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Abstract

Web search engines have stored in their logs information about users
since they started to operate. This information often serves many
purposes. The primary focus of this survey is on introducing to the
discipline of query mining by showing its foundations and by analyz-
ing the basic algorithms and techniques that are used to extract useful
knowledge from this (potentially) infinite source of information. We
show how search applications may benefit from this kind of analysis by
analyzing popular applications of query log mining and their influence
on user experience. We conclude the paper by, briefly, presenting some
of the most challenging current open problems in this field.



1
Introduction

“History teaches everything, even the future.”
— Alphonse de Lamartine, speech at Macon 1847.

Think about it, for a moment: after checking e-mails, and checking
your favorite on-line newspaper and comic strip, what is the first thing
you do when connected to the web? You probably open a search engine
and start looking for some information you might need either for work
or for leisure: news about your favorite actor, news about presidential
candidates, and so on.

Even though they are quite rooted in our lives, web search engines
are quite new on the scene.

Query Log Mining is a branch of the more general Web Analyt-
ics [110] scientific discipline. Indeed, it can be considered a special type
of web usage mining [213]. According to the Web Analytics Association,
“Web Analytics is the measurement, collection, analysis and reporting
of Internet data for the purposes of understanding and optimizing Web
usage [11]”.

In particular, query log mining is concerned with all those tech-
niques aimed at discovering interesting patterns from query logs of
web search engine with the purpose of enhancing either effectiveness or
efficiency of an online service provided through the web.
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Keeping into account that query log mining is not only concerned
with the search service (from which queries usually come from) but
also with more general services like, for instance, search-based adver-
tisement, or web marketing in general [105].

1.1 Web Search Engines

Systems that can be considered similar to modern web search engines
started to operate around 1994. The now-defunct World Wide Web
Worm (WWWW ) [146] created by Oliver McBryan at the University
of Colorado, and the AliWeb search engine [124] created by Martijn
Koster in 1994, are the two most famous examples. Since then many
examples of such systems have been around the web: AltaVista, Excite,
Lycos, Yahoo!, Google, ASK, MSN (just to name a few). Nowadays,
searching is considered one of the most useful application on the web.
As reported in 2005 by Pew Research Center for The People & The
Press [161]:

“search engines have become an increasingly important
part of the online experience of American internet users.
The most recent findings from Pew Internet & Ameri-
can Life tracking surveys and consumer behavior trends
from the comScore Media Metrix consumer panel show
that about 60 million American adults are using search
engines on a typical day” [188].

Even if this quote dates back to 2005, it is very likely that those sur-
vey results are still valid (if not still more positives for search engines).
On the other side of the coin, search engines’ users are satisfied by their
search experience [189].

In a paper overviewing the challenges in modern web search engines’
design, Baeza-Yates et al. [14] state:

The main challenge is hence to design large-scale dis-
tributed systems that satisfy the user expectations,
in which queries use resources efficiently, thereby
reducing the cost per query.
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Therefore, the two key performance indicators in this kind of appli-
cation, in order, are: (i) the quality of returned results (e.g. handle
quality diversity and fight spam), and (ii) the speed with which results
are returned.

Web search engines are part of a broader class of software systems,
namely Information Retrieval (IR) Systems. Basically, IR systems were
born in the early 1960s due to two major application needs. Firstly,
allowing searching through digital libraries. Secondly, the need for com-
puter users to search through the data they were collecting in their own
digital repositories.

Intuitively, an IR system is a piece of software whose main purpose
is to return a list of documents in response to a user query. Thus far,
this description makes IR systems similar to what a DB system is.
Indeed, the most important difference between DB and IR systems is
that DB systems return objects that exactly match the user query,
whereas IR systems have to cope with natural language that makes it
simply impossible for an IR system to return perfect matches. Just to
make a very simple example: what does meta refer to? A meta char-
acter? The meta key in computer keyboards? Every single query may
mean different things to different users. Even worse, polysemy also hap-
pens. In Spanish the word meta means goal.

To this extent, a web search engine is in all respects an IR sys-
tem [221] only on a very large scale. The uncertainty in users’ intent
is also present in web search engines. Differently from smaller scale IR
systems, though, web IR systems can rely on the availability of a huge
amount of usage information stored in query logs.

One of the most used ways of enhancing the users’ search experi-
ence, in fact, is the exploitation of the knowledge contained within past
queries. A query log, typically, contains information about users, issued
queries, clicked results, etc. From this information knowledge can be
extracted to improve the quality (both in terms of effectiveness and effi-
ciency) of their system. Figure 1.1 shows a fragment of the AOL query
log. The format of this query log represents a record using five features:
user id, query, timestamp, rank of the clicked result, host string of the
clicked URL.
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Fig. 1.1 A fragment of the AOL query log [160].

How query logs interact with search engines has been studied in
many papers. For a general overview, [12, 20] are good starting point
references.

In this paper, we review some of the most recent techniques deal-
ing with query logs and how they can be used to enhance web search
engine operations. We are going to summarize the basic results con-
cerning query logs: analyses, techniques used to extract knowledge,
most remarkable results, most useful applications, and open issues and
possibilities that remain to be studied.

The purpose is, thus, to present ideas and results in the most
comprehensive way. We review fundamental, and state-of-the-art tech-
niques. In each section, even if not directly specified, we review and ana-
lyze the algorithms used, not only their results. This paper is intended
for an audience of people with basic knowledge of computer science. We
also expect readers to have a basic knowledge of Information Retrieval.
Everything not at a basic level is analyzed and detailed.

Before going on, it is important to make clear that all the analyses
and results reported were not reproduced by the author. We only report
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results as stated in the papers referenced. In some cases we slightly
adapted them to make concepts clearer.

1.2 Sketching the Architecture of a Web Search Engine

A search engine is one of the most complicated pieces of software a
company may develop. Consisting of tens of interdependent modules,
it represents one of the toughest challenge in today’s computer engi-
neering world.

Many papers and books sketch the architecture of web search
engines. For example Barroso et al. [33] present the architecture
of Google as it was in 2003. Other search engines are believed to
have similar architectures. When a user enters a query, the user’s
browser builds a URL (for example http://www.google.com/search?q=
foundations+trends+IR). The browser, then, looks up on a DNS direc-
tory for mapping the URL main site address (i.e., www.google.com)
into a particular IP address corresponding to a particular data-center
hosting a replica of the entire search system. The mapping strategy is
done accordingly to different objectives such as: availability, geograph-
ical proximity, load and capacity. The browser, then, sends an HTTP
request to the selected data-center, and thereafter, the query process-
ing is entirely local to that center. After the query is answered by the
local data-center, the result is returned in the form of an HTML page,
to the originating client.

Figure 1.2 shows they way the main modules of a web search engine
are connected.

Web search engines get their data from different sources: the web
(primarily), Image and video repositories (e.g. Flickr, or YouTube),
etc. In particular, in the case of web content, a crawler scours through
hypertext pages searching for new documents, and detecting stale, or
updated content. Crawlers store the data into a repository of content
(also known as web document cache), and structure (the graph rep-
resenting how web pages are interconnected). The latter being used,
mainly, as a feature for computing static document rank scores (e.g.
PageRank [157], or HITS [122]). In modern web retrieval systems,
crawlers continuously run and download pages from the web updating
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Fig. 1.2 The typical structure of a web search engine. Note that throughout the text IR
core, and query server will be used interchangeably.

incrementally the content of the document cache. For more information
on crawling, interested readers can refer to Castillo’s Ph.D. thesis on
web Crawling [57].

The textual (i.e., hypertextual) content is indexed to allow fast
retrieval operations (i.e., query requests). The index (built by the
Indexer) usually comprises of several different archives storing different
facets of the index. The format of each archive is designed for enabling
a fast retrieval of information needed to resolve queries. The format of
the index is the subject of Section 5 where we review some of the most
used techniques for optimizing index allocation policies.

Usually in real systems the design is tailored to favor aggregate
request throughput not peak server response time [33].

In real-world search engines, the index is distributed among a set of
query servers coordinated by a broker. The broker, accepts a query from
the user and distributes it to the set of query servers. The index servers
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Fig. 1.3 The typical structure of a distributed web search engine.

retrieve relevant documents, compute scores, rank results and return
them back to the broker which renders the result page and sends it to
the user. Figure 1.3 shows the interactions taking place among query
servers and the broker.

The broker is usually the place where queries are grabbed and stored
in the query logs. A module dedicated to analyze past queries is also
usually available within the architecture components.

1.2.1 The Index

An Inverted File index on a collection of web pages consists of several
interlinked components. The principal ones are the lexicon, i.e.,
the list of all the index terms appearing in the collection, and the
corresponding set of inverted lists, where each list is associated with
a distinct term of the lexicon. Each inverted list contains, in turn, a
set of postings. Each posting collects information about the occurrences
of the corresponding term in the collection’s documents. For the sake
of simplicity, in the following discussion we consider that each posting
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only includes the identifier of the document (DocID) where the term
appears, even if postings actually store other information used for
document ranking purposes (e.g. in the implementation [203] each
posting also includes the positions and the frequency of the term
within the document, and context information like the appearance of
the term within specific html tags).

Several sequential algorithms have been proposed in the past, which
try to balance the use of memory hierarchy in order to deal with the
large amount of input/output data involved in query processing. The
inverted file index [221] is the data structure typically adopted for
indexing the web. This occurs for three reasons. First, an inverted file
index allows the efficient resolution of queries on huge collections of web
data [246]. In fact, it works very well for common web queries, where
the conjunction of a few terms is to be searched for. Second, an inverted
file index can be easily compressed to reduce the space occupancy in
order to better exploit the memory hierarchy [203]. Third, an inverted
file can be easily built using a sort-based algorithm in time complexity
that is the same order of a sorting algorithm [246].

Query answering using inverted file is a very straightforward task.
We illustrate the basic AND operation and refer to other papers for
a thorough analysis of the remaining operations. Given a query as a
conjunction of two terms (t1 ∧ t2), the query resolution proceeds by
firstly looking up t1 and t2 in the lexicon to retrieve the corresponding
inverted lists l1 and l2. The result set is then built by intersecting the
two lists, thus, returning those documents having the two terms in com-
mon. During the intersection step a scoring function is also computed
to evaluate the likeliness of a document to be relevant for the query.
The top r results are then selected (in typical web search engines r is
usually set to 10 results) and successively returned to the users who
originated the query. Query processing can be done in two different
ways: Document-At-A-Time (DAAT), when document lists for terms
are scanned contemporary, as opposed to the Term-At-A-Time (TAAT)
strategy, where each term is considered separately [219].

Another important feature of inverted file indexes is that they
can be easily partitioned. Let us consider a typical distributed web
search engine: the index can be distributed across the different nodes
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Fig. 1.4 The two different ways of partitioning an inverted index. Rows of the whole T × D
matrix are the lexicon entries, columns represent the posting lists.

of the underlying architecture in order to enhance the overall system’s
throughput (i.e., the number of queries answered per each second). For
this purpose, two different partitioning strategies can be devised.

The first approach requires to horizontally partition the whole
inverted index with respect to the lexicon, so that each index server
stores the inverted lists associated with only a subset of the index terms.
This method is also known as term partitioning or global inverted files.
The other approach, known as document partitioning or local inverted
files, requires that each index server becomes responsible for a dis-
joint subset of the whole document collection (vertical partitioning of
the inverted index). Figure 1.5 graphically depicts such partitioning
schemes.

The construction of a document-partitioned inverted index is a
two-staged process. In the first stage each index partition is built locally
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Fig. 1.5 A cloud of the 250 most frequent queried terms in the AOL query log [160]. Picture
has been generated using http://www.wordle.net.

and independently from a partition of the whole collection. The sec-
ond phase collects global statistics computed over the whole inverted
index. One of the most valuable advantages of document partitioning
is the possibility of easily performing updates. In fact, new documents
may simply be inserted into a new partition to independently index
separately from the others [169].

Since the advent of web search engines, a large number of papers
have been published describing different architectures for search
engines, and search engine components [10, 25, 47, 33, 96, 97, 147,
150, 153, 204]. Many other papers [13, 14, 100, 101] enumerate the
major challenges search engine developers must address in order to
improve their ability to help users in finding information they need.
Interested readers shall find in the above referenced papers many inter-
esting insights. Needless to say, you shall not find any particular details,
in this survey, about the real structure of a search engine. Usually, this
kind of information is highly confidential and it is very unlikely that
search companies will ever disclose them.

1.3 Fun Facts about Queries

Due to their “commercial importance”, finding query logs has always
been a difficult task. The very first publicly available query log dates
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back to 1997. Doug Cutting, representing Excite, a major search service
to that date, made available for research a set of user queries as submit-
ted to Excite. Since then, the other query logs made publicly available
were the AltaVista log, the TodoBR query log, and the AOL log.

AOL eventually fired employees involved in the public release of
their log. This confirms, even more strongly, the particular level of
privacy characterizing such data. Obviously, this may sound worse than
it is. Search Engine companies are still releasing their data, only that
they adopt more conservative policies and release data under research
licenses preventing broad distribution.

Figure 1.5 shows a cloud of the 250 most frequent queried terms in
the AOL query log.

Queries posed by users are somewhat entertaining. To have an idea
of what every day users search through search engines, consider these
queries that were actually extracted from the (in)famous AOL Query
Log.1

In today’s hectic world, people often get very stressed. Stress pro-
duces distraction and user #427326 probably was a little more stressed
than the average. At 2006-04-21 21:16:51, in fact, he was looking for
the following sentence “where is my computer”. Well, probably is closer
than what you were suspecting. Actually, searching for this sentence on
popular search engines result in around 200,000 results. Gosh! Many
stressed people out there!2

Again, people gets stressed easily today. I dare you to guess what
was user #582088 looking for by entering the following keywords “can
you hear me out there i can hear you i got you i can hear you over i really
feel strange i wanna wish for something new this is the scariest thing ive
ever done in my life who do we think we are angels and airwaves im gonna
count down till 10 52 i can”. Hint: try by yourself and enter the above
sentence. What is the result? In your opinion, what was user doing
while typing the query?

Search engines publish some of the most interesting submitted
queries. Interestingness, here, is a relative concept. Depending on the

1 http://www.techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-
search-data/.

2 Indeed, many results are on people asking where is “My Computer” icon on their desktop.
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search engine company, interesting may mean different things. At
Google, for instance, Zeitgeist3 is a

“cumulative snapshot of interesting queries people are
asking over time, within country domains, and some
on Google.com that perhaps reveal a bit of the human
condition.”

Zeitgeist does not reveal the most searched queries, but only those
having had a “sudden”, and “unexpected” raise in popularity. For
instance, late in 2007 Italian Zeitgeist ranked “federico calzolari”4 as
the most “inflated” query. Many (mainly Italian) newspapers, and blogs
started to ask who is the person referred to in the query. The name was
that of a Ph.D. student in Pisa that periodically queried Google for his
name. This resulted in an unexpected raise in popularity for the query
term thus ending up in the Zeitgeist. Many people, mainly journalists,
started to discuss whether or not Federico Calzolari has hacked the
Google ranking algorithm.

It is important to point out that the discussion above seems to imply
that one could guess the intent of the users by looking at query session.
This is far from being true. As it is shown later on, the identification
of users’ tasks is a very challenging activity. The main goal of this
paragraph is to make readers aware of: (i) the variety of information in
query logs, and (ii) the detail that, in principle, can be obtained about
a single user.

An interesting recent paper dealing in a scientific way with discover-
ing information about search engine index content by carefully probing
it using queries out of a query log is Bar-Yossef and Gurevich [28].

1.4 Privacy Issues in Query Log Mining

The most recent scandal concerning privacy and query logs happened
in 2006 at AOL. AOL compiled a statistical sampling of more than
20 million queries entered by more than 650,000 of their customers,
and then made this DB available to the public for research purposes.

3 http://www.google.com/press/zeitgeist.html.
4 http://googleitalia.blogspot.com/2007/12/zeitgeist- di-novembre.html (in Italian).
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While user names were replaced by numbers, these numbers provide a
thread by which queries by a given user could be identified so that if,
for example, a user entered some piece of information which permits
their identity to be discerned, all the other queries they made during
the sampling period could be identified as theirs. AOL received so much
criticism for releasing this data that it eventually fired two employees.
The real problem was that they released ALL off the data to EVERY-
ONE. A Non-Disclosure-Agreement form for researchers to sign, would
have saved a lot of pain to AOL people that were fired after the mishap.

Many commercial search engines overcome to this problem by sim-
ply not publishing their logs. Is this approach good? Yes for some rea-
sons, no for others. Roughly speaking, it is good that people (in general)
cannot access query log data. As already said above they might be used
to infer users’ preferences, tastes, and other personal information that
might be used against their will. On the other hand, as pointed also
out by Judit Bar-Ilan in [27]

“[...] interesting results can be obtained from query logs
without jeopardizing the privacy of the users.”

While Bar-Ilan showed that it is possible to sanitize a query log in
order to prevent private information to be disclosed, Jones et al. [117]
showed that even heavily scrubbed query logs, still containing session
information, have significant privacy risks.

This paper does not deal with this (extremely important) issue, but
we would not have been comfortable without making the reader aware
of this issues. More important, we think this would clarify why many
studies reported here are made on (sometimes) old and outdated logs,
or logs privately held by companies not sharing them.

