5. Introduction to Data Mining

- 5.1 Introduction
- 5.2 Building a classification tree
 - 5.2.1 Information theoretic background
 - 5.2.2 Building the tree
- 5.3. Mining association rule
- [5.4 Clustering]

using material from A. Kemper,

Introduction

Association rules

Market basket analysis: customer transaction data: tid, time, {articles} Find rules X ⇒Y, with particular confidence e.g. those buying sauce, meat and spaghetti

buy red wine with 0.7 probability

Clustering

Group homogenous data into a cluster according to some similarity measure

HS /Bio DBS04-6-Datamining 4

5.1 Introduction

PERSON_E #	ADE IV	WORKCLASS P.	WEIGHT	EDUCATION P	EDUCATOR WAY IS	MANUFAL STATUS P	DOCUMETION 2	RELAT
3	79		133246	HG-grad	8	Warred		Husba
4	24	SHEN	277700	+ Bach:	10	Sepir.	Handler .	D-stole
4	20	Private	226976	HG-grid		Newton .	Ctivat	0-(10)
	20	Stepte .	205895	+ Bach.	19	Papeline .	Clere:	D-shire
14	24	Provide	102593	Buh.	13	Paretti	Claric.	Noted
19	42	Provide	217079	HG-grad		Divorc.	Mactone	Noted
20	164	(HE)	101400	Associa.	11	Married	Crafts	Husti
28	37 .	Fed-gire .	725538	Waiters	14	Warted	Prot	Hunbs
39	34	Provide	37216	HG-grist	9	Neett	Clare.	O-this
33	40	Private	116338	Masters.	18	Trevett	Prof	Notine
52	52	Liter-gine	340000	Wasters	14	Newtok	Frot.	0-(%)
55	37	Private	188503	Bach	13	Newtotal	Charte.	Nobrd
58	25	Provide	154210	119	7	Multiperd	Sales	0-shir
17	(41	Sta-gov:	110556	Mesters	14	Married	Evet.	'yette
58	59	Private	163861	H0-grad	9	Divers.	Save	Univa
60	32	Private	220492	HS-grid	9	Married	CHMI	Husbi
161	26	Private	106100	H5-grad	8	Need	Handler	0-chili
100	23	Private	140704	HG-grat	9	NewW	Cleris.	O-chie
90	43	Loc-per	135056	HEWAI	9	Separ	Claric.	Cthan
120	-	Property.	****	April 1	47	23-147-cm	State .	Aretes.

- · Large amount of data
- Find "hidden knowledge" e.g. correlations between attributes
- Statistical techniques
- Challenge for DB technology: scalable algorithms for very large data sets

Data Mining

- Data Mining is all about automating the process of searching for patterns in the data
- · Which patterns are interesting?

What means "interesting"? Some quantitative measure?

- · Which might be mere illusions?
- see A. Moore
- · And how can they be exploited?
- Data mining uses Machine Learning algorithms
- · Well known since the 80's
- · Challenge: apply to very large data sets

HS /Bio DBS04-6-Datamining 5

Introduction

· Typical Mining tasks

Classification

find risk dependent on age, sex, make, horsepower risk = 'high' or 'low' in db of car insurance

Methods: Decision tree of data set Naïve Bayes Adaptive Bayes

Goal: prediction of attribute value x=c dependent on predictor attributes

F(a1,...,an) = c

Sometimes written as classification rule : (age<40) \land (sex = "m") \land (make="Golf GTI") \land (hp > 100) \Rightarrow (risk="high")

HS /Bio DBS04-6-Datamining 3

Introduction

- · Data mining process
 - Data gathering, joining, reformatting
 - e.g. Oracle: max 1000 attributes

 transform into
 "transactional format": (id, attr_name, value)
 - Data cleansing
 - eliminate outliers
 - check correctness based on domain specific heuristics
 - check values in case of redundancy, \dots
 - Build model (training phase). (Example: Decision tree)
 - Apply to new data

