Intro to Machine Learning

Module 1 Objectives / Intro, Evaluation

- Intro to Machine Learning what is learning ?
- Data Matrix type
 - algebraic notations
- Heuristics and Quantitative rules
- Error measurement
 - training VS testing error, Cross Validation
 - overfitting

What is machine learning? Supervised learning

What is machine learning? Graph learning

- data defined by links or analogies or connections
- for example social networks, or web links
- task: identify object properties from links
- taks: detect graph patterns

What is machine learning? Clustering

- data given without labels
- task: group similar data points

What is machine learning? Time series analysis

- data that evolves with time
- like stocks or patient records
- task: predict future behavior
- task: detect anomalies

Matrix data

- m datapoints/objects X=(x1,x2,...,xd)
- d features/columns f1, f2, ..., fd

- If fever>100, patient has flu
- If email contains words "free" or "porn", it is spam
- If a web page contains ngram "Michael Jackson", it is relevant to the user
- If age<22 and sex=F and highschool_diploma=Yes, then eligible for application
- If income_per_capita<\$1000, region prone to civil war
- If romantic=Yes and comedy=Yes and Orlando_Bloom=Yes, then movie success among females aged 20-40
- If Nasdaq_Computer_Index=Gain and Apple announces new Ipad, then AAPL_Stock=Buy

- if 3*exam_grade+2*HW_grade>55, then student can pass
- if blood_pressure/log(age)>3, recommend medicine
- if rent+food+bills<1/2 salary, loan for 1/2 salary possible

