
CS 6140: Machine Learning Spring 2015
College of Computer and Information Science
Northeastern University
Lecture 3 February, 23
Instructor: Bilal Ahmed Scribe: Bilal Ahmed & Virgil Pavlu

Ridge Regression1

1 Introduction

Conisder the polynomial regression task, where the task is to fit a polynomial of a pre-chosen degree
to a sample of data comprising of data sampled from the function:

f(x) = 7.5 sin(2.5πx)

to which some random noise is added. So that the training labels can be represented as:

t = f(x) + ε (1)

where ε ∼ Normal(0, σ2) is additive Gaussian noise. The training dataset D is therefore represented
as (xi, ti) ∀i ∈ {1, 2, . . . N}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

x

f(
x
)=

7
.5

s
in

(2
.2

5
π
 x

)

 P=1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

x

f(
x
)=

7
.5

s
in

(2
.2

5
π
 x

)

 P=3

(b)

Figure 1: Fitting a polynomial to data sampled from f(x) = 7.5 sin(2.5πx). The sampled data is
shown as red circles, and the underlying function is shown as the solid blue curve, while the fitted
functions are shown as the dotted black line. For a degree-1 polynomial shown in (a) we can see
that the chosen polynomial class is unable to correctly represent the target function while in (b)
the chosen polynomial very closely resembles the shape of the target function even though it does
not pass through all the points perfectly.

1These lecture notes are intended for in-class use only.

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

x

f(
x
)=

7
.5

s
in

(2
.2

5
π
 x

)

 P=6

(a) (b)

Figure 2: (a) Fitting a degree-6 polynomial to data sampled from f(x) = 7.5 sin(2.5πx). The
sampled data is shown as red circles, and the underlying function is shown as the solid blue curve,
while the fitted function is shown as the dotted black line. We can see that the learned function
passes through the training data perfectly and will have a very low training error. But can we
say anything about how it will behave on out-of-sample (test) data? (b) shows what happens to
training and test error when we over and under fit to training data.

Figure-1 shows an example of fitting a degree-1 (straight line) and degree-3 (cubic polynomial),
to a training dataset comprising of eight instances. It can be seen in Figure-1a that if we use a
degree-1 polynomial as our hypothesis class we are unable to represent the function accurately, it is
very intuitive because as compared to the target function our chosen hypothesis class is very simple.
This is an example of underfitting where the hypothesis class fails to capture the complexities of
the target concept. Figure-2a shows that a higher order polynomial (degree-6 in this case) fails to
accurately represent the target function even though it perfectly predicts the label of each training
instance. This is an example of overfitting, where instead of learning the target concept the learned
concept aligns itself with the idiosyncrasies (noise) of the observed data. On the other hand by
using a cubic polynomial (Figure-1b), we can see that it better rerepsents the target function, while
having a higher training error than the degree-6 polynomial.

1.1 Occam’s Razor

What happens when we overfit to the training data? Figure-2b, shows that in the case of overfitting,
we achieve lower training errors but the error on unseen data (test error) is higher. So, what can
we do to avoid overfitting? We have previously seen that in the case of Decision trees, we used
pre-pruning and post-pruning to obtain shorter/simpler trees. Preferring simpler hypotheses that
may have higher training error, over more complex hypotheses that have lower training error is
an example of Occam’s Razor. William of Occam was an English friar and philosopher who put
forward this principle which states that “if one can explain a phenomenon without assuming this
or that hypothetical entity, then there is no ground for assuming it i.e. that one should always opt
for an explanation in terms of the fewest possible number of causes, factors, or variables”. In terms
of machine learning this simply implies that we should always prefer the simplest hypothesis that

2

fits our training data, because “simpler hypothesis generalize well”.
How can we apply Occam’s Razor to linear regression? In other words, how can we characterize

the complexity of linear regression? Recall, that in the case of decision trees the model complexity
was represented by the depth of the tree. A shorter tree therefore, corresponded to a simpler
hypothesis. For linear regression, the model complexity is associated with the number of features.
As the number of features grow, the model becomes more complex, and is able to capture local
structure in data (compare the three plots for the polynomial regression example in Figures 1 and
2), this results in high variance of estimates for feature coefficients i.e., wi. This means that small
changes in the training data will cause large changes in the final coefficient estimates. In order to
to apply Occam’s razor to linear regression we need to restrict/constrain the feature coefficients.