5.2 Building a decision tree

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker	
good	4	low	low	low	high	75to78	asia	
bad	6	medium	medium	medium	medium	70to74	america	
bad	4	medium	medium	medium	low	75to78	europe	
bad	8	high	high	high	low	70to74	america	
bad	6	medium	medium	medium	medium	70to74	america	
bad	4	low	medium	low	medium	70to74	asia	
bad	4	low	medium	low	low	70to74	asia	40 records
bad	8	high	high	high	low	75to78	america	40 1000100
:		:	:	1	1:	:		
:		:	:	1	1:	:		
:		:	:	1	1:	:		
bad	8	high	high	high	low	70to74	america	
good	8	high	medium	high	high	79to83	america	
bad	8	high	high	high	low	75to78	america	
good	4	low	low	low	low	79to83	america	
bad	6	medium	medium	medium	high	75to78	america	
good	4	medium	low	low	low	79to83	america	
good	4	low	low	medium	high	79to83	america	
bad	8	high	high	high	low	70to74	america	
good	4	low	medium	low	medium	75to78	europe	
bad	5	medium	medium	medium	medium	75to78	europe	

Miles per gallon: how can we predict mpg ("bad", "good") from the other attributes

example by A.Moore, data by R. Quinlan

HS /Bio DBS04-6-Datamining 7

5.2.1 Data mining and Information Theory

A short introduction to <u>Information Theory</u> by Andrew W. Moore

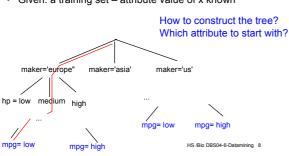
Information theory:

- originally a "<u>Theory of Communication</u>" (C. Shannon)
- useful for data mining

HS /Bio DBS04-6-Datamining 10

Building a decision tree

- Wanted: tree which allows to predict value of an x given the values of the other attributes a1,...an
- · Given: a training set attribute value of x known



Information Theory

Huffman – Code
 Given an alphabet A = {a1,....,an} and probabilities of
 occurrence pi = p(ai) in a text for each ai.

Find a binary code for A which minimizes $H'(A) = \Sigma$ pi * length (cw_i) , cw_i = binary codeword of ai

H'(A) is minimized for length(cw_i) = $\lceil log_2 1/ pi \rceil$ well known how to construct it... \Rightarrow intro to algorithms

 $H(A) = -\sum_{i=1}^{n} p_i * log_2 p_i$: important characterization of A what does it mean?

HS /Bio DBS04-6-Datamining 11

Building a decision tree

- · Simple binary partitioning
- D = Data set, n = node (root), a attribute
- Prediction attribute x

BuildTree(n,D,a)

- split D according to a into D1, D2 -- binary!
- for each child D_i {
 if (x==const for all records in D_i
 OR no attribute can split D_i) make leaf node
 else

What is a "good" discriminating attribute?

HS /Bio DBS04-6-Datamining 9

Entropy: interpretations

Entropy

 $H(A) = -\Sigma pi * log_2 pi$

- minimal number of bits to encode A

- amount of uncertainty of receiver before seeing an event (a character transmitted)
- amount of surprise when seeing the event
- the amount of information gained after receiving the event.

Information Theory and alphabets

Example

$$L = \{A,C,T,G\}, p(A) = p(C) = p(T) = p(G) = \frac{1}{4},$$

Boring: seeing a "T" in a sequence is as interesting as seeing a "G" or seeing an "A".

$$H(L) = -\frac{1}{4} * \Sigma \log 1 - \log 4 = 2$$

$$L' = \{A,C,T,G\}$$
, $p(A) = 0.7$, $p(C) = 0.2$, $p(T) = p(G) = 0.05$

Seeing a "T" or a "G" is exciting as opposed to "A"

$$H(L') = -(-0.7*0,514 - 0.2*2.31-2*0.05*4.32)$$

= 0.36 + 0.464 + 0.432 = 1.256

Low entropy more interesting

What is the lowest value?

HS /Bio DBS04-6-Datamining 13

Information gain

- · What does the knowledge of X tell us about the value of Y?
- Or: Given the value of X, how much does the surprise of seeing an Y event decrease?
- Or: If sender and receiver know value of X, how much bits are required to encode Y?

$$IG(Y|X) = H(Y) - H(Y|X)$$

```
e.g. IG (education | sex) = H(education) - H(education|sex) = 2.872 - 0,909 = 1.86
```

e.g. IG (maritalStatus | sex) = H(status) - H(status|sex) = 1.842 - 0.717 = 1.125

HS /Bio DBS04-6-Datamining 16

SELECT Count(*), education SELECT Count(*). Marital status FROM Census_2d_apply_unbinned FROM Census_2d_apply_unbinned GROUP BY education: GROUP BY Marital status: 29 10th H(education) = 36 11th 15 12th 7 1st-4th 13 5th-6th

17 7th-8th 21 9th 241 < Bach 44 Assoc-A 40 Assoc-V 202 Bach. 433 HS-grad 88 Masters 6 PhD