The interested reader shall find an introduction and some thoughts
about privacy and log publishing in recently published papers [1, 126,
164, 230]. Recently, Cooper published a very detailed survey on query
log privacy-enhancing techniques [64], readers interested in this topic
shall find a very thorough analysis of the most recent techniques dealing
with privacy preserving analysis of query logs.
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Recently ASK5 has given the possibility to users to explicitly deny
the storing of their usage data. On the other hand, Google, Yahoo,
and Microsoft, continuously ask users for the permission to store their
preferences, behaviors, and data in general. What is the most correct
behavior? It depends on search engines’ policies, thus we do not enter
into details on how these are managed.

The remainder of this work presents the most recent results and
advances that have used query logs as (the main) source of informa-
tion. It is worth mentioning here that not always the experiments pre-
sented might be reproduced. This is something that in science should be
avoided [87]. Unfortunately, as already said above, the main source of
knowledge (the query logs) are mainly kept by search engine companies
that for many reasons (not last, privacy issues) are very reluctant of
give them away, even to scientists. Therefore, many times in this article,
the experimental evaluation is based on results obtained by others and
presented in the literature. We apologize in advance to both authors of
the mentioned papers, and to readers.

Before entering into the details of our survey, it is important to
remark that query log mining is a very hot topic nowadays. The mate-
rial covered by this survey is to be considered as a valid starting point
for those interested in knowing something more on the topic. Proceed-
ings of the major conference series (e.g. SIGIR, WWW, SIGMOD,
VLDB, SIGKDD, CIKM, etc. Just to name a few) and top journals
(e.g. ACM TOIS, ACM TWEB, ACM TKDD, ACM TOIT, Informa-
tion Processing & Management, JASIST, IEEE TKDE, etc.) are the
best source for the state-of-the-art works on this field. Furthermore, we
use the same notation used by the authors of the surveyed papers. This,
in our opinion, makes each (sub)section of the survey more independent
and leave to the reader the possibility of selecting the techniques he is
interested on.

That said, let the journey into the marvelous world of queries
begin . . .

5 http://www.ask.com.



2
The Nature of Queries

This section presents the characterization of query logs by showing
how are queries distributed over time. In particular, we analyze topic-
popularity, term-popularity, differences with respect to the past, vari-
ations of topics during day hours, etc.

In the past, there have been studies showing how people interacted
with small scale IR systems1 [75, 103, 198, 211]. Query logs of large
scale web search engines and small scale IR systems are fundamentally
different. For example, it is well known that queries to web search
engines are unlikely to contain more than three terms whereas in IR
systems’ that are usually used in digital libraries or legal document
retrieval receive queries with a number of query terms ranging from
7 to 15 depending on the experience of the user. Search operators (like
quotes, ‘+’, ‘−’, etc.) are rarely used on the web.

This section presents a variety of statistics, along with an analysis of
how data are computed. In fact, to deal with a huge number of queries

1 In particular those studies were referring to IR systems not directly dealing with web
users. Simply put, when referring to small scale IR systems we are not referring to web
search engines like Google or Yahoo!

16
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Table 2.1. The main query logs that have been used by the analyses reviewed in this
survey. The dash sign (-) means that the feature in the relative column was non-disclosed.
Figures are obtained by the papers using them, no analyses has been done for the purpose
of this survey.

Query log
name Public Period # Queries # Sessions # Users

Excite 1997 Y Sep 1997 1,025,908 211,063 ∼ 410,360
Excite 1997

(small)
Y Sep 1997 51,473 — ∼ 18,113

Altavista N 2 Aug–13
Sep 1998

993,208,159 285,474,117 —

Excite 1999 Y Dec 1999 1,025,910 325,711 ∼ 540,000
Excite 2001 Y May 2001 1,025,910 262,025 ∼ 446,000
Altavista

(public)
Y Sep 2001 7,175,648 — —

Tiscali N Apr 2002 3,278,211 — —
TodoBR Y Jan–Oct 2003 22,589,568 — —
TodoCL N May–Nov 2003 — — —
AOL (big) N Dec 26 2003–

Jan 1 2004
∼ 100,000,000 — ∼ 50,000,000

Yahoo! N Nov 2005–Nov
2006

— — —

AOL (small) Y 1 Mar–31 May
2006

36,389,567 — —

it is also important to design efficient techniques for quickly analyzing
such data.

A number of papers have been published describing characteristics
of query logs coming from some of the most popular search engines.
In these papers [34, 35, 106, 107, 108, 109, 123, 145, 154, 156, 160,
208, 210, 234], many interesting statistics are shown. Some of them are
reviewed throughout the section. Indeed, results from the query logs are
reviewed and presented throughout the whole survey, thus, to make the
presentation more clear their main characteristics are summarized in
Table 2.1. Analyses on other different logs have been performed by other
authors. We present their characteristics when it is required for the sake
of clarity in the description of the results or technique presented.

2.1 Basic Statistics

Typical simple statistics that can be drawn from query logs are:
query popularity, term popularity, average query length, and distance
between repetitions of queries or terms.
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Silverstein et al. [199, 200] are the first to analyze a large query log
of the Altavista search engine containing about a billion queries submit-
ted in a period of 42 days. The exhaustive analysis presented by the
authors point out some interesting results. Tests conducted included
the analysis of the query sessions for each user, and of the correlations
among the terms of the queries. Similarly to other work, their results
show that the majority of the users (in this case about 85%) visit the
first page of results only. They also showed that 77% of the users ses-
sions end up just after the first query. The log contains a huge number
of queries and account to 285 million users. As the authors state, a
smaller log could be influenced by ephemeral trends in querying (such
as searches related to news just released, or to a new record released by
a popular singer). For this reason results are considered by Silverstein
et al. precise and general.

Jansen et al. [108] analyzes a log made up of 51,473 queries posed by
18,113 users of Excite. In the log users are anonymous. Therefore, the
information is completely decontextualized. That is, no user profiling
is available. The log from which the experiments are carried out is
publicly available to scholars.

Lempel and Moran [129], and Fagni et al. [74] surveyed the con-
tent of a publicly available Altavista log. They present a log made up
of 7,175,648 queries issued to AltaVista during Summer of 2001. No
information is disclosed about the number of users they logged. This
second AltaVista log covers a time period almost three years after the
first studies presented by Jansen et al. and Silverstein et al. The log
is not as large as the first Altavista log, yet it represent a very nice
picture of search engine users.

On average web search queries are quite short. In the case of the
1998 Excite Log, on average a query contained 2.35 terms with less
than 4% of the queries having more than six terms. In the case of the
“private” AltaVista log, the average query length is, again, 2.35 with a
standard deviation of 1.74. For the second AltaVista log, instead, the
average query length is slightly above 2.55. One of the possible reason is
that, for instance, the web is a general medium, used by different peo-
ple from different parts of the world looking for disparate information.
IR systems, in the past, were instead mainly used by professionals and
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librarian looking for a precise information, thus, they spent more effort
in formulating a more elaborate query. In general that study highlights
that users querying search engines, i.e., web IR systems, are funda-
mentally different from people that used vertical (and smaller scale) IR
systems.

The distribution of query popularity, and of term popularity, have
been shown to follow a power-law. That is the number of occurrences
y of a query or a term is proportional to x−α where x is the popularity
rank, and α is a real parameter measuring how popularity decreases
against the rank. Putting it into formula, y = Kx−α, where K is a real
positive constant corresponding to the query with the highest popu-
larity. Since log(y) = −α log(x) + log(K), by substituting X = log(x),
and Y = log(y), power-law distributions have the form of a straight
line when plotted on a log–log scale. Figure 2.1 shows a plot graphi-
cally representing power-laws for various values of the parameter α.

Markatos [144] was the first to show that query popularity follows
a power-law with an exponent α ∼ 2.4. He analyzes the Excite log and
plots the occurrence of the first 1,000 most popular queries. Markatos

Fig. 2.1 Three examples of power-law curves for different values of the parameter α. The
curve corresponding to α = 1 is usually said to identify the Zip’s law [245].
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(a) (b)

(c)

Fig. 2.2 Plots displaying query popularity for various query logs. (a) The 1,000 most pop-
ular queries in the Excite Log [144]; (b) Query popularity of Altavista queries [129] and (c)
Query popularity of Yahoo! queries [15].

reports in a graph like the one shown in Figure 2.2(a) that the popu-
larity follows the usual linear trend in a log-log scale. We can see from
the plot that the most popular query is submitted 2,219 times, while
the 1,000th most popular query is submitted 27 times [144]. A power-
law trend is confirmed also in other studies and other query logs, such
as the AltaVista [129] (Figure 2.2(b)), and Yahoo! [15] (Figure 2.2(c))
logs.

Figures 2.3(a), and 2.3(b) detail the 20 top queries for the Excite
and Altavista logs, respectively.2 As one would probably have guessed,
many queries in both logs refer to sex and sexually explicit topics

2 Provisioning of the same information for the Yahoo! log is not possible due to privacy and
restriction policies.
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query freq.
*Empty Query* 2,586
sex 229
chat 58
lucky number generator 56
p**** 55
porno 55
b****y 55
nude beaches 52
playboy 46
bondage 46
porn 45
rain forest restaurant 40
f****ing 40
crossdressing 39
crystal methamphetamine 36
consumer reports 35
xxx 34
nude tanya harding 33
music 33
sneaker stories 32

query freq.
christmas photos 31,554
lyrics 15,818
cracks 12,670
google 12,210
gay 10,945
harry potter 7,933
wallpapers 7,848
pornografia 6,893
“yahoo com” 6,753
juegos 6,559
lingerie 6,078
symbios logic 53c400a 5,701
letras de canciones 5,518
humor 5,400
pictures 5,293
preteen 5,137
hypnosis 4,556
cpc view registration key 4,553
sex stories 4,521
cd cover 4,267

(a) (b)

Fig. 2.3 The most popular queries out of the Excite and publicly available Altavista Logs.
Potentially offending terms have been replaced by similar terms containing asterisks (‘*’).
Query have not previously filtered to remove stop-words and terms in queries have not been
reordered. (a) Excite; (b) Altavista.

(“XXX”). While, unsurprisingly, many others can be somewhat related
to XXX as well. As often happens, there are some unexpected outcomes
in query logs. For instance, rather surprisingly the most frequent query
in the case of the Excite log is the empty query! They account for more
than 5% of the queries. Authors of [108] try to explain this strange
fact. Probably, the most obvious reason is that users often wrongly
type queries in the search box. This phenomenon could also be due to
how search engines react to user actions. For instance, Excite had a
link pointing to a “More Like This” function that, if clicked, returned
pages related to the one selected. Excited counted that as an empty
query thus raising the empty query count. Therefore, the frequency of
empty query in this logs, could, more likely, identify the usage of the
“More Like This” feature of Excite.

As it can be seen from tables in Figure 2.3 many different topics are
represented in query logs. Figure 2.4(a), from [208], shows the percent-
age of queries submitted for each topic to the Excite search engine in
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Topic Percentage
Entertainment or recreation 19.9%
Sex and pornography 16.8%
Commerce, travel, employment, or economy 13.3%
Computers or Internet 12.5%
Health or sciences 9.5%
People, places, or things 6.7%
Society, culture, ethnicity, or religion 5.7%
Education or humanities 5.6%
Performing or fine arts 5.4%
Non-English or unknown 4.1%
Government 3.4%

(a)

Topic Percentage
Entertainment 13%
Shopping 13%
Porn 10%
Research & learn 9%
Computing 9%
Health 5%
Home 5%
Travel 5%
Games 5%
Personal & Finance 3%
Sports 3%
US Sites 3%
Holidays 1%
Other 16%

(b)

Fig. 2.4 Distribution of query samples across general topic categories for two different query
logs. Excite 2.4a, and AOL 2.4b. (a) Excite [208]; (b) AOL [34].

1997. Categorizing queries into topics is not a simple task. There are
papers showing techniques for assigning labels to each query. Recent
papers on the topic [36, 37, 49, 92, 192, 224] adopt a set of multiple
classifiers subsequently refining the classification phase. Due to space
limitations we cannot provide here a complete and detailed analysis of
query classification literature. Interested readers can refer to the liter-
ature for a thorough analysis of this subject.

Classification of the Excite queries made by Spink et al. [208] shows
that in no way is pornography a major topic of web queries, even though
the top ranked query terms may indicate this. Only one in about six web
queries have been classified as about sex. Web users look interested on a
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wide range of different topics. Commerce, including travel, employment,
and a number of economic matters are also high on the list. Close to
10% of queries are about health and the sciences.

Authors of [36] and [34] show similar results on a different query
log. The log is made up of billions of web queries constituting the
total query traffic for a 6-month period of AOL, a general-purpose
commercial web search service. Categories are different, and results (in
terms of category percentages breakdown) are slightly different. This
difference is very likely due to the different period of time in which the
analysis was conducted. While the Excite log is of 1997, the AOL log
is of 2003, which is more than 6 years after. In particular, as noticed in
other works, porn queries fell considerably (unless queries pertaining
to “Other” category can be associated with XXX interests).

Terms (as atomic constituents of queries) are distributed according
to a power-law as well (in particular a double-pareto log-normal dis-
tribution). In fact, the curve of term distribution is steeper, denoting
that the most frequent terms are much more frequent than the rest
of terms. Just as an example, Figure 2.5 shows log–log plots of the
term popularity distribution in the case of the same three query logs,
namely: Excite, Altavista, and Yahoo!.

An interesting statistic to draw from query logs is how terms co-
occur. In [212], a follow-up of the work presented in [108], Spink et al.
present a table of the 50 most frequently co-occurrent terms. We report
here, for the sake of completeness, their results in Table 2.2.

The above mentioned table only shows how terms co-occur in
queries without reflecting topic popularity. In fact, the majority of term
pairs are about non-XXX topics while in the same analysis they found
that XXX queries were highly represented. This could, for instance,
indicate that for some topics people use more terms to search for pre-
cise information, for other topics the same user need can be satisfied
by short queries.

As it has been seen, queries repeat themselves. Since many queries
are seen only a few times, one would expect that in the majority of the
cases the distance between subsequent submissions of the same query
would be very large. The distance, in terms of queries, with which
queries are submitted again is shown in Figure 2.6.
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(a)

(b)

(c)

Fig. 2.5 Plots displaying the number of requests for terms in various query logs. (a) Excite;
(b) Altavista and (c) Yahoo! (from [15]).
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Fig. 2.6 Distances (in number of queries) between subsequent submissions of the same query
for the Altavista and Excite log.

Differently from what is expected, the majority of queries have dis-
tances that are less than 1,000 queries. A possible reason is the inherent
bursty [121] nature of query logs: a large number of people start looking
for a topic almost at the same time. This observation is very important,
as we show in the rest of the survey that the bursty nature of queries
is a feature that is extensively used in many techniques for enhancing
both effectiveness and efficiency of web search engines.

2.2 Trends and Historical Changes in Queries

Queries are issued on several different topics [160] depending also on
the historical period [208]. Going at a daily granularity level of analysis,
some of the topics are more popular in an hour than in another [34, 35].

During the daytime frequency of querying varies considerably.
Ozmutly et al. [156] analyze query frequency against arrival time for the
Excite query log in a time period ranging from 9 a.m to 5 p.m. Table 2.3
shows how frequencies are distributed within hours of the day.

Querying activity is higher during the first hours of the day than the
afternoon. There is a sharp decrease in the number of queries submitted
going down from 679 at 9 a.m to 224 at 4 p.m. That is 30% of the
queries that are usually submitted at 9 a.m. These numbers are small if
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Table 2.3. Number of query
arrivals with respect to hours
of the day — Excite query
set [156].

Hour of the Day frequency

9:00–10:00 679
10:00–11:00 486
11:00–12:00 437
12:00–13:00 367
13:00–14:00 358
14:00–15:00 333
15:00–16:00 304
16:00–17:00 224

Fig. 2.7 Frequency of query submitted to the AOL search engine during the day [160].

compared to the number of queries submitted to today’s search engines.
When compared to the same statistics in 2006 [160], results are com-
pletely turned upside-down. At 9 a.m queries submitted are almost half
of those submitted at 5 p.m (Figure 2.7).

Spink et al. [208] showed how time periods affect querying behavior
of users. In Table 2.4, extracted from the above mentioned paper, it
is possible to observe that querying behavior is not changed from a
statistical point of view, in a period of 4 years. The mean number of
terms per query is only slightly raised in 2001, while the number of
terms per query, the main queries per user, are basically, unchanged in
four years. Even if this study dates back to 2001, it is very likely that
the results are still valid today. Users mostly tend to look for places to
buy goods, or to look for particular sites they already know. For this
reason, the number of keywords is usually low.
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Table 2.4. Comparative statistics for Excite web
queries [208].

Characteristic 1997 1999 2001

Mean terms per query 2.4 2.4 2.6
Terms per query

1 term 26.3% 29.8% 26.9%
2 term 31.5% 33.8% 30.5%
3+ term 43.1% 36.4% 42.6%

Mean queries per user 2.5 1.9 2.3

Table 2.5. Comparison of categories breakdown (in %) for Excite web
queries (from 1997 to 2001), and Altavista (2002) [107].