Matrix data / training VS testing

AUT BEL BUL CYP CZE DEN EST FIN FRA GER GRE HUN IRL ITA LAT LTU LUX MLT NED POL POR ROM SVK SLO ESP SWE GBR

T-01	64.4	125.0	44.7	7.0	124.1	51.3	14.9	56.6	363.5	837.4	92.2	56.8	42.8	446.6	6.5	11.6	8.4	2.1	174.8	303.8	64.8	90.7	36.9	15.1	304.9	48.8	558.2	
T-02	7.1	7.8	10.3	0.7	11.0	5.6	1.9	4.5	56.9	47.6	9.3	7.8	13.1	39.8	1.8	3.3	0.3	0.3	16.7	38.3	11.4	25.7	4.2	2.1	37.3	5.6	49.5	
T-03	5.3	11.0	4.4	0.7	8.0	7.0	0.8	6.9	72.3	66.5	9.1	9.7	8.8	40.5	1.5	5.0	0.4	0.3	17.6	31.1	6.1	16.8	3.7	1.3	29.6	7.7	39.6	
T-04	118	141	90	10	10	14	16	10	1,801	718	128	209	174	361	3	41	6	5	265	261	129	570	20	124	244	296	351	
T-05	912	1,454	387	91	594	805	8	864	10,958	9,363	1,162	518	431	5,267	19	19	83	42	1,354	2,750	391	4	175	95	5,011	777	9,221	
T-06	287	43	4	16	86	22	6	20	1,354	4,740	210	201	96	460	8	1	4	8	337	24	10	0	17	19	272	142	1,143	
T-07	644	1,250	447	70	1,241	513	149	566	3,635	8,374	922	568	428	4,466	65	116	84	21	1,748	3,038	648	907	369	151	3,049	488	5,582	
T-08	782	1,126	480	82	779	988	120	558	9,533	6,354	1,045	846	1,845	3,721	192	405	38	38	1,817	3,488	824	2,028	322	202	4,476	857	4,489	
T-09	228	133	648	26	291	137	53	244	1,410	1,369	328	394	178	1,933	76	154	3	12	664	1,221	647	740	211	65	1,296	215	2,208	
T-10	832	1,046	764	86	1,033	546	134	530	6,410	8,231	1,115	1,005	430	5,921	23	337	47	41	1,639	3,813	1,062	2,144	539	202	4,512	915	6,059	
T-11	305	11	112	8	125	109	89	297	619	1,166	43	83	16	338	97	59	4	1	95	732	47	58	110	15	466	319	255	
T-12	501	467	314	448	373	354	350	448	491	546	348	280	385	581	297	384	659	525	429	314	572	149	222	456	454	456	463	OL
T-13	282	641	131	53	203	171	60	220	1,970	2,650	436	132	182	1,881	47	56	62	19	947	446	332	212	74	53	1,573	362	1,827	
T-14	65.2	82.4	37.4	4.5	58.8	36.4	6.8	80.8	482.4	524.6	53.5	37.1	23.2	303.8	6.3	9.4	6.1	2.1	102.4	124.1	46.1	49.6	28.6	13.7	241.8	137.8	345.2	
T-15	9.00	17.06	3.47	0.01	9.60	4.82	1.44	4.86	45.41	102.00	2.34	14.46	4.30	80.61	1.91	2.92	1.36	0.00	51.30	15.67	4.30	18.00	6.00	1.10	27.01	0.98	98.47	
T-16	3.00	3.10	7.40	0.00	19.40	5.50	0.00	5.20	13.10	82.40	8.80	2.90	0.00	17.40	0.00	0.20	3.10	0.00	7.50	58.40	3.70	7.60	3.80	0.00	18.30	2.20	43.80	