2 Regularizing Linear Regression

For linear regression, we can impose a constraint on the feature coefficients so that we penalize the
solutions that produce larger estimates. This can be achieved by augmenting the original linear
regression objective with a constraint as follows:

argmin
w∈Rm

N∑
i=1

(ti − wTxi)
2

subject to:
m∑
j=1

w2
i ≤ c

(2)

The objective function is exactly the same as before for linear regression: minimize the sum of
squares errors over the training data. However, we have an added constraint on the feature weights
that restricts them form growing abnormally large. By formulating the Lagrangian of Equation-2
we get the following optimization problem:

wridge = argmin
w∈Rm

J(w) =
N∑
i=1

(ti − wTxi)
2 + λ

m∑
j=1

w2
i (3)

for λ ≥ 0. There is a one-to-one correspondence between λ and c in Equation 2. For a two
dimensional case i.e., w ∈ R2, we can visualize the optimization problem as shown in Figure-3.

We know, that:
m∑
j=1

w2
i = wTw = ‖w‖22

therefore, we can re-write the problem as:

wridge = argmin
w∈Rm

J(w) =
N∑
i=1

(ti − wTxi)
2 + λ‖w‖22 (4)

Including an L2 penalty term in the optimization problem is also known as Tirkhonov regularization.

3

Figure 3: The red circle represents the constraints imposed on the individual coefficients, while the
contour plot shows the sum of squares objective. w∗ is the ridge regression solution.

2.1 An Analytical Solution

We can get an analytical solution similar to how we derived the normal equations. Before we
proceed we need to address the fact that the intercept or w0 is part of the weight vector that we are
optimizing. If we place a constraint on w0 then essentially our solution will change if we re-scale
the ti’s. By convention, we are going to drop the constant feature (all ones) from the design matrix,
and also center each feature i.e., subtract the mean from the feature values. Let Z be the centered
data matrix and let t be the vector of observed target values (generated according to Equation 1).

Then,

∇wJ(w) = ∇wE
TE = ∇w(Zw − t)T (Zw − t) +∇wλw

Tw

= ∇w(wTZTZw −wTZT t− tTZw + tT t) + λ∇ww
Tw

= ∇w(wTZTZw −wTZT t−wTZT t + tT t) + λ∇ww
Tw

= ∇w(wTZTZw − 2wTZT t + tT t) + λ∇ww
Tw

= 2(ZTZw − ZT t) + 2λw

= 2ZTZw + 2λIw − 2ZT t

= 2(ZTZ + λI)w − 2ZT t

where, in the third step we have (AB)T = BTAT .
Setting the derivative to zero, we obtain

(ZTZ + λI)w = ZT t or wridge = (ZTZ + λI)−1ZT t

This solution corresponds to a particular λ, which is a hyper-parameter that we have chosen before
hand. Algorithm-1 shows the steps involved in estimating the ridge regression solution for a given
training set.

4

Data: Training Data:(xi, ti) i ∈ {1, 2, . . . , N}
Result: Ridge Regression Feature Estimates: w∗ridge
center the data: zij = xij − x̄j ;
set the intercept: w0 = t̄ = 1

N

∑N
i=1 ti;

choose λ;
estimate solution vector: ŵridge = (ZTZ + λI)−1ZT t;

Algorithm 1: The gradient descent algorithm for minimizing a function.

3 Generalizing Ridge Regression

We can cast the objective function of ridge regression into a more general framework as follows:

ŵreg = argmin
w∈Rm

Loss(x,w) + ‖w‖q

where, q represents the qth vector norm. Some of the regularizers corresponding to different values
of q are shown in Figure-4. The loss function for Ridge regression (for centered features) is given
as:

Loss(x,w) =
N∑
i=1

(ti − w0 −
m∑
j=1

wjxij)
2

Figure 4: Regularizers corresponding to different values of q. When q = 1 we get the Lasso penalty
which produces sparse solution by driving most of the coefficients to zero. Lasso can be used
for performing feature selection, but cannot be analytically solved instead we need to resort to
approximations. q = 2 produces the Trikhonov regularization resulting in Ridge regression.

5