Category 1997 1999 2001 2002

People, places, or things 6.7 20.3 19.7 49.3
Commerce, travel, employment, or economy 13.3 24.5 24.7 12.5
Computers or Internet 12.5 10.9 9.7 12.4
Health or sciences 9.5 7.8 7.5 7.5
Education or humanities 5.6 5.3 4.6 5.0
Entertainment or recreation 19.9 7.5 6.7 4.6
Sex and pornography 16.8 7.5 8.6 3.3
Society, culture, ethnicity, or religion 5.7 4.2 3.9 3.1
Government 3.4 1.6 2.0 1.6
Performing or fine arts 5.4 1.1 1.2 0.7
Non-English or unknown 4.1 9.3 11.4 0.0

As it has been shown above, users have changed their prefer-
ences and inclinations during time. Obviously, the more penetrated
a new technology is the more users become skilled and acquainted with
using it. Probably users’ understanding of the potentiality of this new
medium, the web, has made them prone to use it as a way of conducting
business.

From the data in Table 2.5 it is evident that users (at least those
of US-based search engines) querying for People, Place or Things was
accounting for nearly 50% in 2002. Moreover, there is a clear rise in
interest from users for this category: back in 1997 queries referring
to People, Place or Things accounted for less than 7%. The 25% of
users in 2002 queries for Commerce, Travel, Employment or Economy
and Computers, Internet or Technology. This percentage has seen an
“up-and-down” trend,3 varying from a minimum of about 25% and to

3 Unless due to the use of different classification algorithms for the different query logs.
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a maximum of 35%. A steady falling trend, instead, is that of sex and
pornography: it was accounting for almost the 17% of queries back in
1997, whereas in 2002 the percentage of users looking for Sex related
information felt down to 3.3%.

Going to a finer detail level, in [34] Beitzel et al. measure the relative
popularity of different categories over the hours in a day. The percent-
age of total query volume broken-down to a selected group of category
can be seen in Figure 2.8. Clearly different topical categories are more
and less popular at different times of the day. For instance, Personal
and Finance popularity raises during the first hours of the morning,
between 7 and 10 a.m.; whereas Porn is a category whose popularity
raises during late-night until 6 a.m.

Although evidently some categories change more than others dur-
ing the day, the comparison of the relative level of popularity shift is
difficult due to the differences in scale of each of their percentages of
the query stream. To overcome this issue, Beitzel et al. [34] compute
the Kullback–Leibler (KL) divergence [125] (Equation (2.1)) between
the likelihood of receiving a query on any topic at a particular time
and the likelihood of receiving a query in a particular category.

D(p(q|t)‖p(q|c, t)) =
∑

q

p(q|t) log
p(q|t)

p(q|c, t) (2.1)

Using the KL-divergence, it is possible to measure a sort of “most
surprising” category for a particular time of day. Instead of measuring
the popularity as the most numerous topic, the KL-divergence measures
how popular is a query in terms of not being expected. The histogram
in Figure 2.9 shows the result of the KL-divergence computation over
the same categories as Figure 2.8.

A more recent paper shows similar results on an MSN web search
engine query log [241]. Results are not detailed with respect to topics,
as in the case of the previous paper, yet they do not disagree with the
overall results shown in [34].

Surprisingly, this analysis revealed that the top three categories
in terms of popularity are pornography, entertainment, and music.
Furthermore, it is worth being noticed that the KL-divergence is not
directly correlated with the number of queries placed in each category.
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Fig. 2.8 Percentage of the total query stream covered by selected categories over hours in
a day [34].

Also shown in Figure 2.9 is the average percentage of the entire query
volume and distinct queries that match each category. Although the
categories that cover the largest portions of the query stream also have
the most relative popularity fluctuation, this correlation does not con-
tinue throughout all categories. Beitzel et al. [34] reach the same con-
clusion by thoroughly discussing a more through analysis on weekly
and monthly basis.

2.3 Summary

In this section, we presented an overview of the papers presenting
statistics computed over different search engine query logs sampled over
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Fig. 2.9 Average percentage of query stream coverage & KL-divergence for each category
over hours in a day [34].

different periods of time. Some of the conclusions that can be drawn
are common to all of the logs considered:

• Queries contains very few terms, on average ranging between
2 and 3 terms. This means that devising good results for a
query is a very difficult task given that this very low number
of terms often contains also ambiguous terms.

• The distribution of query popularity follows a power law.
The most popular queries account for a very small fraction
of the total number of unique queries. This phenomenon, also
knows as the Long Tail [9], is pretty well known today and
seems to arise whenever we deal with social and economical
aspects of the new (internet) economy.

• Two conflicting claims have been presented. Following Spink
et al. [208] it seems that X-rated query popularity is declin-
ing. Beitzel et al. [35], instead, claim that XXX queries are
more surprising than others on certain time periods. On the
other hand, non-XXX queries do not show any particular
peaks in submission frequency. This is the reason why they
define XXX queries more frequent than others.



3
User Interactions

The previous section has shown how users query a search engine. It
has been shown how users build queries and how queries repeat during
time. This section is devoted to the study of how users interact with
search engine Systems. What happen when a user has submitted a
query and results are shown? For instance, how can be decided if a
query has been correctly answered, if a user is satisfied by the search
results? Another interesting aspect to investigate is how people change
queries if those have not produced satisfying results. In fact, in search
engines it is important to support such an activity also in addition to
every efforts that could be made to enhance the search engine precision.

Back in 1994 when Yahoo! was first founded the two Stanford’s grad
students Jerry Yang and David Filo were looking for a way to organize
their bookmarks. They wanted to make people’s life easier when they
looked for some URLs they knew about. Actually, due to the over-
whelming quantity of URLs present in the web nowadays, maintaining
such a list manually (as it was done by Yahoo!’s founders back then) is
unacceptable. Still, people want to find the a site’s URL as fast as they
can. For instance, it has been shown in the previous section that one
of the most frequent queries in the public AltaVista log was “Yahoo”.
That means the people was looking for the Yahoo’s URL.

32
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Studies investigate the goals users have when using a web search
engine. As it has been shown in the previous section, web IR and “tra-
ditional” IR users are very different. Usually they tend to type less,
but still they want highly precise results.

In one of the first paper devoted to discovery user intent behind
queries, Andrei Broder [48] studies the goal a user wants to reach when
submitting a query to a search engine. Following Broder’s formulation a
query can be either a Navigational query — where the immediate intent
is to reach a particular site (e.g. Greyhound Bus, american airlines
home, or Don Knuth); an Informational query — where the intent is
to acquire some information assumed to be present on one or more
web pages (e.g. San Francisco or normocytic anemia); a Transactional
queries — where the intent is to perform some web-mediated activity
(e.g. online music, or online flower delivery service).

Table 3.1 shows the result of a survey presented to Altavista users
to try to determine their intent.

The results shown in Table 3.1 have been obtained by means of
a series of questions presented to users through a “pop-up” windows
opening for some randomly chosen result pages. The survey obtained
a response ratio of about 10% consisting of about 3,190 valid returns.
The query log analysis column in Table 3.1 corresponds to a manual
analysis of query entries. They firstly selected at random a set of 1,000
queries and removed both non-English queries, and sexually oriented
queries. From the remaining set the first 400 queries were inspected.
Queries that were neither transactional, nor navigational, were assumed
to be informational in intent.

Results from both the survey, and manual inspection confirmed
what we were arguing in the previous section: in the majority of the
cases, users surf the web looking for places where to buy goods, or
looking for particular sites they already know.

Table 3.1. Query classification on the basis of user survey.
Adapted from [48].

Type Surveyed Estimated (from Query Log)

Navigational 24.5% 20%
Informational ∼ 39% 48%
Transactional ∼ 36% 30%
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In order to evaluate the quality of search results it is interesting to
look at how users interact with the web through a search engine. For
instance, it is interesting to extract and analyze user search sessions
from query logs, and to derive Implicit Measures of quality explicitly
tailored on search engine users.

Queries themselves are not always enough to determine users intent.
Furthermore, one of the key objectives of a search engine is to evaluate
the quality of their results. Implicit measures that ares available to
log analysts are: the click-through rate — the number of clicks a query
attract, time-on-page — the time spent on the result page, and scrolling
behavior — how users interact with the page in terms of scrolling up
and down; are all performance indicators search engines can use to
evaluate their quality. How are the data recorded? Toolbars and user
profiles surveyed directly from users are the main mean through which
search engine companies record usage data diverse from those obtained
by query logs.

3.1 Search Sessions

A series of queries can be part of a single, information seeking activity.
There are some studies on the effect of request chains on the search
engine side. The main goal of this kind of analysis is showing how
users interact with the search engine and how they modify queries
depending on results obtained by the search system and also how users
use multitasking and task switching on search sessions [23, 209].1

The first interesting thing to observe is how users interact with the
search engine from a page request point of view. As shown in many
studies users rarely visit result pages beyond the first one.

In [212], the Excite query log is analyzed and it has been shown
that about the 78% of users do not go beyond the first page of results.
Different query logs are analyzed yielding to similar results by Lempel
and Moran [129] and Fagni et al. [74]. Table 3.2 shows the results as
reported by Fagni et al. [74] for three different query logs. In all the

1 Roughly, a search session is a succession of queries submitted by the same user looking
for an information.
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Table 3.2. Percentage of queries in the logs as a function of the index of the page
requested [74].

Query log 1 2 3 4 5 6 7 8 9 10

Excite 77.59 8.92 3.98 2.37 1.54 1.09 0.78 0.60 0.45 0.37
Tiscali 83.20 5.50 2.86 1.74 1.23 0.74 0.54 0.41 0.32 0.26
Altavista 64.76 10.25 5.68 3.41 2.54 1.83 1.42 1.16 0.94 0.88

Fig. 3.1 Percentage of single query sessions. From [107].

three cases, the probability that a user will go after the fifth page of
results is under 0.02.

The figures shown in Table 3.2 seem to persist throughout all the
studies presented so far.

Jansen and Spink [107] show, Figure 3.1, the percentage of single-
query sessions in different query logs. In US web search engines,2 it
does not appear that the complexity of interactions is increasing as
indicated by longer sessions (i.e., users submitting more web queries).
In 2002, approximately 47% of searchers on AltaVista submitted only
one query, down from 77% in 1998.

A deeper analysis is conducted by Fagni et al. [74] where the prob-
ability of clicking the “Next” button of the search engine result page is
estimated.

2 ATW — AlltheWeb.com, AV — AltaVista, EX — Excite.
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Fig. 3.2 Probability of pushing the next button for three different query logs. From [74].

Figure 3.2 shows that the probability of clicking the “Next” button
increases as the number of result page increases. This may suggest that
users issuing informational queries usually go through a higher number
of pages. In particular, half the users on page 2 go to page 3, and around
60–70% of users on page 3 go to page 4.

During a search session a user often try to refine (or slightly modify)
queries in order to get to the result he wants. This behavior is studied
by Lau and Horvitz [127] by categorizing queries according to seven
categories.

• New : A query for a topic not previously searched for by this
user within the scope of the dataset (twenty-four hours);

• Generalization: A query on the same topic as the previous
one, but seeking more general information than the previ-
ous one.

• Specialization: A query on the same topic as the previous
one, but seeking more specific information than the previous
one.

• Reformulation: A query on the same topic that can be viewed
as neither a generalization nor a specialization, but a refor-
mulation of the prior query.
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• Interruption: A query on a topic searched on earlier by a user
that has been interrupted by a search on another topic.

• Request for additional results: A request for another set of
results on the same query from the search service.

• Blank queries: Log entries containing no query.

Figure 3.3 shows how queries are categorized within the Excite
query log. As it is evident, in the majority of the cases most actions
were either new queries or requests for additional information. Even
though, a large percentage of users (around 30%) were issuing a mod-
ification (either a refinement, or a specification, or a reformulation) of
a previously submitted query.

Previous results can be seen as a quantitative analysis of how users
interact with the search system. A different point of view is represented
by the analysis of Multitasking and Task Switching in query sessions.
Multitasking sessions are those of users seeking information on multiple
topics at the same time. Studies recently presented show that users have
an inclination to carry on multi-tasking queries. For instance, Ozmutlu

Fig. 3.3 Breakdown of the 4,960 queries analyzed in [127] into the different query modifi-
cation categories defined.
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et al. [155] show that in the 11.4% of the cases users are pursuing
multitasking sessions. This percentage raises up to 31.8% in the case of
users of another popular (at that time) search engine, AllTheWeb.com.
In the same paper, the mean number of topic changes per session has
been estimated to be around 2.2 that raises to 3.2 when considering
only multi-topic sessions.

An interesting event to detect is the query re-submission, or infor-
mation re-retrieval [215]. The behavior analyzed with this kind of tech-
nique is how often users search for the same information he searched
before. It is a quite common trend, nowadays, that users search instead
of bookmarking. A possible example is a user who reaches the home
page of a conference by issuing a query to a search engine. The user
may be interested in looking for news about that conference again in
two months (for instance to read the call for paper, to check submission
deadline, to check paper format, to check the list of accepted papers,
to register and book hotels).

Figure 3.4 shows the results of an analysis conducted on a small
sample taken from search traces of queries issued to the Yahoo! search
engine over a period of an entire year (August 1, 2004–July 31, 2005)
by 114 users. The average trace was 97 days long and search traces were
considered for inclusion only if they included queries issued during at
least 4 of the last 10 days of the sample period.

The study was thorough and complete, queries for re-retrieval inten-
tions were considered not only for their syntactic form (equal query
strings) but also for the set of clicked result URLs. From the total of
5,072 queries, 39% of the queries had some overlapping in the clicked set
of URLs, of them 24% had equal query string, and equal clicked URL.

Fig. 3.4 Percentage of the different query types. From [215].
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Therefore, repeat searches and repeat clicks are very common. Almost
contemporary to Teevan et al. [215], Sanderson and Dumais [185]
evaluate the re-finding behavior in web search engines. The dataset they
used covers a shorter period of time, three months from April to June,
2006, and contains approximately 3.3 million queries and 7.7 million
search result clicks gathered from 324,000 unique users. The first notice-
able thing they discovered, is that repeated queries by the same user
are almost the 50% of the total number of queries (1.68 million against
1.62 million unique queries). This result is greater than the one pre-
sented by the previous study by Teevan et al. [215] (and also different
from another previous result, again, of Teevan et al. [214]). This could
be done by the particular search engine, and the period of time cov-
ered by queries in the log. The conclusions, anyway, are the same in
all the cases: users do re-submit the same queries over and over and
for this reason search engine designers should be think of solutions to
take advantage of this phenomenon, for example, by designing inter-
faces able to present users resubmitting again the same query with a
list of changes in the rank of the results with respect to those returned
in answer to the same query but previously submitted.

3.2 Social Networks from Query-Click Relations

Queries recorded in query logs can be used to build social networks.
Some recent studies have shown some interesting insights and views
on such data. Differently from what have been done in the analysis of
multitasking in search sessions, Baeza-Yates and Tiberi [19] and Baeza-
Yates [21] consider queries as a whole, and study how queries and clicks
combined can help in determining relations between queries. They base
their analyses on a query log consisting of not a very large number of
queries, around 50 million queries, having in mind the objective of
capturing some semantic meaning behind user actions (i.e., clicks).

To catch the relations between queries, a graph is built out of a
vectorial representation for queries. In such a vector-space queries are
points in a very high-dimensional space where each dimension corre-
sponds to a unique URL u that have been at some point clicked by
some user. Each component of the vector is weighted according to
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the number of times the corresponding URL has been clicked when
returned for that query. For instance, suppose we have five different
URLs — i.e., u1,u2, . . . ,u5, suppose also that for query q users have
clicked three times URL u2 and four times URL u4, the corresponding
vector is (0,3,0,4,0). Queries are then arranged as a graph with two
queries being connected by an edge if and only if the two queries share
a non-zero entry, that is, if for two different queries the same URL
received at least one click. Furthermore, edges are weighted according
to the cosine similarity of the queries they connect. More formally, the
weight of an edge e = (q,q′) is computed according to Equation (3.1). In
the formula D is the number of dimensions, i.e., the number of distinct
clicked URLs, of the space.

W (e) =
q · q′

|q| · |q′| =

∑
i≤D

qi · q′
i√∑

i≤D

q2
i

√∑
i≤D

q′2
i

(3.1)

Graph edges can be computed/discovered in a fast way by using a sort-
based algorithm on the list of URLs clicked by each query. Weights,
instead, are simply computable by a linear (in the worst-case) algo-
rithm. Furthermore, for the sake of the analysis conducted, the log
have been pruned by removing queries not resulting in any click. After
the graphs have been built, to speed-up the analysis phase, nodes cor-
responding to queries with very few clicks and edges with small weights
are filtered out. Edges are then classified according to three different
type of relations:

• Identical cover (a.k.a. red edges or type I ). The set of URLs
clicked by the two queries at both ends are identical. This is
an indirect edge inferring that the two queries are semanti-
cally equivalent.

• Strict complete cover (a.k.a. green edges or type II ). The set
of URLs clicked for the query at one end is strictly included
in the set of URLs of the query at the other end. The edge
is direct and semantically speaking the first query is more
specific than the second one.
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• Partial cover (black edges or type III ). None of the pre-
vious two conditions hold. No semantical information can
be extracted, one can argue, for instance, that the query is
multi-topical.