3 Presch 31 Profsc

1 Presch

Histograms and entropy

161 Divorc 20 Mabsent 3 Mar-AF 587 Married 380 NeverM H(status)= 43 Separ. 1 842

> COUNT(*) SEX 406 Female 820 Male

32 Widowed

HS /Bio DBS04-6-Datamining 14

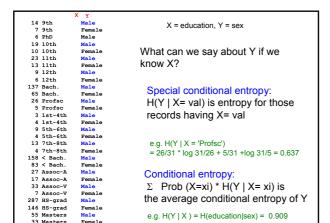
taken from Oracle DM data set / census data

0.916

Information gain: what for?

- · Suppose you are trying to predict whether someone is going live past 80 years. From historical data you might find...
 - IG(LongLife | HairColor) = 0.01
 - IG(LongLife | Smoker) = 0.2
 - IG(LongLife | Gender) = 0.25
 - IG(LongLife | LastDigitOfSSN) = 0.00001
- IG tells you how interesting a 2-d contingency table is going to be.

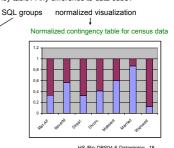
HS /Bio DBS04-6-Datamining 17



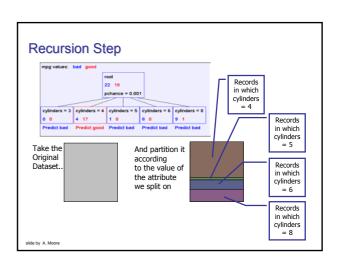
Contingency tables

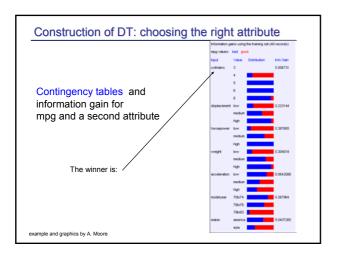
For each pair of values for attributes (status, sex) we can see how many records match (2-dimensional)

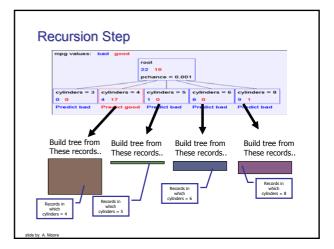
What is a k-dim contingency table? Any difference to data cube?

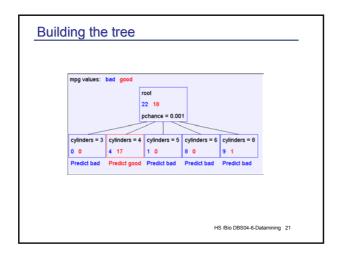


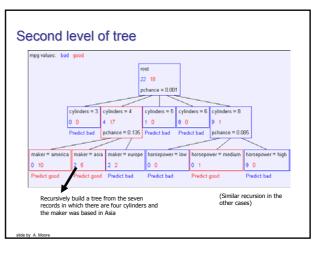
5.2.2 Building a decision tree Remember Decision tree is a plan to test attribute values in a particular sequence in order to predict the binary target value Example: predict miles per gallon (low, high) depending on horse power, number of cylinders, make, ... Constructing the tree from training set In each step: - chose attribute which has highest information gain

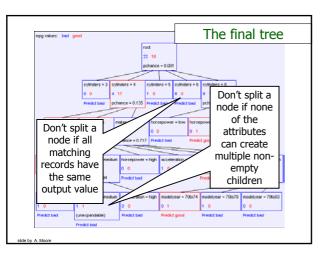












Decision trees: conclusion

- · Simple, important data mining tool
- · Easy to understand, construct, use
- · no prior assumptions on data
- predicts categorial date from categorial and / or numerical data
- · applied to real life problems
- · produce rules which can be easily interpreted

Rut.