T-17	369	989	98	89	389	385	8	77	10,979	3,463	999	770	233	16,980	53	60	55	30	1,492	950	1,246	270	280	950	3,402	179	3,313	•
T-18	227	289	157	23	395	317	42	297	4,178	2,612	420	323	573	1,681	64	162	0	1	409	1,557	228	327	120	72	2,183	287	1,909	
T-19	3.5	5.8	2.3	3.2	3.9	3.6	3.3	6.4	4.4	4.1	2.6	2.4	3.9	3.0	1.5	2.0	8.4	2.1	4.8	2.3	2.5	1.6	3.2	3.3	3.1	5.4	4.0	
T-20	6.9	7.7	3.3	5.3	5.4	6.2	4.5	15.5	6.8	6.3	4.6	3.2	5.9	2.3	1.7	1.3	13.5	1.3	6.4	1.5	1.8	1.1	2.0	2.4	2.3	3.7	2.5	
T-21	0.46	3.43	0.19	0.00	0.43	1.01	0.09	0.19	0.99	1.82	0.47	0.23	0.45	1.00	0.04	0.21	0.00	0.00	1.51	0.28	0.22	0.27	0.27	0.17	0.44	0.27	2.76	
T-22	29	38	48	100	76	83	100	39	8	62	95	60	96	79	29	17	57	100	90	98	65	63	30	35	50	4	74	
T-23	133	178	7	13	44	111	8	129	786	782	103	32	164	395	11	10	38	15	227	72	96	20	2	13	518	234	985	
T-24	804	334	65	192	471	1,034	58	708	5,248	9,079	945	274	4,287	3,612	103	51	85	137	2,613	355	1,014	171	71	76	4,986	902	9,360	
T-25	130	103	7	0.00	53	78	7	97	860	1,070	80	46	197	398	7	10	74	22	429	68	128	26	5	13	473	129	977	
T-26	0.13	0.19	0.10	0.12	0.57	0.12	0.05	0.10	0.32	0.31	0.10	0.22	0.17	0.36	0.13	0.14	0.19	0.10	0.28	0.35	0.17	0.10	0.27	0.29	0.15	0.17	0.27	
T-27	630	464	463	739	289	737	436	468	543	601	438	459	740	542	310	378	705	611	624	245	446	382	289	423	597	482	584	b
T-28	46	17	4	5	4	8	0	47	59	17	6	4	27	47	0	1	0	0	19	31	15	7	26	16	85	31	62	
T-29	521	828	1,004	3,711	1,359	843	1,254	697	162	1,140	2,247	976	2,423	1,473	362	139	1,707	2,856	1,575	1,501	1,377	744	798	851	1,248	41	1,170	
T-30	347	330	107	230	220	371	203	335	312	319	240	175	445	302	160	153	714	213	321	144	198	91	186	234	274	322	318	•
T-31	0.0	0.0	20.2	4.8	0.6	7.0	0.6	0.2	20.5	0.1	18.3	1.3	0.5	76.4	1.0	0.1	0.1	0.1	0.2	49.5	111.8	1.6	0.1	0.7	92.4	1.3	0.2	
T-32	24.7	20.1	34.1	13.3	34.3	21.6	24.1	28.8	16.4	26.3	0.0	29.6	26.7	22.6	18.3	30.1	9.7	20.2	20.8	29.5	20.9	36.1	32.5	29.7	21.1	25.4	18.4	Ò
T-33	134	117	34	8	127	72	13	51	951	231	107	70	96	480	28	69	5	2	105	249	59	98	37	20	657	167	372	
T-34	9.2	37.0	6.3	0.0	8.1	7.5	0.0	12.8	86.3	122.7	21.2	8.4	3.1	100.6	0.0	9.2	0.0	0.0	84.7	18.5	13.6	14.9	6.2	0.0	60.3	19.8	86.0	.Ψ.
T-35	1.0	5.2	0.5	0.1	1.4	0.3	7.3	2.5	7.6	20.0	0.3	1.4	0.7	6.1	0.0	0.1	0.1	0.0	1.9	1.6	2.3	2.2	0.4	0.1	3.1	1.2	8.0	