In the above two tables (Tables 3.3 and 3.4), an example of such
a classification from [19] is shown. Looking at Table 3.3, it is pos-
sible to notice how the technique is effective in discovering relations
not easily found in other ways. In particular the aj synonym for the
askjeeves search engine, or the synonym for the free hispanic chat and
the latinopeoplemeet website. Also results shown in Table 3.4 are worth
of being looked at. The first row of the table, in particular, shows a
possible path to help people seeking for guitar lessons to find a college
where guitar is taught to play (how to learn guitar → online guitar
lessons → berklee college of music).

Another interesting results of Baeza-Yates and Tiberi [19] is a graph
mining methodology able to automatically classify query relations using
a novel metric exploiting the Open Directory Project for computing

Table 3.3. Equivalent queries.

Query Sim Type of Equivalence

tcfu ↔ teachers federal credit union 1.0 acronym
fhb ↔ first hawaiian bank 1.0 acronym
wtvf ↔ new channel 5 1.0 synonyms (Nashville TV channel)
ccap ↔ wcca 1.0 synonyms (Wisconsin court Internet access)
free hispanic chat↔ latinopeoplemeet 1.0 synonym for domain name
lj ↔ www.livejournal.com 1.0 acronym for URL
babel fish ↔ altavista babel fish 1.0 synonyms
aj ↔ askgeeves 1.0 synonyms with misspell
yahoo for kids ↔ yahooligains 0.9 synonym for misspelled domain name
unit conversion ↔ online conversion 0.85 synonym
merriam↔m-w.com 0.84 name for domain name
yahoo directions↔maps.yahoo.com 0.48 synonym for URL

Table 3.4. Example of query refinement (→ means from more to less specific).

how to learn guitar → online guitar lessons → berklee college of music
latest nokia mobiles → mobile phones
toyota auto parts → wholesale car parts → used auto parts → auto parts
wire window boxes → window box → decorative iron → wrought iron fence
www.mysiemens.com → siemens phone
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similarity between queries. Due to lack of space, we do not enter into
details of how the similarity was computed. Authors conclude the paper
by observing that the query log was actually small, if compared to real,
multi-day, query logs, yet results were really nice and encouraging.
In fact, even considering that the method is not 100% precise, the
number of queries submitted every day is so high that it would allow
the discovery of more than 300 million potentially interesting relations
per day!

3.3 Summary

This section shows how query log data is used to detect search engine
user behavior. The most noticeable results are:

• Users, in the vast majority of the cases (∼ 78%), look at the
first page of results only. In case they go through the second
result page, the likelihood that they move on the third, the
fourth, and so on, is very high.

• Queries can be classified in Informational, Navigational, and
Transactional. Informational queries are those submitted by
users looking for information on a particular topic (e.g.
San Francisco or normocytic anemia). Navigational queries
are those submitted by users looking, mostly, for the URL
of a particular page they are looking for (e.g. Greyhound
Bus, american airlines home, or Don Knuth). Transactional
queries are those submitted by users looking for websites
enable the buying of goods on the Internet (e.g. online music,
or online flower delivery service). Queries are almost evenly
distributed on the three categories.

• Users re-submit the same queries over and over, for this rea-
son search engine designers should be aware of this and think
of solutions to take advantage of this phenomenon

• Query sessions can be used to devise refinement (i.e., gener-
alization or specialization) of queries. An analysis of a social
network formed over queries out of a search engine query
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log, for instance, can help in devising surprising relations.
A remarkable example is the query generalization path ‘how
to learn guitar → online guitar lessons → berklee college of
music’ that relates the query “how to learn guitar” with a
popular music college.



4
Enhancing Effectiveness of Search Systems

Previously submitted queries represent a very important mean for
enhancing effectiveness of search systems. As already said, query logs
keep track of information regarding interaction between users and the
search engine. Sessions are the sequences of queries submitted by the
same user in the same period of time. This data can be used to devise
typical query patterns, used to enable advanced query processing tech-
niques. Click-through data (representing a sort of implicit relevance
feedback information) is another piece of information that is generally
mined by search engines. All in all, every single kind of user action
(also, for instance, the action of not clicking on a query result) can be
exploited to derive aggregate statistics which are very useful for the
optimization of search engine effectiveness.

Differently from what is presented in this section about enhancing
efficiency, all the techniques presented in this part impact on the user
experience starting from the interface presented by the search engine.
Just to set the ground, and let our discussion be not only abstract,
consider, the screenshot shown in Figure 4.1. For the query “Britney
Spears” the search engine has prepared a list of suggestions that most
likely derives from an analysis of previously and frequently submitted

44
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Fig. 4.1 A view on Yahoo! query suggestion system in action. In this screenshot it is shown
how queries related to “Britney Spears” are proposed to users by the search engine. It
is very likely that suggestions are obtained by mining query logs in order to infer query
relations.

queries (for example, “britney spears blackout” is a typical example of
“time-dependent” query suggestion.)

Next in this part, we shall show that the analysis of past queries
presents many pitfalls. In particular, it has been shown that users clicks
are biased towards results that are ranked high in the result list [115].
This observation is at the basis of a number of studies aimed at “un-
biasing” clicks in order to better understand users’ goals.

Furthermore, remember also from the introduction we have stated
that data collection can be done at different levels. One is usually more
familiar with the server side logging. There exist, anyway, techniques to
collect data client side. Toolbars, for instance, are an example of such
a technique.

In the rest of this section, we analyze the possibilities offered by
web mining techniques on query logs for the enhancement of search
effectiveness by reviewing the current state of the art in this sector and
by presenting the most relevant and useful results.

We start by providing some historical notes that helps readers in
understanding how users’ feedback has been used before the advent of
search engines. In particular, we will show some preliminary studies
motivating the use of query logs for enhancing effectiveness of search.

The first technique we present is “Query Expansion”. Expanding
a query consists of adding terms to the original queries to increase
the precision of the engine on the top-k results presented. It is a tech-
nique that has been studied, originally, out of the context of query log
analysis. The inclusion of query log information has boosted consider-
ably the effectiveness of the technique.
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Relative to query expansion, “Query Suggestion” is a technique that
is shown in this section. Suggesting queries is mainly a way to provide
not experienced users with a list of queries that have been proven to
be effective for expert users.

Instead of suggesting queries to users, search engine may act differ-
ently depending on the user itself. For instance a mathematician issuing
the query “game theory” is more interested in knowing the mathemati-
cal foundations of the field. An economist issuing the same query, “game
theory”, is likely to be more interested in knowing about applications
to economics of game theory. “Personalization” is the technique that
adapt results to a given user. Using query logs to personalize results
has been proven to be effective and the section shows some interest-
ing results. Personalization is concerned with adapting query results to
a particular user. Similarly, one can use information about past user
interactions to statically weight web pages. As PageRank [47] computes
a static importance score using only structural information, techniques
presented in this part “Learn to Rank” a page depending on the clicks
it receives when returned as a result.

Finally, we present techniques to “Spell-check and Correct” queries
users input.

4.1 Historical Notes and Preliminaries

Worth to point out is that the idea of analyzing user behavior is not
new. This is in fact the rationale behind the well-known concept of
relevance feedback is that a user might not know in advance what he
was looking for, but for sure he knows as soon as he sees it. In fact,
exploiting user’s feedback has been proven to be an effective technique
for enhancing IR systems’ precision [183]. Probably the most impor-
tant of this kind of algorithm is Rocchio’s formula [181], which was
developed as part of the the SMART project. Basically, it is a three
staged technique. The first stage consists of finding a given number
of documents considered relevant for a given query. The second stage
consists of letting users interactively select what they retain to be the
most relevant documents, and then it goes on with the third stage con-
sisting in re-ranking all the documents according to a sort of Nearest
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Neighbor criterion. This last stage is performed by modifying the query
according to Rocchio’s formula given in Equation (4.1)

qm = αq0 + β
1

|Dr|
∑

dj∈Dr

dj − γ
1

|Dnr|
∑

dj∈Dnr

dj (4.1)

In the formula qm is the modified query; qo is the original query; Dr and
Dnr are the set of relevant and non-relevant documents, respectively;
α, β, and γ are real-valued parameters used to weight the contribution
of each element in the formula. Basically, the new query is obtained by
the old one by reducing the weights of terms leading to the retrieval of
irrelevant documents, and by increasing the weights of terms leading to
the retrieval of relevant documents. As it is evident from the formula,
there is the need for identify the relevant documents. In small scale IR
systems an iterative process was employed where users were asked to
mark relevant documents. In the case of web search engines, the rele-
vance feedback information is obtained by the analysis of past queries
and their relative clicked results. Getting back to web search engines.
Can a Rocchio-like approach be used?

In a nice study performed by Joachims and Radlinski [115] it
appears evident that “the top position lends credibility to a result,
strongly influencing user behavior beyond the information contained in
the abstract” (i.e., the snippet). They registered the number of clicks a
given position obtained in two different conditions: normal and swapped
rank. In the swapped rank setting, the position of the top ranked result
was swapped with the result occupying originally the second position.
Results are shown in Figure 4.2 and shows that there is only a slight
dropping in the percentage of clicks the first result obtains, whereas
the number of clicks the second result is, more or less, stable.

More recently, Craswell et al. [66] have presented a more thor-
ough elaboration bias due to presentation order. They present a model
of click probability trying to capture the dependency on position, as
Joachims and Radlinski [115] present results from a user study. Differ-
ently from them, though, the scale of the experiment is larger. They
gather their data, in fact, from results clicked on answers returned by
a major search engine.
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Fig. 4.2 Percentage of queries where a user clicked the result presented at a given rank,
both in the normal and swapped conditions [115].

As said in the introduction, one of the main challenges in doing
research with query logs is that query logs, themselves, are very diffi-
cult to obtain. In the case of effectiveness enhancing methods, another
big issue, is also the quest for proving that a techniques is, actually,
effective. The lack of datasets and well-defined metrics makes the dis-
cussion more faith-oriented than scientific-oriented. Furthermore, most
of the techniques we review are either tested on a small group of (in
most cases) homogeneous people, or metrics are tested on some sort of
human-annotated testbeds. For this reason, we put more focus on the
description of the techniques more than on the showing of their effec-
tiveness. Indeed, comparing techniques is also, in most cases, impossible
due to the very diversity of the datasets used.

Furthermore, query mining for effectiveness enhancement does not
come for free. It brings with it some important issues that need to be
considered. One of the most important and urgent is privacy, as already
said in the introduction, is a very big concern for search engines. They,
in fact may risk to raise a lot of arguments by people whose searches
have been mined to build a profile. Therefore, unless handled in the
strictest confidence possible, many people could get nervous for having
the feeling of being spied.
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Furthermore, profile-based (i.e., context-based) search is compu-
tationally expensive. If we compute results depending on who is
submitting a query, many efficiency enhancement techniques (like
caching, collection selection, and so on, see the next section for an
analysis of these techniques) soon become not exploitable anymore.

As a final remarkable point, all the techniques that are presented in
the following can be used at different levels of the chain user — “search
engine”. Queries, in fact, can be stored server-side (the search engine,
in this case, is the server) to build knowledge over global statistics.
Historical information can be stored to client-side (user’s browser, in
this case, is the client) to build knowledge only on the basis of the local
information available on the user’s desktop. An intermediate solution
is represented by the use of proxies storing information about a group
of (possible) homogenous users. In all the cases, the same techniques
can be applied to enhance the search experience of users.

4.2 Query Expansion

The statistics presented in “The Nature of Queries” section showed
that web queries are very likely to be short, poorly built, and some-
times mistyped. For these reasons, the recalling power of queries is too
much strong resulting in overwhelming the user with a lot of (some-
times) useless results. One of the main means with which a search
engine precision might be enhanced are query expansion and query
suggestion.

To confirm that these two mechanisms are rather important also
in the real-world, it is worth noticing that quite recently web search
engines have started to insert within their results both suggestions, and
refinements to queries submitted by users. For instance, ASK within its
result page inserts two boxes: “Narrow your search” (query expansion),
and “Expand your search” (query suggestion), both containing related,
and potentially useful, queries.

The first question we want to answer is: can query expansion be
of help? The main advantage of query expansion is that users tune
interactively the expansions and that when based on query log analysis,
expansion is more effective due to the fact that queries are expanded
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with terms that previous users have specified to improve the query.
The main drawback is that the search (and also the interactive search
process) can take slightly longer.

It has been highlighted by Cui et al. [69] that queries and documents
are rather poorly correlated. Using a two-month query logs (about
22 GB) from the Encarta search engine (http://encarta.msn.com), and
41,942 documents from the Encarta website, they measure the gap
between the document space (all the terms contained in documents)
and the query space (all the terms contained in queries). For each
document in the document space they construct a corresponding
virtual document in the query space by collecting all queries for which
the document has been clicked on. A virtual document is represented
as a vector, where the weight of each term is defined by the tf × idf

measure. The similarity between a query and the relative clicked
documents is in turn measured by computing the cosine similarity
between the two corresponding vectors. Actually, since many terms
in document vectors appeared with zero weights in its corresponding
query vector, to obtain a fairer measure, they only used the most
important words in the document vectors as resulting from a simple
tf × idf term ranking schema. Results confirm what expected: in most
cases, the similarity values of term usages between user queries and
documents are between 0.1 and 0.4 with only a small percentage of
documents having similarity above 0.8. The average similarity value
across the whole document collection is 0.28, which means the average
internal angle between the query vector and the document vector is
73.68 degrees confirming that there is a quite large gap between the
query space and the document space. Expanding a query might be of
great help to bridge this gap as much as possible.

Query expansion is a technique dating back to seventies. Actually,
one of the first works making explicit use of past queries to improve the
effectiveness of query expansion techniques in traditional IR systems is
Fitzpatrick and Dent [77]. It was proposed just a few years before the
actual boom of search engines. The method, called past-query feedback,
tests its effectiveness against the TREC-5 dataset. It uses a query DB
made upon a combination of 50 ad hoc TREC-5 queries, 50 ad hoc
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TREC-3 queries, and 10 ad hoc TREC-4 queries. Basically, they build
off-line an affinity pool made up of documents retrieved by similar past
queries. When a query is submitted it is firstly checked against the
affinity pool (which represent a sort of “high-quality” document repos-
itory for the purpose of expansion) and from the resulting top scoring
documents, a set of “important” terms is automatically extracted to
enrich the past query. Term relevance (i.e., importance) is computed
using a straightforward tf × idf scoring function. Past-queries feedback
showed an improvement of 38.3% in mean average precision if compared
to the non-query expansion case. We do not enter into the details of this
method since it does not refer only to the case of web search engines.
Besides, the method shows the in-embryo idea underlying most of the
methods proposed thus far in the literature.

One of the first works exploiting past usage information to expand
web queries is the one presented by Cui et al. [69]. Their method works
by exploiting correlations among terms in clicked documents and user
queries. Indeed, the exploitation of click-through data is due to the
general assumption that usually is made in these kind of studies: clicked
documents are relevant to a query. The method starts by extracting a
set of query sessions from the query log. A query session, for a given
user, consists of a query and a list of clicked results. For example the
query session “Britney Spears”—4,982—2,212—8,412 represents a user
submitting the query “Britney Spears” and successively clicking on
documents 4,982, 2,212, and 8,412 respectively. For each one of the
clicked documents, in each query session, a list of terms is extracted.
The set of all terms contained within each clicked documents makes
up the Document Terms set. The set of all the terms contained within
all the queries, instead, forms the Query Terms set. Given a term in
the Document Terms set td and a term in the Query Terms set tq, a
link is created between td, and tq if and only if for at least one query
containing tq there exists a clicked document containing the term td.
Each link is then weighted by the degree of term correlation between
its endpoints. The correlation is given by the conditional probability
that term td appears given that term tq already appeared, i.e., P (td|tq).
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By an algebra argument,1 this probability can be computed as:

P (td|tq) =
∑

Di∈Sq

P (td|Di)
freq(tq,Di)

freq(tq)

where:

• Sq is the set of clicked documents for queries containing the
term tq.

• P (td|Di) is the normalized weight of the term td in the doc-
ument Di divided by the maximum value of term weights in
the same document Di.

• freq(tq,Di) is the number of the query sessions in which the
query word tq and the document Di appear together.

• freq(tq) is the number of queries containing term tq.

The term correlation measure is then used to devise a query expan-
sion method relying on a function measuring the cohesion between a
query Q and a document term td. The formula of the cohesion weight
(CoWeight) is given by:

CoWeight(Q,td) = log

∏
tq∈Q

P (td|tq) + 1

 (4.2)

It is worth remarking that we are assuming that terms within a query
are independent (this justifies the productory in the formula). The
cohesion weight is used to build a list of weighted candidate expan-
sion terms. Finally, the top-k ranked terms (those with the highest
weights) are actually selected as expansion terms for Q.

Pseudo-Relevance Feedback [233] is one of the most famous
techniques used to expand queries. Some techniques build upon Pseudo-
Relevance Feedback to provide better expansions.

