Learning from Observations

Chapter 18, Sections 1-3

Outline

\diamond Inductive learning
\diamond Decision tree learning
\diamond Measuring learning performance

Learning

Learning is essential for unknown environments, i.e., when designer lacks omniscience

Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent's decision mechanisms to improve performance
Different kinds of learning:

- Supervised learning: we get correct answers for each training instance
- Reinforcement learning: we get occasional rewards
- Unsupervised learning: we don't know anything. . .

Inductive learning

Simplest form: learn a function from examples
f is the target function

An example is a pair $x, f(x)$, e.g., | | O | X |
| :--- | :--- | :--- |
| X | X | |,+1

Problem: find a hypothesis h
such that $h \approx f$
given a training set of examples
(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes that the examples are given)

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples)
E.g., curve fitting:

Ockham's razor: maximize a combination of consistency and simplicity

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_{1}	T	F	F	T	Some	$\$ \$ \$$	F	T	French	$0-10$	T
X_{2}	T	F	F	T	Full	$\$$	F	F	Thai	$30-60$	F
X_{3}	F	T	F	F	Some	$\$$	F	F	Burger	$0-10$	T
X_{4}	T	F	T	T	Full	$\$$	F	F	Thai	$10-30$	T
X_{5}	T	F	T	F	Full	$\$ \$ \$$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	$\$ \$$	T	T	Italian	$0-10$	T
X_{7}	F	T	F	F	None	$\$$	T	F	Burger	$0-10$	F
X_{8}	F	F	F	T	Some	$\$ \$$	T	T	Thai	$0-10$	T
X_{9}	F	T	T	F	Full	$\$$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	$\$ \$ \$$	F	T	Italian	$10-30$	F
X_{11}	F	F	F	F	None	$\$$	F	F	Thai	$0-10$	F
X_{12}	T	T	T	T	Full	$\$$	F	F	Burger	$30-60$	T

*Alt(ernate), Fri(day), Hun(gry), Pat(rons), Res(ervation), Est(imated waiting time)

Decision trees

Decision trees are one possible representation for hypotheses, e.g.:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set with one path to a leaf for each example

- but it does probably not generalize to new examples

We prefer to find more compact decision trees

Hypothesis spaces

How many distinct decision trees are there with n Boolean attributes??
$=$ number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows
$=2^{2^{n}}$ distinct decision trees
E.g., with 6 Boolean attributes, there are $18,446,744,073,709,551,616$ trees

Decision tree learning

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, parent-exs) returns a decision tree
    if examples is empty then return Plurality-Value(parent-exs)
    else if all examples have the same classification then return the classification
    else if attributes is empty then return Plurality-Value(examples)
    else
    \(A \leftarrow \arg \max _{a \in \text { attributes }} \operatorname{Importance}(a\), examples)
    tree \(\leftarrow\) a new decision tree with root test \(A\)
    for each value \(v_{i}\) of \(A\) do
        exs \(\leftarrow\left\{e \in\right.\) examples such that \(\left.e[A]=v_{i}\right\}\)
        subtree \(\leftarrow \mathrm{DTL}(\) exs, attributes \(-A\), examples)
        add a branch to tree with label \(\left(A=v_{i}\right)\) and subtree subtree
    return tree
```


Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice-it gives information about the classification

Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to a Boolean question with prior $\langle 0.5,0.5\rangle$
The information in an answer when prior is $V=\left\langle P_{1}, \ldots, P_{n}\right\rangle$ is

$$
\begin{aligned}
H(V) & =\sum_{k=1}^{n} P_{k} \log _{2} \frac{1}{P_{k}} \\
& =-\sum_{i=1}^{n} P_{k} \log _{2} P_{k}
\end{aligned}
$$

(this is called the entropy of V)

Information contd.

Suppose we have p positive and n negative examples at the root
\Rightarrow we need $H(\langle p /(p+n), n /(p+n)\rangle)$ bits to classify a new example E.g., for our example with 12 restaurants, $p=n=6$ so we need 1 bit

An attribute splits the examples E into subsets E_{i}, each of which (we hope) needs less information to complete the classification

Let E_{i} have p_{i} positive and n_{i} negative examples
\Rightarrow we need $H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)$ bits to classify a new example
The expected number of bits per example over all branches is

$$
\sum_{i} \frac{p_{i}+n_{i}}{p+n} H\left(\left\langle p_{i} /\left(p_{i}+n_{i}\right), n_{i} /\left(p_{i}+n_{i}\right)\right\rangle\right)
$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
\Rightarrow choose the attribute that minimizes the remaining information needed

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than the "true" tree

- a more complex hypothesis isn't justified by that small amount of data

Performance measurement

How do we know that $h \approx f$?

1) Use theorems of computational/statistical learning theory
2) Try h on a new test set of examples (use same distribution over example space as training set)

Learning curve $=\%$ correct on test set as a function of training set size

Performance measurement contd.

Learning curve depends on

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class
- redundant expressiveness (e.g., loads of irrelevant attributes)

Summary

Learning is needed for unknown environments, or for lazy designers
Learning agent $=$ performance element + learning element
Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples

Decision tree learning is using information gain, or entropy
Learning performance $=$ prediction accuracy measured on test set

- the test set should contain new examples, but with the same distribution

