CMSE 8 HW 3
Matt Piekenbrock

Problem 1

(1) Let o> 0 be a positive real number. The goal is to show:

Naf)(zo) ={as:s € df(xo)}

Consider the left hand side. It may be rewritten as follows:
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which yields the desired result, where x((f) represents the i'" component of zy € R”.

(2) If a function g(x) is differentiable at a point x, then the derivative of g at x¢ is determined uniquely and is rep-
resented by the n x n derivative matrix Dgy(xo), whose columns give the vector partial derivatives with respect to each
component. The gradient of g is characterized as follows:
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Now if one has two differentiable functions f and g whose composite is h(x) = g(f(z)), by the definition of the chain rule,
we have:
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Replacing A = Dy(f (o)) above and noting that s € 9f(Axo + b) yields the desired result.

Problem 2

First, consider the component derivatives:

Of: () = 2a + 1)
Ofa(z) =2(x —1)

Observe that fi(z) > fa(z) for all z > 0, and fo(x) > fi(x) for all x < 0, yielding the characterization of df(x) for those
subsets of the domain. The only point in R not described is the derivative at the point £ = 0. Since f is not differentiable
at © =0, f(x) at some fixed point z is defined as the set of vectors s satisfying:

f(@) > f(x) +s" (& —2) VieD(f)



Note that in this case, f : R — R (presumeably). As a result, if one fixes 2 = 0 then for this inequality to be true we have:

f(z) > max (1,1) + s7(2 — 0) V& € D(f)

max {(Z 4+ 1)%, (2 — 1) }>1—|—sa: Vi e D(f) sinces,z€e€R
2_1>s% ifz>0
x—l —1>sz2 ifz<0
+2x>s2 ifz>0
=
i‘2—25525£ ifz<0
z—2 ifz<0
= s< Q. R
z+2 ifz>0

(—00,2) if2<0
— S &
(2,+00) ifz>0

I conclude that the characterization of the subdifferential of f is given by:

1+ sz ifz=0
Of(x) =<2(x—1) ifx<O0
2z +1) ifxz>0

where s is parameterized by some choice of Z, as described above.

Problem 3

(1) Showing the (one-sided) limit given below
lim ||x||§ = ||zlo
p—0+

holds is equivalent to proving that for any number € > 0, there is a corresponding number § > 0 such that for all x we have:
0<z<0+4 = H|x||g — |lz|lo] < €

Rewriting this statement, this is equivalent to showing that the one sided-limit holds:
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Consider the case where z; € (0,1] for each j € [1,n]. Observe that the power function |-|? : (0,1] — R is monotonically
non-decreasing for every choice of p, and that for any choice of powers 0 < p < p < 1, the graph of the function of p in the
interval (0,1] is completely above the graph of p. As p — 0%, graph becomes a constant function, where for every input
x € (0,1] the function returns 1. The case is similar when each z; > 1, however instead as p — 0%, each entry necessary
converges to 1, as anything raised to the 0" power must be 1.

(2) Recall that for a given function f to be considered a convex function, its domain D(f) must be a convex set, and
it must obey the inequality:
flte+ (1 =)a) <tf(x) + (1 -1)f()

To show that the function ||z, = Z |;|” obeys this only for p > 1, I first recall the properties of vector norms. By definition,

if ||-|| is a vector norm, it satisfies the following three conditions [I] for some vectors z,z’ € R", a € R:

lz]| > 0, and ||z|| = 0 only if z = 0, (1)
ll + 2| < =l + [l (2)
lloz]| = |a[|| 3)

For any two vectors z, & € R™, by the triangle inequality (second above), we have:

[tz + (1 =&l < [ltzl, + (1 =8)2l, ¥t e][0,1]



and by the scaling property (three above), we have:
[ty + 1(1 = 8)&llp = tlzll, + (1 = D)l2], Vtel0,1]

Giving the desired result that any vector norm is convex. To show that ||z|, if and only if p > 1, one needs to show that the
above three listed properties hold for p > 1, and that they don’t hold for p < 1: but this is given by Minkowski’s inequality,
which states that for any two measurable functions f, g : R® — R, we have:

If+ally < Ifllp+llgll, 1<p<oo

The fact that this inequality is only obeyed when p > 1 indicates that only p-norms with p > 1 obey the vector norm
conditions above, and thus only those such p-norms are convex.

(4) Define Sy by:
flo = argminfly ~ X812+ MBI + 7l

Using the notational techniques used in the lecture, and treating the inner terms to optimize as f(/3) we have that the cost
function f is to minimize:
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At this point, notice that y”y is independent of 3, and that it suffices to minimize the above for each j independently.
Therefore, from now on, assume a fixed choice of j (such as 0). Taking the derivative of f(8) with respect to some fixed Sy,
we have:
0f(Bo) = 0 (53 —2B5°B; + AB7 +718;1) (Bo)
= 3(83)(Bo) — A(287°5;)(Bo) + D(AB3)(Bo) + A(71851)(Bo)

T 60 >0
=4X\3o — 285 + S 7[-1,1] B =0
—T [30 <0

Now, for 0 € 9f(5y), we have the following two cases when Sy # 0:
By = 56554—5 if Bop >0
iﬂés -4 ifp<0

If 5o = 0, then for 0 € 9f(8) = 0 € [—25;-8 -7, —26;-5 + 7], which implies that 7 > —2/85-5 and 7 > 26;-5, leading to the
final expression:
wB+ 5 B+ & >0
BO — O ‘r < 515 < T
1 pls T 1 ls
wl — i it 5J—ﬁ<0

This pattern clearly expression fy in a form identical to soft thresholding function S = ([3}5).
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