In the previously presented paper, the query log used is from
the Encarta search engine (http://encarta.msn.com), and the relative
41,942 documents are from the Encarta website. To assess the improve-
ment in effectiveness, a total of 30 queries are extracted randomly from

1 For more information on the details of this formula derivation, see Cui et al. [69]
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a combination of the Encarta query logs, from the TREC query set,
and from a small subset of hand-crafted queries. The query-log-based
method was compared against the baseline of not using query expan-
sion, and the local context analysis method (that does not make use of
query log information) proposed by Xu and Croft [233]. For the local
context method the number of expanded terms for each query was set
to 30, whereas for the log-based it was set to 40. The mean average
precision for the baseline on the test collection was 17.46%, whereas
the local context method scored a mean average precision of 22.04%,
an improvement of around the 26.24% on the baseline. The log-based
method scored a mean average precision of 30.63% corresponding to an
improvement of around 75.42% on the baseline. The number of terms
used in the expansion has an impact on the results, actually another
experiment showed that when more than 60 terms are considered in the
expansion the mean average precision of the log-based method starts
to decrease.

The technique of Xu and Croft [233] is quite obsolete if compared
to today’s search engine technology. In particular, expanding a query
to be longer than 30 terms is definitely not viable due to the overhead
it causes in the corresponding query processing phase.

Indeed, Query/Documents terms co-occurrence is just a possible
way of associating document terms to query terms.

Billerbeck et al. [42] use the concept of Query Association. User
queries become associated with a document if they are “similar” that
document. Queries, thus, enrich documents with an associated Surro-
gate Document. Surrogate documents are used as a source of terms for
query expansion. Obviously not all of the queries concur to form query
associations. First of all, whenever a query is submitted it is associated
with the top K documents returned. Furthermore, to make the system
more scalable, instead of keeping all of the queries associated with the
documents only the M closest queries are kept. Similarity, then, is com-
puted using a standard scoring function. In the experiments performed
by the authors they used the Okapi BM25 [116] scoring function. In
case a document reached its full capacity of associated queries, the least
similar query is replaced by a newly submitted one only in case it has
a similarity higher than the least similar associated query. Depending



54 Enhancing Effectiveness of Search Systems

on two parameters, the method has to be fine tuned with respect to
the different values of K and M . In a recent paper, Scholer et al. [187]
empirically set K = 5, and M = 3. Summaries, thus, tend to be small
but composed of high quality surrogate documents.

Billerbeck et al. [42] use the Robertson and Walkers term selection
value formula [179] (Equation (4.3)) to select the e expanding terms.

weight(t) =
1
3

log
RetDocs(t)+0.5

ft−RetDocs(t)+0.5
|T |−RetDocs(t)+0.5

NDocuments−ft−|T |+RetDocs(t)+0.5

(4.3)

where:

• RetDocs(t) is the number of returned documents containing
term t.

• ft is the number of documents in the collection containing t.
• NDocuments is the total number of documents in the

collection.

How the above equations are used? First of all, we shall present a
generalization of a query expansion algorithm:

(1) For a newly submitted query q, an initial set T of top ranked
documents is built.

(2) From T , a list of e expanding terms is selected using a term
selection value formula.

(3) A new query made up of the previous one with appended
the top most scoring terms from the collection is submitted
again to the search engine to obtain a new list of results.

In standard query expansion, steps (1) and (2) of the above gen-
eralized expansion algorithm are performed within the full-text of the
entire collection. Billerbeck et al. [42] refer to this as the FULL–FULL
method. Considering a surrogate documents in either step (1), or (2)
or both we may have the following three combinations:

• FULL–ASSOC, where the original query ranks documents of
the full text collection and expansion terms are selected from
the surrogate document. Therefore, step (1) of expansion is
on the full text of documents in the collection, while step (2)
is based on query associations.
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• ASSOC–FULL, where surrogates have been built and
retrieved instead of the full-text, but the query expansion is
computed selecting highly scoring terms from the full-text.

• ASSOC–ASSOC, where both retrieval and expansion are com-
puted on surrogate documents.

In addition they also experiment with an expansion schema called
QUERY–QUERY where steps (1) and (2) are performed directly on
previously submitted queries, instead of considering query associations.
The QUERY–QUERY schema captures the idea of expanding queries
with terms used by past users in queries considered better specified (e.g.
expanding the query Ratatouille Movie into Ratatouille Movie Pixar).

Experiments conducted on a TREC collection showed the supe-
riority of the ASSOC–ASSOC schema that outperformed the classical
FULL-FULL by 18–20%. In this setting, the values for K and M were set
to those empirically found by Scholer et al. [187] to perform better. It is
worth noticing how the combination of both past queries and full-text
is superior to using either one of the two independently.

Just to make the discussion more concrete, following an exam-
ple of choice of terms for expansion. For the query earthquake, the
FULL–FULL method expanded the query with the terms: “earthquakes
tectonics earthquake geology geological”, whereas the ASSOC–ASSOC
expanded earthquake with a more descriptive “earthquakes earthquake
recent nevada seismograph tectonic faults perpetual 1812 kobe magni-
tude california volcanic activity plates past motion seismological”.

The query expansion techniques shown so far have been rarely
applied by search engines. As it is evident from the discussion so far,
they suffer, mainly, of scalability issues. In many cases the analysis
done is very heavy and cannot scale very well. Another possibility is
represented by query suggestion. In the next part we present these
techniques that have been proven to be effective and scalable in search
engines.

4.3 Query Suggestion

As it has been shown so far, in query expansion only a general view of
queries/documents/snippets associations are taken into account. That
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is, if two users having different tastes submit the same query, this is
expanded with the same terms. Therefore, it is very likely that one of
the two results unsatisfied.

As opposed to query expansion, query suggestion is the technique
consisting of exploiting information on past users’ queries to propose
a particular user with a list of queries related to the one (or the ones,
considering past queries in the same session) submitted. Furthermore,
the number of suggestions can be kept as short as we want, usually
it ranges from two to five queries suggested. With query expansion,
in fact, users can select the best similar query to refine their search,
instead of having the query automatically, and uncontrollably, stuffed
with a lot of different terms. Obviously, this only partially overcomes
the issue above, because if a topic is still under-represented it is very
unlikely that it is suggested within a query suggestion list.

Roughly speaking, drawing suggestions from queries submitted in
the past can be interpreted as a way of “exploiting queries submitted by
experts to help non-expert users [17].” Therefore, the majority of query
suggestion techniques detect related queries by selecting those that are
mostly similar to the ones submitted in the past by other users.

A näıve approach, as stated in [239], to find queries similar to
another one consists of simply looking for those queries sharing terms
regardless of every other possible feature. So, for instance, the query
“George Bush” would be considered, to some extent, similar to the
query “George Michaels” given that, both share the term George. Obvi-
ously, this simple example shows that the näıve approach might result
misleading for users.

In literature there have been presented quite a lot of works on query
recommendation. Ranging from selecting queries to be suggested from
those appearing frequently in query sessions [78], to use clustering to
devise similar queries on the basis of cluster membership [17, 18, 22], to
use click-through data information to devise query similarity [68, 242].

Query sessions (see the User Action section for more information)
can be a precious source of information for devising potentially related
queries to be suggested to a user. The idea is that if a lot of previ-
ous users when issuing the query q1 also issue query q2 afterwards,
query q2 is suggested for query q1. One choice for capturing this idea
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is association rule mining [7] and it is actually used to generate query
suggestions by Fonseca et al. [78].

Basically, the setting for a typical associations-mining algorithm
consists of a set D of itemsets (i.e., sets of items) A, each of which is
drawn from a set I of all possible items. Each A is a member of the
power set 2I . The database considered is made up of transactions, each
transaction is a set of items. Given two non-overlapping itemsets A and
B, an association rule is a formula A ⇒ B stating that the presence
of A in a transaction implies the presence of B. The algorithm has
two parameters: the minimum support value σ – i.e., the minimum
number of transactions containing A ∪ B, and the confidence γ – i.e.,
the minimum accepted probability of having B in a transaction given
that A is contained within the same transaction.

Computing association rules in very large DBs can be computation-
ally expensive. In fact the approach by Fonseca et al. [78] allows only
rules of the form qi ⇒ qj . Therefore, the effort needed to compute the
frequent itemset mining phase2 is considerably reduced.

For each query qi, all the rules qi ⇒ q1, qi ⇒ q2, . . . , qi ⇒ qm are
extracted and sorted by confidence level. To experiment the technique
it has been used a query log coming from a real Brazilian search engine
and consisting of 2.312.586 queries. The mining process is carried out
by setting the support σ = 3, and by extracting all the possible asso-
ciation rules. To assess the validity of their approach they conducted
a survey among a group of five members of their laboratory by asking
for the top five frequent queries whether the proposed suggestions were
relevant or not. Results were encouraging, even if the assessment phase
is not convincing enough. For example, for the top 95 frequently sub-
mitted queries the system is able to achieve a 90.5% precision measured
as the number of suggestions retained relevant for the five laboratory
members surveyed. Clearly, the population of assessors is biased (they
are all members of the same lab), thus potentially another group of
people might have found those results less meaningful.

2 In association rule mining the computation is made in two steps. The first step is the
frequent itemset mining and consists of retrieving all the subsets of the DB’s transactions
exceeding the minimum support σ threshold.
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The number of queries suggested is also important. Obviously, in
this case it is not true that the more the better. Actually, increasing the
number of queries causes a drop in the suggestion quality. The 90.5%
figure in precision was measured for the case of five query suggested.
Precision drops to 89.5% when 10 queries are suggested, down to 81.4%
when 20 queries are suggested.

Actually, there is a trade off not highlighted by authors. Although
90.5% precision for five queries corresponds to more than four queries
relevant, 89.5% precision for 10 queries, instead, consists of around nine
queries out of 10. The list of potentially interesting queries is thus richer
in the case of more suggestion shown. On the other hand, users pre-
sented with a long list of queries might experience a “swamping effect”
resulting in users simply ignoring suggestions. Therefore, fine-tuning
the number of suggestions is of utmost importance for the success of
the method. Indeed, the need for fine tuning the number of suggestions
is on a per-query basis: for frequently submitted queries a long number
of suggestion would be better, for rarely submitted ones the number of
suggestion should be, very likely, kept inherently small.

As opposed to association rule mining, Zäıane and Strilets [239] use
a Query Memory to store past queries and retrieve them according
to the one submitted. In a sense, this method computes associations
on-the-fly at query resolution time.

A Query Memory is a set of queries represented by six different
features: (i) BagTerms: the bag-of-words representation of the query,
i.e., the unordered set of terms contained within the query string; (ii)
Count : the frequency with which the query has been submitted; (iii)
Ldate: the timestamp recording the last time the query was submit-
ted; (iv) Fdate: the timestamp recording the first time the query was
submitted; (v) QResults: the query result list stored as records made
up of Rurl – the URL, Rtitle – the title, and Rsnippet – bag-of-words
representation of the snippet, of each result page; (vi) Rdate: the times-
tamp recording the date at which results were obtained (note that this
timestamp not necessarily relates to Ldate and Fdate).

Let Q be the submitted query, ∆ be the Query Memory, Q.terms
be the bag-of-words representing the query terms, and Q.results be the
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array storing the results. In particular, Q.results[i] is the ith entry of
the result set for Q.

By using this representation we have seven different methods for
returning a set of queries similar to the submitted one.

(1) Näıve query-based method : returning queries having in com-
mon at least one term.
{q ∈ ∆ s.t. q.terms ∩ Q.terms 	= ∅}

(2) Näıve simplified URL-based method : returning queries having
in common at least one URL in the result lists.
{q ∈ ∆ s.t. q.QResults.Rurl ∩ Q.QResults.Rurl 	= ∅}

(3) Näıve URL-based method : returning queries having in com-
mon a large fraction of URLs in the result list. In the formula
below, θm, and θM are a minimum and maximum threshold
(both real numbers ranging from 0 to 1) used to tune the
intersection cardinality.
{q ∈ ∆ s.t. θm ≤ |q.QResults.Rurl∩Q.QResults.Rurl|

|Q.QResults.Rurl| ≤ θM}
(4) Query-title-based method : returning queries where terms in

their result titles are contained in the submitted query.
{q ∈ ∆ s.t. ∃i q.QResults[i].RTitle ∩ Q.terms 	=
∅ and q.QResults[i] /∈ Q.QResults}

(5) Query-content-based method : it is the same as 4 only
considering snippet terms instead of title terms.
{q ∈ ∆ s.t. ∃i q.QResults[i].RSnippet ∩ Q.terms 	=
∅ and q.QResults[i] /∈ Q.QResults}

(6) Common query title method : returning queries whose results
share title terms.
{q ∈ ∆ s.t. ∃i, j q.QResults[i].RTitle ∩
Q.QResults[j].RTitle 	= ∅}

(7) Common query text method : it is the same as 6 only
considering snippet terms instead of the title terms.
{q ∈ ∆ s.t. ∃i, j q.QResults[i].RTitle ∩
Q.QResults[j].RTitle 	= ∅}

Experiments in the paper were, as in the previous case, conducted
on a user study. They collected more than half a million different
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queries from the Metacrawler search engine. From this set of queries
they extracted and harvested the results of a subset of 70,000 queries
(which constitutes the Query Memory). Submitting queries to the
search engine and harvesting result is, indeed, very computationally
and network intensive. More realistically, since the query recommender
is usually on the search engine side, not only the query trace would
be immediately available, but also the inverted indexes of the search
engine would also be available avoiding the submission of queries for
results harvesting.

The most interesting result claimed is that “it was difficult to
find a winner (i.e., the similarity measure with the best recommen-
dation)” [239]. Indeed, from a general perspective, the main reason for
this to hold, could be the fact that the validation process is a very
subjective one.

One of the most interesting observation made by Zäıane and
Strilets [239] is on the scalability of their approach to a real-world set-
ting. Actually the query memory is a DB for queries on which depends
the effectiveness of a recommendation method. The richer the query
memory, the better the suggestions computed. Yet, the way query
records are stored is a crucial point and the paper does not discuss
it as deep as it should. Searching for queries containing a given key-
word, or keywords, would require in real world systems an index per-se,
making the methods paying a double index access for each submitted
query. Obviously, these two accesses can be done in parallel using a
distributed architecture.

Baeza-Yates et al. [17] use a clustering approach to query recommen-
dation. The query recommender algorithm operates using a two tiered
approach. An offline process clusters past queries using query text along
with the text of clicked URLs. The online process follows a two-stage
approach: (i) given an input query the most representative (i.e., simi-
lar) cluster is found; (ii) each query in the cluster is ranked according
to two criteria: the similarity and the attractiveness of query answer,
i.e., how much the answers of the query have attracted the attention of
users (this is called support in their paper and should not be misinter-
preted as support of association rules [7]). Interestingly this work has
a lot of points in common to the one of Puppin and Silvestri [170] that
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has another (quite different) purpose. Enhancing the effectiveness of
collection representation in collection selection functions. We shall talk
about this topic in the Enhancing Efficiency of Search Systems section.

The offline query clustering algorithm operates over queries enriched
by a selection of terms extracted from the documents pointed by the
user clicked URLs. Clusters are, thus, computed by using an implemen-
tation of the k-means algorithm [104] contained in the CLUTO software
package.3 The similarity between queries is computed according to a
vector-space approach. That is, each query q is represented as a vector
�q whose ith component qi is computed as

qi =
∑

u∈URLs

Clicks(q,u) × Tf(ti,u)
maxt Tf(t,u)

where:

• Clicks(q,u) is the percentage of clicks URL u receives when
answered in response to the query q.

• Tf(ti,u) is the number of occurrences of the term t in the
document pointed to URL u.

The sum is computed by considering all the clicked URLs for the
query q. The distance between two queries is computed by the cosine
similarity of their relative vectors.

The k-means algorithms is sensitive to the value of parameter k, i.e.,
the number of computed clusters. To measure the optimal number of
cluster an empirical evaluation measuring the compactness of clusters
have been performed. A run of a k-means algorithm is executed with
different values of k. Each clustering result is assigned to a function
computing the total sum of the similarities between the vectors and the
centroids of the clusters that are assigned to. For the considered dataset
the number of query cluster has been set to k = 600. The query log (and
the relative collection) they use, comes from the TodoCL search engine
and contains 6,042 unique queries along with associated click-through
information. 22,190 clicks are registered in the log spread over 18,527
different URLs.

3 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview.
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The experimental evaluation of the algorithm is performed on 10 dif-
ferent queries. Evaluation is done again by a user study. The evaluation
assesses that presenting query suggestions ranked by support (that is
the frequency with which the query occur in the log) yields to more
precise and high quality suggestions.

Recently, Jones et al. [118] have proposed a model for generating
queries to be suggested based the concept of query rewriting. A query
is rewritten into a new one by means of query or phrase substitutions
(e.g. the query “leopard installation” can be rewritten into “mac os x
10.5 installation”). The rewriting process is based on a log-likelihood
ratio (LLR) measure to evaluate interdependencies between terms of
queries. The metric tests the hypothesis that the probability of seeing
a term q2 in a query is the same whether or not the term q1 has been
seen. Basically, the hypothesis H1:P (q2|q1) = p = P (q2|¬q1) is tested
against the hypothesis H2:P (q2|q1) = p1 	= p2 = P (q2|¬q1). The LLR is
a statistical test for making a decision between two hypotheses based
on the value of this ratio [142]. The LLR is computed as

LLR = −2log
L(H1)
L(H2)

and large values of the ratio means that the likelihood of the two words
of being dependent is higher. From observations, query pairs with
high log likelihood ratio are identified as substitutables. Furthermore
given that the likelihood ratio, computed as λ = (L(H1)/L(H2)), is dis-
tributed as a χ2, a score of 3.84 for log likelihood ratio gives a 95% con-
fidence in rejecting the null hypothesis (therefore, the relation between
the two terms (or phrases) is statistically significant). Indeed a 95%
confidence means 1 in 20 not correctly detected substitutable. For this
reason in [118] they set the log likelihood ratio threshold to a high level
of 100 thus making the method highly selective and precise. Indeed,
since they are dealing with logs of millions of queries even with such a
high threshold level the number of candidates found is acceptable.