- testing set has to be independent of training set
 - or else testing result is inconclusive
 - and not reliable
- usually the data is partitioned before running any ML algorithm

Overfitting

- might be capable to create a model that essentially memorizes all training dataset
 - for example a decision tree deep enough
- that is not useful : the purpose of the learning model is to applicable to new data (testing)

Overfitting

- might be capable to create a model that essentially memorizes all training dataset
 - for example a decision tree deep enough
- that is not useful : the purpose of the learning model is to applicable to new data (testing)

Overfitting

- as we keep training (insisting on ability to classify training set), the performance on the training set (green) becomes unrealistically small
 - model becomes more complex
- but at the same time ability to predict/classify new data (pink) worsens

Cross Validation Setup

AUT BEL BUL CYP CZE DEN EST FIN FRA GER GRE HUN IRL ITA LAT LTU LUX MLT NED POL POR ROM SVK SLO ESP SWE GBR 125.0T-01 64.4 44.7 56.6 363.5 558.2 837.4 Fold 7.1 T-02 7.8 10.34.5 56.9 9.3 7.8 13.1 3.3 25.7 2.1 37.3 5.6 49.5 0.7 5.6 1.9 47.6 39.8 1.80.3ч 1.3 5.3 8.0 6.9 72.3 66.5 9.7 8.8 5.0 0.3 6.1 16.8 3.7 29.6 39.6 T-03 11.0 7.0 0.8 9.1 1.5 17.6 31.1 7.7 0.4 T-04 118 141 90 10 1.801 718 128209 174 361 5 265 261 129 570 20 124 244 296 351 16 T-05 912 10.958 9,221 1.454 9.363 1.162 .354 777 Fold T-06 287 22 20 1.354 4,740 210 201 96 337 24 19 272 142 1.143 \sim 566 568 3,635 3,049 488 T-07 644 1.250447 70 1.241513 149 8,374 922428 4,466 65 116 84 21 1,7483.038 648 907369 151 5,582T-08 782 558 9.5336.354 1.045 846 1.845-3.72138 38 2.0282024.476 4.489 3.488T-09 228 133648 26 291 13753 244 1.410 1.369328 394 178 1.93376 154 12 664 1.22647 740 211 65 1.296 215 2.208Fold 134 530 T-10 832 764 546 6,410 8,2311,115 1,005430 5,921337 539 1.04686 1.0332341 4.5121.6393.813 1.0622,144 202915 6.05947 c T-11 305 297 1,166 83 338 59 47 15 466 255 125 109 89 619 43 16 97 732 58 110 319 T-12 -501 546 282 T-13 641 53 220 1,970 2,6501.827 60 436 13256 53 1.573 362 62 Fold 82,4 T-14 65.2 37.458.8 37.1 4.536.4 6.8 80.8 482.4 524.653.5 23.2 2.1 102.4 124.1 46.113.7 241.8 137.8 345.2 4 T-15 9.60 4.824.86 45.41 2.3414.46 4.302.920.98 98.47 9.00 17.06 3.47 102.00 80.61 1.91 1.36 0.0051.30 18.00 1.10 27.01 15.67 6.00 5.20 T-16 3.00 3.10 7.400.00 19.40 5.50 0.00 13.10 82.40 8.80 2.900.00 17.40 0.00 0.20 3.10 0.00 7.50 58.40 3.70 7.60 3.80 0.00 18.30 2.20 43.80 T-17 369 999 89 389 385 10,979 3,463 770 233 16.9801.492280950 3,402 179 3,313 -53 60 55 1.246T-18 227 289157 23 395 42297 4.178 2.612 420323573 1.681 162 409 1.557228 120 72 2.183287 1.909 64 327 2.4 T-19 3.5 5.8 2.3 3.2 3.9 3.6 3.3 6.4 4.4 4.1 2.6 3.9 3.0 2.0 2.1 4.8 2.3 2.5 3.23.3 3.1 5.4 4.0 1.5 T-20 6.9 15.53.25.9 2.33.7 2.5 T-21 0.46 2.76T-22 29 38 39 74 100 62 96 79 65 35 32 T-23 129786 782103164 395 11 10 38 15 7213 234 985 9,360 274 902 T-24 804 5,248 945 4.287 1.03458 708 9.079 3.612 355 T-25 860 977 Fold T-26 0.13 0.310.220.170.270.19 0.10 0.320.29 K-1 T-27 482 584 630 289543 601 459611 423 597 463 739 438 542 378 624 245 705 T-28 46 17 31 62 59 2716 85 T-29 521 1,0041.359 1,1402.247976 1,170 3,711 2.4232.856 Fold T-30 347 230 220203335 312 319 240175 302 213 274318 330 107 371 160 153 714 321 144 186 234 322 K T-31 20.24.8 0.60.2 20.50.1 18.3 1.3 76.4 0.1 0.292.4 1.3 0.20.0 0.0 7.0 0.6 0.5 0.1 0.1 49.5111.8 0.7 1.0 1.6 0.1 T-32 24.7 20.1 34.113.3 34.3 28.8 26.30.0 29.626.730.120.220.8 29.529.725.4 18.4 21.616.4 9.7 T-33 134 T-34 9.2 37.0 8.1 12.886.3 6.3 8/ 31 100.613.686.0 2520.023223.1 1.2T 35 1.0 5.2 0.50.11.4 0.3 7.37.60.31.4 0.76.1 0.00.1 0.1(0.0)1.9 1.6 0.40.1 8.0

- split data in K folds
- execute K independent learning trials:
 - train on K-1 folds
 - test on remaining fold
 - measure testing performance
- average results across K trials

Learning / Training with text objects

- for objects like text documents or images:
 - extract features (to obtain matrix form)
 - annotate (to obtain labels)

- about 4000 emails
- 54 features numerical
- two classes: spam / no_spam

- 1300 houses
- 13 features (numerical)
- label : purchase prices (quantitative)

- 60000 images of scanned digits
- 26x26 pixel per image, black or white
- features not extracted
- 10 classes : 0,1,2, ..., 9

- 20,000 news articles (text)
- features not extracted
- 20 categories: religion, music, computers, sports, etc.

- main focus: learning algorithms
- main focus: hands-on practice on datasets
- secondary focus: analysis, error measurement
- secondary focus: features, representation

typical module subtaks / objectives

- THEORY
 - explain/understand fundamental mechanism
 - proof (math, intuition)
 - pseudocode
- CODE
 - run existing code
 - implement and demo your code
 - data handling: features, dimensionality, scale, missing values, normalization
 - computational issues : memory, cache, CPU, disk
- EVALUATION
 - setup
 - performance measurement, comparison
 - analysis/failure of procedure behavior
- HOWTO
 - practical advise, hacks, heuristics
 - communicate on topic well : email, forums
 - where to look online