Machine Learning Homework Solution

Cheng Li and Virgil Pavlu

Question:

X and Y are two sets containing finite number of points. C_{1} and C_{2} are convex hulls of X and Y, respectively. Prove that if C_{1} and C_{2} don't intersect, there must exist a hyper plane that separates C_{1} and C_{2}.

Answer:

First we need a few lemmas:
Lemma 1: In a triangle ABC (Figure 1), if $\angle A>\angle B$, then $d(B, C)>d(A, C)$, where d is the Euclidean distance.

Figure 1: Lemma 1
Proof of the Lemma 1: $\frac{d(B, C)}{d(A, C)}=\frac{\sin (\angle A)}{\sin (\angle B)}$.
Lemma 2: A convex hull generated by a finite number of points is a closed set.
Proof of the Lemma 2: Omitted.
Proof the the main results:
Since C_{1} and C_{2} don't intersect and they are closed sets, there exist $A \in C_{1}$, $B \in C_{2}$ such that
$d(A, B)=\min _{M \in C_{1}, N \in C_{2}} d(M, N)=\inf _{M \in C_{1}, N \in C_{2}} d(M, N)=d\left(C_{1}, C_{2}\right)>0$

Define the hyper plane P to be the unique plane which contains the middle point of A and B and is perpendicular to the line $A B$. It's easy to verify that for any point G on the plane $P, d(G, A)=d(G, B)$. For any point G on the A side of the plane, $d(G, A)<d(G, B)$. For any point G on the B side of the plane, $d(G, A)>d(G, B)$. We now prove that the hyper plane P defined this way separates C_{1} and C_{2}. It suffices to show that $\forall C \in C_{2}, C$ must lie on the B side of the the plane. The other direction of the proof can be shown similarly.

Assume to the contrary that C lies on the A side of the plane or on the plane. Then $d(A, C) \leq d(B, C)$. There are two major cases:

- case 1: A, B, C are in a line. There are two sub-cases.
- case 1.1: C lies on the line segment $A B$ (Figure 2). Clearly, $d(A, C)<$ $d(A, B)$. This contradicts $d(A, B)=\min _{M \in C_{1}, N \in C_{2}} d(M, N)$.

Figure 2: case 1.1

- case 1.2: A lies on the line segment $B C$ (Figure 3). By the definition of convex hull, $A \in C_{2}$. This contradicts the fact that C_{1} and C_{2} don't intersect.
- case 2: A, B, C are not in a line. Consider the triangle $A B C$. We know $d(A, C) \leq d(B, C)$. By Lemma $1, \angle B \leq \angle A$. Also it is always the case that $\angle A+\angle B+\angle C=\pi$ and $\angle C>0$. Therefore, $\angle B<\pi / 2$. Let's consider two sub-cases.
- case 2.1: $\angle C \geq \pi / 2$ (Figure 4). Therefore $\angle C>\angle B$. By Lemma 1, $d(A, B)>d(A, C)$. This contradicts $d(A, B)=\min _{M \in C_{1}, N \in C_{2}} d(M, N)$.

Figure 3: case 1.2

Figure 4: case 2.1

- case 2.2: $\angle C<\pi / 2$ (Figure 5). Since $\angle B<\pi / 2$, there exists a point D on the line segment $B C$ such that $A D \perp B C$. Therefore, $d(A, D)<d(A, B)$. According to the definition of convex hull, $D \in$ C_{2}. This contradicts $d(A, B)=\min _{M \in C_{1}, N \in C_{2}} d(M, N)$.

Figure 5: case 2.2