A noteworthy point of the paper is the systemization of possi-
ble suggestion into four classes going from the most precise, down to
the less precise class: precise rewriting, approximate rewriting, possible
rewriting, and clear mismatch. Precise rewriting (class 1) means that
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the query suggested has exactly the same semantics of the one to be
replaced (e.g. automotive insurance is a precise rewriting of automobile
insurance). In approximate rewriting (class 2) the scope of the initial
queries is narrowed or broadened (e.g. ipod shuffle is a more narrow of,
but still related to apple music player). Possible rewriting (class 3) is
a still less precise query suggestion methodology: queries are either in
some categorical relationship (e.g. eye-glasses and contact lenses), or
describes a complementary object (e.g. orlando bloom vs. johnny depp).
The last class (4), clear mismatch, is the less precise and contains query
pairs where no relationships can be found among them.

Using these four classes we can identify the two general tasks of
query suggestions, namely Specific Rewriting (or 1+2), and Broad
Rewriting (or 1+2+3). The former consists in generating suggestions of
the first and second class, the latter consists in generating suggestions
of the first, second, and third class. Given these tasks, the problem of
generating query suggestion can be reformulated into a classification
problem.

In the original paper many classifier have been tested. Among the
others, a linear classifier is used. Training is performed on a manually
annotated set of substitutions extracted from queries of a query log.
The extraction is made on the basis of the log likelihood ratio defined
above, and the features considered are of three different types: char-
acteristics of original and substituted query in isolation (e.g. length,
character encoding, etc.); syntactic substitution characteristics (edit
distance, number of tokens in common, etc.); and substitution statis-
tics (e.g. log likelihood ratio, P (q2|q1), etc.)

We omit the details on how the classifier has been trained and tested
and on how data has been prepared. We report, here, only the main
results. Interested readers are encouraged to read the whole paper by
Jones et al. [118] to get the full picture of their technique.

The learned ranking function is given by

f(q1, q2) = 0.74 + 1.88 editDist(q1, q2) + 0.71 wordDist(q1, q2)

+0.36 numSubst(q1, q2) (4.4)

and it is computed for query pairs whose log likelihood ratio is above
an empirical threshold set to 100 (i.e., LLR > 100).



64 Enhancing Effectiveness of Search Systems

One of the main advantage of the rewriting approach is that it is
possible to experimentally assess the quality of suggestions without
recurring to user surveys. For the log used in [118], the precision of the
method has been measured to be 76% with a recall figure of 92%.

As in the case of query expansion, query suggestion might suf-
fer of the same problem due to different tastes of users. Next para-
graph addresses exactly this aspect and shows how information on past
queries and more specifically on who submitted them can be used to
create results tailored on a particular user category.

As a final note, it is worth mentioning a body of literature that
recently has started to consider link recommendations instead of query
suggestions to enhance the effectiveness of a web search engine. Basi-
cally, the idea is as follows: use click-through information to infer what
users are looking for and instead of suggesting a possible query suit-
able for finding it, suggest immediately the site they were potentially
looking for. Typical mechanisms for achieving this are quite similar
to those shown above for query suggestion. The interested readers are
encouraged to read [41, 227, 228, 229] as a starting point.

A slightly different problem, yet related with query recommenda-
tion is the problem of finding “Query Shortcuts” [29, 30, 31]. Authors
define formally the Search Shortcut Problem (SSP) as a problem related
with the recommendation of queries in search engines and the poten-
tial reductions obtained in the users session length. This new problem
formulation allows a precise goal for query suggestion to be devised: rec-
ommend queries that allowed in the past users that used a similar search
process, to successfully find the information they were looking for. The
approach take so far for the approximation of the solution of the SSP
is based on the adoption of collaborative filtering techniques. Authors
point out to some limitations of traditional algorithms, mainly related
with the sparsity of query log data, so future work should develop new
algorithms specially designed for this new problem.

4.4 Personalized Query Results

When issuing a query from different places or in different moments,
users may receive different results. Why? This is likely due to
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personalization of search results. Personalization consists of present-
ing different ranking depending on searcher tastes. For instance, if a
mathematician issues the query “game theory” it is very likely that he
will be returned with many results on theory of games and theoretical
stuff. On the other hand, an economist would be rather more inter-
ested in how game theory has been (or can be) applied to real-world
economy problems. How the search engine can be aware that the user
is a mathematician rather than an economist? One possible answer is,
again: mining query logs.

As stated by Pitkow et al. [163]: “What’s needed is a way to take
into account that different people find different things relevant and that
people’s interests and knowledge change over time.”

Personalization, consists of delivering query results ranked accord-
ing to the particular tastes of a precise user (or class of users). Person-
alization, usually, is enabled by means of “re-ranking” search results
according to a specific user’s profile built automatically.4 Obviously,
personalization is not the “panacea” for search effectiveness: Teevan
et al. [216] demonstrate that for queries which showed less variations
among individuals re-ranking results according to a personalization
function may be insufficient (or even dangerous).

One of the first work discussing personalization of search results is
presented by Haveliwala [94] that shows how to modify the PageRank
algorithm [47] to bias score calculation toward pages related to a given
topical category. The work presented in this paper does not make
use of query logs to compute personalization functions, yet it shows
an interesting method to statically re-rank pages according to user’s
preferences. Basically, the personalization vector of the PageRank
algorithm is set to weight more those pages belonging to the topi-
cal categories chosen. In light of the random surfer point of view, the
personalized PageRank models a topically biased random surfer that
instead of jumping to page chosen uniformly at random jumps only to
pages of the category he belongs to.

4 It is possible for search engines to collect explicitly this data, yet we are interested in
presenting non-intrusive methods that automatically collect user’s information and devise
user’s profiles.
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Liu et al. [135] categorize users with a set of relevant categories. The
categorization function is automatically computed on the basis of the
retrieval history of each user. The category set is fixed and is considered
to be the one also used by the search engine to categorize web pages.5

The two main concepts used are Search Histories for users, and
Users Profile. Search History for users is kept by means of a tree struc-
ture. For example, Apple → Food&Cooking →↗page1.html

↘page2.html
represents a

search history storing that the query Apple for this user belongs to
the Food&Cooking category, in answer to this search, user clicked on
results page1.html and page2.html. For each user, and for each query,
more than one category may be associated. In practice, though, more
than two categories have rarely been associated with the same query
by a single user. Users Profile stores the set of categories hit by the
corresponding user. Each category is associated with a set of weighted
keywords that are considered important for the description of that cat-
egory. For each user, Search History and User Profile are stored inter-
nally as a set of three matrices DT, DC, and M .

The m × n matrix DT stores the associations between the m Clicked
documents or issued queries, and the n distinct terms appearing in
those documents or queries. DT[i, j] is greater than zero if term j

appears in document/query i. The entry is filled-in by computing the
normalized TF-IDF score.

The m × p matrix DC stores the associations between docu-
ments/queries, and the p possible categories. Each entry DC[i, j] is
either 1 or 0 wether document/query i is related to topic j or not.

The p × n matrix M is the user profile and is learnt by the previous
two matrices DT , and DC by means of a machine learning algorithm.
Each row is a vector representing a category in the term-space.

To give an example consider a user submitting two queries frog and
screen. Suppose for the query leopard the user is interested in a particu-
lar species of frog; suppose for the query screen the user is interested in
TV screens. The first and fourth rows of the DT matrix (Figure 4.3a)
store the queries, in fact all the entries are set to 0 except for the terms
contained within the queries that are, instead, set to 1. The remaining

5 For example http://www.google.com/dirhp, or http://dir.yahoo.com/.
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Doc/Term leopard medow grass screen tv
D1 1 0 0 0 0
D2 0.58 0.58 0 0 0
D3 1 0.7 0.5 0 0
D4 0 0 0 1 0
D5 1 0 0 0.6 0.4

(a)

Doc/Categ NATURE HI-TECH
D1 1 0
D2 1 0
D3 1 0
D4 0 1
D5 0 1

(b)

Categ/Term leopard medow grass screen tv
NATURE 1 0.4 0.4 0 0
HI-TECH 0 0 0 1 0.4

(c)

Fig. 4.3 The matrix representation of user search history and profile. (a) The matrix DC
storing issued queries and clicked documents on rows and terms in columns; (b) The matrix
DC storing issued queries and clicked documents on rows and categories in columns and
(c) The matrix M with the learnt user profile: on the rows the Category on the columns
the category keywords.

rows store representative terms of the clicked documents weighed by
their TF-IDF scores. The DC matrix (Figure 4.3b) stores the associa-
tions between documents and categories. In the example, the first three
rows are for the Nature category, the remaining two for the Hi-Tech
category. The matrix M (Figure 4.3c) stores on each row the relative
weight of the terms for the given category.

In addition to the three matrices defined per each user, three addi-
tional general matrices are generated independently from a particular
user by the Open Directory Project6 (ODP) category hierarchy. The
three matrices are DTg, DCg, and Mg (where g stands for general).
The label associated with the first two level categories are used as doc-
uments, while the third level labels are used to extract labels.

6 http://www.dmoz.org/.
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The matrix M can be “deduced” using either user profiles only (DT,
and DC), or using the general profile only (DTm, and DCm), or using
both profiles. The process of generating the matrix M can be viewed as
a multi-class text categorization task, therefore one can adopt different
techniques to learn M . In [135] authors use three classes of learners.
Linear Least Squares Fit (LLSF)-based methods [236], Rocchio-based
methods [181], and a k Nearest Neighbor (kNN)-based method.

LLSF-based methods computes a p × n category matrix M such
that DT × MT approximates DC with the least sum of square errors.
To compute such M we first compute the Singular Value Decom-
position (SVD) of DT obtaining three matrices U , Σ, V such that
U and V are orthogonal matrices, and Σ is a diagonal matrix. SVD
is computed in order to be able to have DT = U × Σ × V T. After
the SVD M = DCT × U × Σ−1 × V T. A variant of LLSF is pseudo-
LLSFT. It consists of considering only the first k columns of U and V

of the SVD to reduce the effect of noisy entries. Therefore, M =
DCT × Uk × Σ−1

k × V T
d . This method stems from another, and more

popular, Latent Semantic Indexing (LSI) [86] method used with big
success in many different IR applications.

Rocchio-based methods assign each cell M [i, j] using the following
equation:

M [i, j] =
1
Ni

m∑
k=1

DT [k,j] · DC[k,i]

where m is the number of documents in DT, Ni is the number of doc-
uments that are related to the ith category. A very nice variant of this
method is the adaptive Rocchio. In adaptive Rocchio, entries of the
matrix M are updated as the data comes in. The formula of the basic
Rocchio algorithm, thus, is computed according to

M t[i, j] =
N t−1

i

N t
i

M t−1[i, j] +
1

N t
i

m∑
k=1

DT [k,j] · DC[k,i]

where M t is the user profile at time t, N t
i is the number of documents

related to the ith category that have been accumulated from time zero
to time t.
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The last method, kNN, does not compute the matrix M . Instead,
it first finds the k most similar documents among all document vectors
in DT using the Cosine metric. Secondly, among the k neighbors a set
of documents S related to category c is extracted using DC, and the
final similarity between a user query q and c is computed as the sum
of the similarities between q and the documents in S. Therefore, the
following formula is used to compute the similarity between a query q

and a category cj :

sim(q,cj) =
∑

di∈kNN

cos(q,di) · DC[i, j]

where cos(q,di) is the cosine similarity between q and the descriptor of
document j.

Apart from the case of the kNN-based method shown above, sim-
ilarities between a query vector q and a category vector cj , rows of
M , is computed by the Cosine metric [184]. Therefore sim(q,cj) =
((q,cj)/|q| · |cj |), where (q,cj) is the scalar product between q and cj .

By denoting with cu the user profile generated category, and with
cg the general user profile there are five possible ways of computing the
similarity between a query vector q and a category c:

• Using only the user profile: sim(q,c) = sim(q,cu)
• Using only the general profile: sim(q,c) = sim(q,cg)
• Combo1: sim(q,c) = 1

2 · (sim(q,cu) + sim(q,cg))
• Combo2: sim(q,c) = 1 − (1 − sim(q,cu)) · (1 − sim(q,cg))
• Combo3: sim(q,c) = max(sim(q,cu),sim(q,cg))

The accuracy is defined as:

Accuracy =
1
n

∑
cj∈topK

1
1 + rankci − ideal rankci

and it is computed in a user study to evaluate the effectiveness of the
method.

In the formula above, topK are the K category vectors having the
highest cosine similarity measure with the query, rankci , is an integer
ranging from 1 to K and is the rank of category ci as computed by
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sim(q,cj), ideal rankci is the rank assigned by users in the human-
generated rank. Liu et al. [135] tested the methods by setting K = 3
(i.e., the top three scoring categories).

For instance, if categories c1 and c2 are ranked as first and second
by the system, and first and third by humans the Accuracy is given by

Accuracy =
1
2

(
1

1 + 1 − 1
+

1
1 + 2 − 3

)
= 0.5

The number of users surveyed in the original paper is seven, each
one of them evaluating an amount of queries ranging from 26 to 61.

As a first result in Figure 4.4(a) it is shown the comparison of the
average accuracy of the different learning methods computed over the
seven users when using only the user profile.

In Figure 4.4(b) the accuracy of the ranking computed is measured
by considering all the possible combinations and the Rocchio’s algo-
rithm as the learning method.

A nice result is obtained from the analysis of the adaptive learning
algorithm. The main observations reported by Liu et al. [135] are:

• When the dataset on which the model is computed is small,
accuracy of using the user search history derived profile is
worse than the one learnt from the general profile. There-
fore, the accuracy of combining both profiles is better than
those using a single profile and the accuracy of using the user
profile only is better than that using the general profile only,
provided that there is sufficient historical data.

Method pLLSF LLSF bRocchio kNN
Avg Accuracy 0.8236 0.7843 0.8224 0.8207

(a)

Method User General Combo1 Combo2 Combo3
Avg Accuracy 0.8224 0.7048 0.8936 0.8917 0.8846

(b)

Fig. 4.4 Average accuracy of the different profile combination methods [135]. (a) Average
accuracy of the different learning methods using only the user profile over the seven users
surveyed and (b) Average accuracy of the different profile combination methods using non-
adaptive Rocchio learning algorithm.
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• For all the datasets the accuracy of combining user and gen-
eral profiles is better than that using only one of them.

• As more and more data comes into the adaptive model, the
user profile based model gets better and better.

• The accuracy approaches to 1 as the dataset increases.

Actually, considering the extremely high variability of queries in
search engines, the adaptive learning method should be the one of
choice because it is able to adapt promptly to this variations without
requiring any efforts from search engine maintainers.7

Another different approach followed by Boydell and Smith [45] is
based on the use of snippets of clicked results to build an index for per-
sonalization. First of all, personalization is done, through re-ranking of
the search results, at the proxy-side. Therefore, the technique described
in the paper does not require the storing of usage information at the
server-side. Furthermore, not requiring the storing of usage information
at the server side makes this approach harmless with respect to the
problems of users’ privacy mentioned in Introduction. This approach,
indeed, falls into the category of those collecting data proxy-side. Doc-
uments and queries collected for a subset of users (a community) are
used.

The method is quite straightforward, we use the notation adopted
by the authors to keep the discussion as similar as possible to that
of the original paper. Let (C,u,qT ) be a search for query qT by user
u in the community C. Let selected(C,qT , r) = true if a result r has
been selected when returned in response to a query qT . The snippet
for r is s(r,qT ) = t1, . . . , tn, and can be considered as a surrogate for
the real document r within the context of (C,u,qT ). The document r is
thus indexed by the system only by considering s(r,qT ). Since the same
document r can be selected for different queries submitted by users of
community C, the surrogate is actually represented as the union of all
the s(r,qi) vectors.

SC(r) =
⋃

i s.t. selected(C,qi,r)

s(r,qi)

7 This is a similar observation made by Baraglia and Silvestri [32] in the context of online
web recommender systems.
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The rationale behind this representation is that it actually stores
the relevant parts of a document r for the community C. The snippets
are indexed by the Lucene8 IR system. In addition to this local index,
a hit-matrix H is used. Each entry of the hit-matrix Hi,j stores the
number of times result rj has been selected in addition to query qi.

Given a query qT submitted within the community C, and a result
rj for which selected(C,qT , rj) = true, we firstly retrieve all the queries
q1, . . . , qn that has been previously submitted and that has caused the
selection of document rj . The relevance of rj for query qT is computed
using the following equation

Relevance(rj , qT , q, . . . , qn)

= TF − IDF(rj , qT ) ·
(

1 +
n∑

i=1

(Rel(rj , qj) · QuerySim(qT , qi))

)

where Rel(rj , qj)=(Hi,j/
∑

∀j Hi,j); and QuerySim(qT , qi)=(|qT ∩ qi|/
|qT ∪ qi|) (i.e., the Jaccard’s Distance [25] between qT , and qi).

