_{j}-h_{w}\left(x_{j}\right)\right)^{2} \\
& w^{*}=\operatorname{argmin} \mathcal{L}\left(h_{w}(x)\right) \\
& \left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial w_{0}}=-2\left(y-h_{w}(x)\right)=0 \\
\frac{\partial \mathcal{L}}{\partial w_{1}}=-2\left(y-h_{w}(x)\right) x=0
\end{array}\right.
\end{aligned}
$$

w_{0}, w_{1} in closed form.

Multivariate case

$$
\begin{aligned}
& h_{w}(x)=w_{0}+w_{1} x_{1}+\ldots+w_{n} x_{n}=w \cdot x \\
& w^{*}=\operatorname{argmin}_{w} \sum_{j} L_{2}\left(y_{j}, w x_{j}\right) \\
& w^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} y \text { in closed form }
\end{aligned}
$$

- Basis functions: fixed non linear functions $\phi_{j}(x)$:

$$
h_{w}(x)=w_{0}+\sum_{j=1}^{P} \phi_{j}(x)
$$

- To avoid overfitting, regularization: EmpLoss $(h)+\lambda \cdot$ Complexity (h)

$$
\operatorname{Complexity}(h)=L_{q}(w)=\sum_{i}\left|w_{i}\right|^{q}
$$

Non-Parametric Regression

Instance based methods

Similar idea as k-nearest neighbor:
For a query point x_{q} solve following regression problem:

$$
w^{*}=\operatorname{argmin}_{w} \sum_{j} K\left(\left\|x_{q}-x_{j}\right\|\right)\left(y_{j}-w \cdot x_{j}\right)^{2}
$$

where K is a kernel function (eg, radial kernel)

Linear Classification

decision boundary described by $a x_{1}+b x_{2}=0$

$$
h_{w}(x)= \begin{cases}1 & \text { if } w \cdot x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

step function: gradient not defined

Logistic Regression

Gradient Descent

Finding local minima of derivable continuous functions
$w \leftarrow$ any initial value
repeat
for each w_{i} in w do
$\left\lfloor w_{i} \leftarrow w_{i}-\alpha \frac{\partial \mathcal{L}}{\partial w_{i}}\right.$
until convergence ;

Batch gradient descent: \mathcal{L} is the sum of the contribution of each example. Guaranteed to converge.

Stochastic gradient descent: one example at a time in random order. Online. Not guaranteed to converge.

Gradient Descent for Step Function

In step function gradient not defined. However, the update rule:

$$
w_{i} \leftarrow w_{i}-\alpha(y-h w(x)) x_{i}
$$

ensures convergence when data are linearly separable. Otherwise unsure.