- · only categorial output value
- overfitting: paying too much attention to irrelevant attributes
 - ... but not known in advance, which data are "noise"
 - ⇒ statistical tests

HS /Bio DBS04-6-Datamining 28

DT construction algorithm

BuildTree(DataSet, Output)

- If all output values are the same in DataSet, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_x distinct values (i.e. X has arity n_x).
 - Create and return a non-leaf node with n_x children.
 - The i'th child should be built by calling BuildTree(DS:,Output)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

HS /Bio DBS04-6-Datamining 26

5.3 Association rules: a short introduction

• Goal: discover co-occurence of items in large volumes of data ("market basket analysis")

Example: how many customers by a printer together with their PC

- Non supervised learning
- · Measures:
 - support (A

 B) = P(A,B)
 how often co-occur A and B in the data set
 e.g. 0.05 if 10 % of all customers bought a printer and a PC
 - confidence (A ⇒ B) = P(B | A)
 fraction of customers, who bought a PC and also bought a printer , e.g. 0.8: 4 of 5 bought also printer

HS /Bio DBS04-6-Datamining 29

Errors

Training set error

 Check with records of training set if predicted value equals known value in record

Test set error

- · use only subset of training set for tree construction
- Predict output value ("mpg") and compare with the known value
- Check attribute to be predicted in training set If prediction wrong: test set error
- For detailed analysis of errors etc see <u>tutorial</u> of A. Moore

Training set error much smaller than test set error – why?

	Num Errors	Set Size	Percent Wrong
Training Set	1	40	2.50
Test Set	74	352	21.02

HS /Bio DBS04-6-Datamining 27

A Priori algorithm for finding associations

Transactionen			
TransID	Product		
111	printer		
111	paper		
111	PC		
111	toner		
222	PC		
222	scanner		
333	printerr		
333	paper		
333	toner		
444	printer		
444	PC		
555	printer		
555	paper		
555	PC		
555	scanner		
555			

Find all rules A ⇒ B with support >= minSupport and confidence >= minConfidence

Algorithm first finds all frequent items:

FI = { p | p occurs in at least minSupport transactions}

All subsets of FI are also frequent item sets.

example adapted from Kemper

A Priori Algorithm

HS /Bio DBS04-6-Datamining 31

Generate association rules

```
Given: set of FI of frequent items for each FI with support >= minSupport: { for each subset L \subset FI define rule R: L \hookrightarrow FI \setminus L confidence (R) = support FI / support L if confidence(R) >= minConfidence: keep L } Example: FI = {printer, paper, toner} Support = 3 Rule: {printer} \Rightarrow {paper, toner}, Confidence = Support({printer, paper, toner}) / Support({printer}) = (3/5) / (4/5) = ^3/4 = 75 % example adapted from Kemper
```

Transactionen		
TransID	Product	
111	printer	
111	paper	
111	PC	
111	toner	
222	PC	
222	scanner	
333	printer	
333	paper	
333	toner	
444	printer	
444	PC	
555	printer	
555	paper	
555	PC	
555	scanner	
555	toner	

minSupport

=3

Temporary i	esults
FI-candidate	#
{printer}	4
{paper }	3
{PC}	4
{scanner}	2
{toner}	3
{printer, paper}	3
{printer, PC}	3
{printer, Scanner}	
{printer, Toner}	3
{paper, PC}	2
{paper, Scanner}	
{paper, toner}	3
{PC, scanner}	
{PC,toner}	2
{scanner, toner}	

Increase of confidence

• Increase of Left hand side (i.e. decrease of right hand side) of a rule increases confidence

```
L \subset L^+, R \subset R^- \Rightarrow Confidence(L \Rightarrow R) \leq C(L^+ \Rightarrow R^-)
```

Rule: {printer} ⇒ {paper, toner}
 confidence = support({printer, paper, toner}) / support({printer})
 = (3/5) / (4/5)
 = ³/₄ = 75%

Rule: {printer,paper} ⇒ {toner}
 confidence = S({printer, paper, Toner}) / S({printer,paper})
 = (3/5) / (3/5)
 = 1 = 100%

example adapted from Kemper

HS /Bio DBS04-6-Datamining 35

A Priori-Algorithmus

Tran	Transactionen		
TransID	Product		
111	printer		
111	paper		
111	PC		
111	toner		
222	PC		
222	scanner		
333	printer		
333	paper		
333	toner		
444	printer		
444	PC		
555	printer		
555	paper		
555	PC		
555	scanner		
555	toner		

Zwischenergebnisse FI-Kandidat Anzahl {printer, paper} (printer, PC) {paper, PC} {paper, toner} {PC, acanner} {PC,toner} 2 {scanner, toner} {printer, paper, PC} 2 {printer, paper, toner} 3 {printer, PC, toner} 2 {paper, PC, toner} 2

Summary data mining

- · important statistical technique
- · basis algorithms from machine learning
- · many different methods and algorithms
- distinction supervised versus unsupervised learning
- efficient implementation on very large data sets essential
- Enormous commercial interest (business transactions, web logs,)