Also this method has been assessed through a user study. The study
monitored a group of users for a period of 2 weeks recording a total of
430 search sessions. Results are recorded both at the end of the first
week and at the end of the entire period.

As it is shown in Table 4.1 many users found the re-ranking of
search result useful, in particular it is evident a raise in the second
week denoting (in agreement with some of the conclusions drawn by
Liu et al. [135]) that a longer training period produces a beneficial effect
in the quality of personalization.

In a recently presented work by Dou et al. [73], a large-scale eval-
uation of personalization strategies is shown. In particular, the study

Table 4.1. The success rate of the
re-ranking algorithm as computed from
the user study by Boydell and Smith [45].

Metric Week 1 Week 2

Total sessions 246 184
Overall Success Rate 41% 60%

8 http://lucene.apache.org/.
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differs deeply from the previous ones since it does not present any user
studies, but instead exploits an evaluation function based on sessions
extracted from query logs. The MSN search engine, along with a query
log coming from the same engine is used for the testing framework.

Some conclusions in the paper by Dou et al. [73] are the following:

• Personalization may lack of effectiveness on some queries
and there is no need for personalization on those queries.
Typically navigational queries do not have many advantages
in using or not personalization. For example for the query
“Digg”, users tend to not look too much into the search
results. The first result, usually showing the target’s home
page, is selected.

• Different strategies may have variant effects, and therefore
variant effectiveness, on different queries. For instance, for
the query “free mp3 download” all the previous methods will
result ineffective, because those techniques are well-suited to
queries on multiple topics (e.g. “mouse”).

• Users who have submitted few queries in the past do not
benefit too much from personalization, on the other hand
users with a short-term user need are penalized by results
that are personalized on the basis of the stratified knowledge.
Again, as an example, the query “mouse” will likely produce
a lot of results from the computer category for a user having
submitted the majority of his queries in that category. If,
for some reasons, the query was submitted to intentionally
look for information on mice, the user experience will not be
improved.

Therefore,

“the effectiveness of a specific personalized search
strategy may show great improvement over that of non
personalized search on some queries for some users, and
under some search contexts, but it can also be unnec-
essary and even harmful to search under some situa-
tions” [73].
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The evaluation framework for re-ranking that has been considered
by Dou et al. [73], is made up of four parts:

(1) Query results retrieval.
(2) Personalization.
(3) Ranked lists combination.
(4) Evaluation of personalization effectiveness.

In Query results retrieval the top 50 search results are obtained
from the MSN search engine for the query being tested. Furthermore,
let U be the set of downloaded web pages, and let τ1 be the ranking of
pages in U as returned by the search engine. In Personalization phase,
a personalization algorithm (see below) is used to generate a new list
τ2 from U by ranking its elements according to the personalization
score computed. The Ranked lists combination phase uses the Borda
fusion algorithm [220] to merge τ1 and τ2 into the final ranked list, τ ,
that is proposed to user. The Borda fusion method is very straight-
forward, it is a voting system in which each voter ranks the list of n

candidates in order of preference. Within this list the first candidate
scores n points, the second scores n − 1, down to the last one who
scores 1 point. The final score of each candidate is given as the sum of
each score in each voter’s ranked list. Considering our problem, sup-
pose U is composed of four pages U = {a,b,c,d}, suppose τ1 = (abcd),
and τ2 = (acdb). According to the Borda fusion method the final list
τ = (acbd) with scores, 8, 5, 4, and 3, respectively. The Borda scoring
system is useful whenever the original ranking scores from the search
engine are not available. Otherwise, the ranking could have been com-
puted using one of the three methods (i.e., Combo1, Combo2, Combo3)
shown above. In the Evaluation of personalization effectiveness step
the personalization is evaluated in a totally automatic manner. The
assumption we make is that results are consistent with those actually
seen by the users who submitted the queries in their used query log.
The log was referring to queries submitted in August 2006, and the
study was conducted in September 2006 therefore they were able to
ignore the effect of the index updates. Personalization is analyzed under
two different perspectives. A person-level re-ranking strategy considers
the history of a single user to carry out personalization. A group-level
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re-ranking, instead, focuses on queries and results of a community of
(typically homogeneous) people.

Person level re-ranking strategies include P-Click, L-Profile
S-Profile, and LS-Profile. Group level re-ranking is computed using
the G-Click score. Let q be a query submitted by user u. The person-
alized score for the page p is computed by the different methods in the
following ways.

P-Click. The score SP-click(q,p,u) is computed using the count of
clicks on p by u on query q, namely |Clicks(q,p,u)|, and the total
number of clicks made by the same user on the same query q, i.e.,
|Clicks(q,•,u)|

SP-click(q,p,u) =
|Clicks(q,p,u)|

|Clicks(q,•,u)| + β

where β is a smoothing factor (β = 0.5 in the paper by Dou et al. [73])
that together with |Clicks(q,•,u)| is used to normalize the score. Actu-
ally, in fact, only |Clicks(q,p,u)| matters for the purpose of scoring the
triple (q,p,u). The main drawback of this approach is that whenever
a user submit a query not previously seen, personalization does not
take place. As seen in User Action section, two-thirds of queries are
submitted only once, thus, the method does not impact too much on
personalized results.

L-Profile. The score SL-Profile(q,p,u) is, in this case, computed by
using a user profile specified as a vector cl(u) of 67 pre-defined topic
categories defined by the 2005 KDD Cup [134]. Let U(p) be the number
of users that have ever clicked on p and U the total number of users
that have ever clicked on some pages. Let w(p) be the weight of page p

within the user’s history computed as

w(p) = log
|U|

U(p)

Furthermore, let |Clicks(•,•,u)| be the total number of clicks of u, and
let |Clicks(•,p,u)| be the number of clicks made by user u on page p.
The probability that user u clicks on page p, P (p|u) is computed as

P (p|u) =
|Clicks(•,p,u)|
|Clicks(•,•,u)|
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The category vector of a web page p, namely c(p) is computed by
means of a page classifier developed by Shen et al. for the KDD-
cup2005 [192]. Each component c(p)i is the classification confidence
returned by Q2C@UST that indicates the probability for a page p to
be in the ith category. If category i is not returned by the tool then
we set c(p)i = 0. Let P(u) be the collection of pages visited by u, the
user profile cl(u) is automatically learnt by past user’s clicked pages by
using the following formula

cl(u) =
∑

p∈P(u)

P (p|u)w(p)c(p)

and the final personalization score is computed as

SL-Profile(q,p,u) =
cl(u) · c(p)

‖cl(u)‖‖c(p)‖

S-Profile. The previous method has the characteristic of accumulat-
ing the stratified knowledge about all the queries submitted in the past.
Sometimes it is better, for personalization purposes, to consider only
the most recently seen pages by u: Ps(q) is the set of pages visited in
the current session with respect to query q. The vector cs(u) is a user
short-term profile and is computed as

cs(u) =
1

|Ps(q)|
∑

p∈Ps(q)

c(p)

The personalization S-Profile is then computed as

SS-Profile(q,p,u) =
cs(u) · c(p)

‖cs(u)‖‖c(p)‖

where c(p) is computed as in the case of the L-Profile scoring formula
described above.

LS-Profile. The score, in this case, is obtained by a linear combina-
tion of the previous two methods and is given by

SLS-Profile(q,p,u) = θSL-Profile(q,p,u) + (1 − θ)SS-Profile(q,p,u)
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G-Click. To test group-based personalization a kNN approach is
used. In this case the personalization is based on the k users hav-
ing closest preferences with the current user. The similarity between to
users u and u′ is given by

Sim(u,u′) =
cl(u) · cl(u′)

‖cl(u)‖‖cl(u′)‖

and it is used to compute the k nearest neighbors of u as follows:

Su(u) = {u′|rank(sim(u,u′)) ≤ k}

The final re-ranking score is, then, computed as

SG-Click(q,p,u) =

∑
u′∈Su(u)

Sim(u,u′)|Clicks(q,p,u′)|

β +
∑

u′∈Su(u)
|Clicks(q,•,u′)|

To test the performance of the various strategies, a MSN query logs
collecting 12 days worth of queries submitted in August 2006 was used.
The main important difference between the evaluation performed in
this paper and those of previous papers is that authors do not make
use of any user study. Instead, they use information about past clicks
done by users to evaluate the relevance of the personalized ranking
computed. In particular, evaluation is done through the use of two
measurements: Rank Scoring and Average Rank.

Rank Scoring. The method has been proposed by Breese [46] to
evaluate the performance of a recommender system using collaborative
filtering techniques to produce a ranked list of suggestions to users.
The method is aimed at approximating the expected utility of a ranked
list of pages for a particular user. Let j be the rank of a page in the
evaluated re-ranking, let δ(s,j) be a boolean function evaluating to 1
if and only if j is clicked when returned in answer to the query s, let
α be a normalizing factor: the expected utility for page s in the ranked
list is given by

Rs =
∑

j

δ(s,j)
2(j−1)/(α−1)
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The final rank scoring is the sum (normalized by the sum of maximum
utilities Rmax

s ) of the utilities of all entries of the list

R = 100
∑

s Rs∑
s Rmax

s

Larger values of R mean better performance of the personalization
algorithm.

Average Rank. The average rank has been used in other papers [174,
207] to evaluate the effectiveness of the personalization strategy. The
average rank for a ranked list of results is defined in terms of the sum
of its items. Let Ps be the set of clicked pages on test query s, let R(p)
the rank of page p, the average rank for a page s is defined as

AvgRanks =
1

|Ps|
∑
p∈Ps

R(p)

and the final average rank on the query set S is computed as:

AvgRank =
1

|S|
∑
s∈S

AvgRanks

Table 4.2 shows a comparison of the various methods seen thus far
on the MSN query log. The method defined as WEB represents the
performance of the considered web search engine without any person-
alization and, thus, it represents the baseline for comparisons.

Results under the column all, correspond to the entire query log,
while the not-optimal column corresponds to the performance of

Table 4.2. Overall performance of personalization methods shown by Dou
et al. [73]. For the method G-Click K is set to 50, whereas for the method LS-Profile
θ = 0.3.

All Not-optimal

Method Rank Similarity Average Rank Rank Similarity Average Rank

WEB 69.4669 3.9240 47.2623 7.7879
P-Click 70.4350 3.7338 49.0051 7.3380
L-Profile 66.7378 4.5466 45.8485 8.3861
S-Profile 66.7822 4.4244 45.1679 8.3222
LS-Profile 68.5958 4.1322 46.6518 8.0445
G-Click 70.4168 3.7361 48.9728 7.3433
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personalization on queries whose top result was not the one selected by
users. That is the queries on which the search engine performed poorly.
Click-based methods always outperform the baseline showing that, in
general, click-through data can bring benefits to personalization on
the web.

The results shown in Table 4.2 are computed over the whole query
log and represent the aggregate, and final, effectiveness figure for the
proposed methods. As it has been said many times, personalization is
only effective whenever the variance in results clicked for a query is
high. This, in fact, means that for a single query there are many topics
associated with a single result. A measurement that can be computed
to evaluate the degree of result variance for a given query is the Query
Click Entropy.

Let q be a query, let p be a page, and let P(q) be the set of web
pages clicked on query q. Let P (p|q) be the percentage of clicks on page
p when returned as an answer to query q, i.e.,

P (p|q) =
|Clicks(q,p,•)|
|Clicks(q,•,•)|

The Query Click Entropy is defined as

ClickEntropy(q) =
∑

p∈P(q)

−P (p|q) log2 P (p|q)

Obviously ClickEntropy(q) = 0 if and only if log2 P (p|q) = 0, i.e.,
P (p|q) = 1. Therefore, the minimum entropy is obtained when clicks
are always on the same page. Personalization, in this case, is of little
(or no) utility. Personalization might help in the case of zero entropy,
only if the clicked page is not the top ranked one, but this is very
unlikely to happen.

Figure 4.5 shows the distribution of the click entropy for the MSN
query log. The majority of the queries (about 70%) exhibits a very low
entropy value (0–0.5) meaning that clicks, in this case, were almost all
referred to the same page. In terms of personalization this means that
in, almost, 70% of the cases personalization does not help. This fact is
also confirmed in the overall results appearing in Table 4.2 where the
improvements of the various methods over the baseline are sensitive.
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Fig. 4.5 Click entropy distribution for the MSN query log [73].

Considering this low entropy in query clicks, remain important to
evaluate the variation of the accuracy measurements when entropy
varies.

Figure 4.6(a) plots the variation in Ranking scoring, and Fig-
ure 4.6(b) plots the variation of the Average rank when varying the
entropy level.

The first observation is that the greater the query click entropy
the better the performance. Both Ranking scoring, and Average rank
perform better at higher entropy levels. Roughly speaking, this means
that whenever accuracy improvement is needed (on high variance query
results) personalization is of great help.

The second observation is that, as in the case of the overall
results shown above, the click-based methods sensibly outperformed the
profile-based ones. This seems to be in contrast with the results shown
in literature so far. Dou et al. [73] state that this might have been due
to a “rough implementation” of their system. Actually, a deeper anal-
ysis have shown that profile based strategies, especially the L-Profile,
suffer of an inability to adapt to variation of users’ information needs.

Figure 4.7 shows that: (i) profile-based methods perform better
when the number of queries submitted by users is around 70–80, this is
due to the fact that such a number of queries forms a good repository of
knowledge that can be effectively exploited by the system; (ii) in all the
other cases click-based methods outperform profile-based methods and
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(a)

(b)

Fig. 4.6 Search accuracy improvement over the baseline method (WEB) on varying the
entropy measure [73]. (a) Ranking scoring and (b) Average rank.

improve over the baseline; (iii) when the number of queries submitted
by each user increase and becomes greater than (approximately) 90 the
profile methods collapse. This last phenomenon might be explained by
the fact that the higher the number of queries, the longer the period
within which they have been submitted, the higher the probability that
user needs has been changed.
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Fig. 4.7 Rank scoring over the WEB method on varying the number of queries submitted
by each user [73].

The literature on personalization is quite rich. We have not ana-
lyzed, in this work, relevant papers such as [62, 76, 141, 193, 217, 225].
We trust in the keen reader and we leave them the pleasure of read-
ing them.

4.5 Learning to Rank

Using machine learning techniques [148] in text categorization (thus in
search engine documents characterization) has a long tradition [191].
Starting more than 10 years ago [44], machine learning techniques have
been extensively studied to derive ranking functions in web search
engines.

Differently from personalized ranking, the aim of “learning to rank”
techniques [114] is to compute a global (i.e., independent from user)
model to compute relevance scores for each page. Basically, it works by
firstly selecting the best features to be used to identify the importance
of a page, and then by training a machine learning algorithm using these
features on a subset (i.e., the training set corpus) of the web pages. The
focus of this survey is on using query logs to generate training data for
learning to rank algorithms. To this extent, learning to rank algorithms
will be discussed briefly, for context, but remember that the focus is on
using logs to generate training data.



4.5 Learning to Rank 83

More specifically the aim of learning to rank is aimed to learn (as in
the machine learning meaning) a function for ranking objects. Learn-
ing to rank is useful for document retrieval, collaborative filtering, and
many other applications. We are concerned, in this work, to learning
functions that are able to evaluate the importance of a document d in
answer to a query q. Defined this way, it resembles much the definition
of general ranking [221], the main difference is that the ranking func-
tion is not user generated but it is learnt by using a set of features that
generally takes into account more than term or document frequencies
(that are, instead, typical of traditional IR ranking functions). Further-
more, many methods do not make use of any information coming out
of query logs, we do not include those studies in this survey.

One of the seminal papers on this topic has been presented in 1996
at an AAAI workshop on Internet-Based Information Systems. In their
paper Boyen et al. [44] present LASER: a Learning Architecture for
search engine Retrieval. The system is based on machine learning tech-
niques for the ranking module.

As a side note, not really on topic with the current Text, it is worth
mentioning that in 1996, when neither PageRank [47] nor HITS [122]
were yet proposed, the paper started from the observation that the web
was composed of hypertext and links. LASER was the first (as far as we
are aware of) to introduce the concept of reward propagation through
the hypertext graph. Given a retrieval status value (rsv0(q,d)) measuring
the likeliness of the document d being relevant for the query q, by a
value iteration process [39] the rsv score after t link traversals is given
by

rsvt+1(q,d) = rsv0(q,d) + γ
∑

d′∈links(d)

rsvt(q,d′)
|links(d)|ν

where γ is a discounting factor governing the propagation of page
weights through links, links(d) is the neighboring set of d and ν is
used for normalization purposes. This formula resembles very much
that of PageRank except that instead of considering inlinks it propa-
gates weights through outlinks (much more in the spirit of Marchiori’s
paper on hyper search engines [143]).
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In traditional IR experiments, ranking precision has been measured
with the help of a popular benchmark: the TREC collection [95]. Rele-
vance judgements were provided for the precision to be evaluated in a
scientific (i.e., reproducible) way.

The ranking precision of a web search engine, instead, is very diffi-
cult to evaluate. Basically, in shortage of humans devoted to evaluate
the quality of results for queries the only way that can be followed is
to evaluate how results are clicked by users on query results. Click-
through information is thus used to infer relevance information: if a
document receives a click it is relevant for the query it has answered.
Therefore, if f is a ranking function we can define its performance as
the average rank of the clicked results, i.e.,

Perf(f) =
1

|Q|

|Q|∑
i=1

1
|Di|

|Di|∑
j=1

rank(f,Qi,Dij)

where Q1, . . . ,Q|Q| are the queries over which click-through data has
been collected, Di is the set of documents clicked in answer to Qi. The
performance metric is very straightforward: if for query q1 user clicks on
the first, the second and the fourth, and for the query q2 user clicks on
the second and the third, than Perf(f) = (1/2)((7/3) + (6/2)) = 2.67

Getting back to LASER, the method we are considering, its aim
is to learn from users (implicit) feedback on past queries. Fixing the
objective of finding the argument f minimizing Perf(f) a variant of
the simulated annealing [168] is used. Actually, the performance of the
learning algorithm using click-through data as a feature in learning is
only assessed for a single experiment. Preliminary results, though, were
very promising thus, motivating further investigations (see Table 4.3).

To be precise, it is worth saying that the technique does not only use
click-through information for learning the ranking. Among its features,
in fact, the containment in some special headlines (H1, H2, etc.), the
containment within title, bold, italic, blink modifiers, and the appear-
ance as anchor text, are also considered.

After this seminal work many other papers have been published on
this topic. In particular, works in [4, 5, 6, 111, 112, 115, 128, 175, 176,
237] show techniques operating on different features extracted from
query logs.
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Table 4.3. Rankings produced by the standard TF-IDF scoring, and the learnt
f function for the query “vegetarian restaurant”[44].

standard TF-IDF automatically learned parameters

1. Vegetarian Chili Recipes 1. Eating “Indian” in Pittsburgh
2. Vegetarian Recipes 2. Restaurant Reviews
3. Eating “Indian” in Pittsburgh 3. A list of food and cooking sites
4. Restaurant Reviews 4. Duane’s Home Page & Gay Lists
5. Greek Dishes 5. For the Professional Cook
6. Focus on Vegetarian 6. Eating & Shopping Green in Pittsburgh
7. For the Professional Cook 7. Vegetarian Recipes

Score: 3.5 Score: 1.5

Among the others two popular approaches emerged in these last
years: RankSVM [111] and RankNet [51].

Joachims [111] lays the foundations of the RankSVM technique.
Stemming from the observation that a click on a result is not an unbi-
ased estimator for the importance of the relative web page, Joachims
looks for a set of query log features that could give an unbiased estimate
of user’s perceived relevance for a web page [111, 113].

The fact that users click more often on the first result than on the
others seem to be related with a trust feeling with the search engine
ranking. Looking back at Figure 4.2, it can be observed that, even if
the first and the second results are swapped, the bars denoting their
percentage of clicks are not swapped as well.

The key observation is that:

click is not an unbiased estimator of the absolute impor-
tance of a page, yet, since users scan a page from top to
bottom, clicking on a result is likely to be a sign that the
user retains that result more important than the previ-
ous ones.

In other words, a click is not an unbiased indication of the absolute
importance of a page. However, because people usually scan search
results from top to bottom, a click on a result is evidence that it may
be more important than unclicked results that appeared before it in
the ranking.



86 Enhancing Effectiveness of Search Systems

Starting from the previous key observation Joachims et al. [113]
propose a series of strategies to extract relevance feedback from
click-through data. All the strategies are better explained through an
example: let q be a query returning result pages p1–p7, suppose a user
clicks on pages p1, p2, p4, and p7, i.e.:

p∗
1,p

∗
2,p3,p

∗
4,p5,p6,p

∗
7

The following strategies for extracting feedback can be defined.

Strategy 4.1. (Click > Skip Above) For a ranking (p1,p2, . . .) and
a set C containing the ranks of the clicked-on links, extract a preference
example rel(pi) > rel(pj) for all pairs 1 ≤ j < i with i ∈ C and j /∈ C.9

From the running example, using Strategy 4.1, the features rel(p4) >

rel(p3), rel(p7) > rel(p5), rel(p7) > rel(p3), and rel(p7) > rel(p6) are
extracted. In other words, the strategy assumes that when a user clicks
on a result retains all the previous results not relevant.

Strategy 4.2. (Last Click > Skip Above) For a ranking (p1,p2, . . .)
and a set C containing the ranks of the clicked-on links, let i ∈ C be the
rank of the link the was clicked temporally last. Extract a preference
example rel(pi) > rel(pj) for all pairs 1 ≤ j < i with j /∈ C.

From the running example, using Strategy 4.2, the features rel(p7) >

rel(p6), rel(p7) > rel(p5), and rel(p7) > rel(p3) are extracted. In other
words, the strategy assumes that only the last click counts and it
expresses the relevance of the clicked results with respect to all the
previously unclicked ones. The set of relevance features extracted using
Strategy 4.2 is a subset of those extracted by Strategy 4.1.

Another possible assumption is that the abstracts that are most reli-
ably evaluated are those immediately above the clicked link. This leads
to the following strategy, which generates constraints only between a
clicked link and a not-clicked link immediately above.

9 rel(·) is the function measuring the relevance of a page: rel(pi) > rel(pj) means pi is more
relevant than pj in the click-set C.
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Strategy 4.3. (Click > Earlier Click) For a ranking (p1,p2, . . .)
and a set C containing the ranks of the clicked-on links, let t(i), i ∈ C

be the time when the link was clicked. We extract a preference rel(pi) >

rel(pj) for all pairs j and i with t(i) > t(j).

From the running example, using Strategy 4.3, assume pages are
clicked in this order p4, p1, p2, p7, we can extract the following features:
rel(p1) > rel(p4), rel(p2) > rel(p4), rel(p2) > rel(p1), rel(p7) > rel(p4),
rel(p7) > rel(p1) and rel(p7) > rel(p2). As in the previous strategy the
idea that later clicks are more informed decisions than earlier clicks is
followed. But, stronger than the “Last Click > Skip Above”, it is now
assumed that clicks later in time are on more relevant abstracts than
earlier clicks.

Strategy 4.4. (Click > Skip Previous) For a ranking (p1,p2, . . .)
and a set C containing the ranks of the clicked-on links, extract a prefer-
ence example rel(pi) > rel(pi−1) for all i ≥ 2 with i ∈ C and (i − 1) /∈ C.

From the running example, using Strategy 4.4, the features rel(p4) >

rel(p3) and rel(p7) > rel(p6) are extracted. The strategy is motivated by
the fact that the abstracts that are most reliably evaluated are those
immediately above the clicked link. This leads to the Click > Skip
Previous strategy, which generates constraints only between a clicked
link and a not-clicked link immediately above. The same assumption
can also lead to the following strategy.

Strategy 4.5. (Click > No-Click Next) For a ranking (p1,p2, . . .)
and a set C containing the ranks of the clicked-on links, extract a
preference example rel(pi) > rel(pi+1) for all i ∈ C and (i + 1) /∈ C.

From the running example, using Strategy 4.4, the features rel(p2) >

rel(p3), and rel(p4) > rel(p5) are extracted.
Accuracy of relevance samples extracted using these different strate-

gies is very difficult to measure. In Joachims et al. [113] an approach
tackling, once more, a user study has been used. Table 4.4 shows the
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Table 4.4. Accuracy of the strategies shown above for generating pairwise
preferences from clicks within a single query. Feature-Per-Query shows the
average number of features extracted per each query, the Swapped Col-
umn represents the experiment with the first two results swapped. These
figures have been extracted from the paper by Joachims et al. [113]. The
Inter-Judge Agreement column correspond to the average agreement with
which judges have scored the different results.

Strategy
Features per

Query Normal (%) Swapped (%)

Inter-Judge Agreement N/A 89.5 N/A
Click > Skip Above 1.37 88.0 ± 9.5 79.6 ± 8.9
Last Click > Skip Above 1.18 89.7 ± 9.8 77.9 ± 9.9
Click > Earlier Click 0.20 75.0 ± 25.8 36.8 ± 22.9
Click > Skip Previous 0.37 88.9 ± 24.1 80.0 ± 18.00
Click > No Click Next 0.68 75.6 ± 14.1 66.7 ± 13.1

percentage of automatically extracted pairs that are in agreement with
the user generated explicit relevance judgements.

As it can be seen all the features are performing fairly above the
baseline which corresponds to the performance of the random extrac-
tion, i.e., 50%, in particular the best performing one is the Last Click >

Skip Above, which outperforms all of the others. In particular, the three
methods Last Click > Skip Above, Click > Skip Previous, and Click >

Skip Above performed equally better also when the first two results
were swapped.10

Users usually do not issue just a single query and then stop: when-
ever they are looking for an information, instead of a precise website,
they tend to issue more than a single query until they have satisfied
their needs. Query Chains can be exploited to infer implicit relevance
feedback on document clicks in sequences of user queries.

To exploit sequentiality in submissions of different queries for the
same information need, other six strategies are proposed.

Let us consider the following example used, as in the descrip-
tion of the strategies above, to better explain the query chain-related
strategies. Consider four subsequent lists of pages returned in answer

10 Recall from the discussion done in the introductory paragraph of this section that the
number of clicks a given position obtained in two different conditions: normal and
swapped, i.e., the first two results were swapped, rank is, more or less, stable. See Fig-
ure 4.2.
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to four queries pertaining to the same chain. That is,

p11,p12,p13,p14,p15,p16,p17

p∗
21,p22,p

∗
23,p24,p

∗
25,p26,p27

p31,p
∗
32,p33,p34,p35,p26,p37

p∗
41,p42,p43,p44,p45,p36,p47

again the asterisk, ∗, means that the result has been clicked by the user.

Strategy 4.6.(Click > Skip Earlier QC ) For a ranking (p1,p2, . . .)
followed (not necessarily immediately) by ranking (p′

1,p
′
2, . . .) within the

same query chain and sets C and C ′ containing the ranks of the clicked-
on links in either ranking, extract a preference example rel(p′

i) > rel(pj)
for all pairs i ∈ C ′ and j < max(C) with j /∈ C.

For the above example Strategy 4.6 produces the following set
of examples: rel(p32) > rel(p22), rel(p32) > rel(p24), rel(p41) > rel(p22),
rel(p41) > rel(p24) and rel(p41) > rel(p31). The strategy is, thus, an anal-
ogous extension of “Click > Skip Above” to multiple result sets. A pref-
erence is generated between two links from different result sets within
the same query chain, if a link in an earlier result set was skipped and
a link in a later result set was clicked.

To improve the accuracy of the preferences, we may consider the
subset of preferences generated only by the last click in a query chain.

Strategy 4.7. (Last Click > Skip Earlier QC ) For a ranking
(p1,p2, . . .) and a set C containing the ranks of the clicked-on links.
If the last ranking (p′

1,p
′
2, . . .) within the same query chain received a

click, then let i be the temporally last click in this ranking and extract
a preference example rel(p′

i) > rel(pj) for all pairs j < max(C) with
j /∈ C.

Strategy 4.7 produces the following set of features for our running
example: rel(p41) > rel(p22), rel(p41) > rel(p24) and rel(p41) > rel(p31).

In analogy to “Click > Earlier Click” for within query preferences,
the following strategy explores the relationship between pairs of clicked
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links between queries. In particular, it generates a preference between
a clicked link of an earlier query and a clicked link of a later query in
the same query chain.

Strategy 4.8. (Click > Click Earlier QC ) For a ranking
(p1,p2, . . .) followed (not necessarily immediately) by ranking (p′

1,p
′
2, . . .)

within the same query chain and sets C and C ′ containing the ranks
of the clicked-on links in either ranking, extract a preference example
rel(p′

i) > rel(pj) for all pairs i ∈ C ′ and j ∈ C.

Strategy 4.8 produces the following set of features for our
running example: rel(p32) > rel(p21), rel(p32) > rel(p23), rel(p32) >

rel(p25), rel(p41) > rel(p21), rel(p41) > rel(p23), rel(p41) > rel(p25), and
rel(p41) > rel(p32).

One shortcoming of the two strategies “Click > Skip Earlier QC”
and “Last Click > Skip Earlier QC” is that they generate preferences
only if an earlier query within the chain drew a click. However, about
40% of all queries does not receive any clicks. For such queries without
clicks, Joachims et al. [113] observed using eye-tracking techniques that
show that users typically view the top links [88]. For queries without
clicks, it is therefore assumed that the user evaluated the top two links
and decided not to click on them, but rather to reformulate the query.
This leads to the following two strategies, where a preference is gener-
ated between a clicked link in a later query, and the first (or second)
link in a earlier query that received no clicks.

Strategy 4.9.(Click > TopOne NoClickEarlier QC ) For a rank-
ing (p1,p2, . . .) that received no clicks followed (not necessarily immedi-
ately) by ranking (p′

1,p
′
2, . . .) within the same query chain having clicks

on ranks in C ′, extract a preference example rel(p′
i) > rel(p1) for all

i ∈ C ′.

Strategy 4.10. (Click > TopTwo NoClickEarlier QC ) For a
ranking (p1,p2, . . .) that received no clicks followed (not necessarily
immediately) by ranking (p′

1,p
′
2, . . .) within the same query chain having
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clicks on ranks in C ′, extract a preference example rel(p′
i) > rel(p1), and

rel(p′
i) > rel(p2), for all i ∈ C ′.

Strategy 4.9 produces the following set of features for our run-
ning example: rel(p21) > rel(p11), rel(p23) > rel(p11), rel(p25) > rel(p11),
rel(p32) > rel(p11), rel(p41) > rel(p11). Additionally to the previous
features, Strategy 4.10 produces also rel(p21) > rel(p12), rel(p23) >

rel(p12), rel(p25) > rel(p12), rel(p32) > rel(p12), rel(p41) > rel(p12).
The accuracy of the previous strategies “Click > TopOne NoClick-

Earlier QC” and “Click > TopTwo NoClickEarlier QC” suggests that
users not only give negative feedback about the result set by not click-
ing on any link, but also that they learn from the result set how to
formulate a better query. In particular, a user might discover an unan-
ticipated ambiguity of the original query, which is avoided in a query
reformulation. To capture the concept of a user trying to improve their
queries within a chain of reformulations it has been considered how
often the top result of a later query is more relevant than the top
result of an earlier query.

Strategy 4.11. (TopOne > TopOne Earlier QC ) For a rank-
ing (p1,p2, . . .) that received no clicks followed (not necessarily imme-
diately) by ranking (p′

1,p
′
2, . . .) within the same query chain having

clicks on ranks in C ′, extract a preference example rel(p′
i) > rel(p1),

and rel(p′
i) > rel(p2), for all i ∈ C ′.

Strategy 4.11 produces the following set of features for our run-
ning example: rel(p21) > rel(p11), rel(p31) > rel(p11), rel(p41) > rel(p11),
rel(p31) > rel(p21), rel(p41) > rel(p21), rel(p41) > rel(p31).

As in the non-QC methods, Table 4.5 shows the accuracy of the
methods proposed for the Query Chains. In particular, it is evident that
Strategy 4.10 — Click > TopTwo NoClickEarlier QC – produces the
best results. Indeed, results of Click > TopTwo NoClickEarlier QC are
better than those obtained by all of the non-QC strategies. Note that
the average accuracy of this method is the same of the “Click > Skip
Previous” one. The standard deviation, though, is smaller leading to a
smaller number of incorrect rankings. Furthermore, 88.9% is close to the
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Table 4.5. Accuracy of the Query Chain strategies shown above for generating
pairwise preferences from clicks within a single query. Feature-Per-Query shows the
average number of features extracted per each query, the Swapped Column represents
the experiment with the first two results swapped [113].

Strategy
Features per

Query Normal (%) Swapped (%)

Click > Skip Earlier QC 0.49 84.5 ± 16.4 71.7 ± 17.0
Last Click > Skip Earlier QC 0.33 77.3 ± 20.6 80.8 ± 20.2
Click > Click Earlier QC 0.30 61.9 ± 23.5 51.2 ± 17.1
Click > TopOne NoClickEarlier QC 0.35 86.4 ± 21.2 77.3 ± 15.1
Click > TopTwo NoClickEarlier QC 0.70 88.9 ± 12.9 80.0 ± 10.1
TopOne > TopOne Earlier QC 0.84 65.3 ± 15.2 68.2 ± 12.8

theoretical optimum of 89.5% corresponding to the inter-judgements
agreement shown in Table 4.4. For this reason considering the history
of the queries submitted by the same user on the same topic, improve
the estimate of the relevance of a page.

For any of the QC strategies discussed above to be applicable, it is
necessary to specify the algorithm used to detect Query Chains, that is
segmenting query submission histories of users into Query Chains auto-
matically. Radlinski and Joachims [175] and Joachims et al. [113] devise
the following way of extracting Query Chains. They use a machine
learning approach based on features like the overlap of query words,
overlap and similarity of the retrieved results, and time between queries.

Anyway:

“it remains an open question whether this segmenta-
tion can be done equally accurately in a web search set-
ting, and in how far the information need drifts within
long query chains.” [113]

For instance, rules 4.2 and 4.3 assume that when a user clicks on
several results, it is because the first clicked results did not satisfy the
information need. This assumption is not always true. For example,
it may be correct for navigational queries but not necessarily true for
informational [48] ones.

Getting back to how to use query log features to learn to rank,
in [111] a formalization of the Information Retrieval problem is given in
order to be able to state it as a machine learning problem. For a query
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q and a document collection D = {d1, . . . ,dm}, the optimal retrieval
system aims at returning a ranking r∗ that orders the documents in
D according to their relevance to the query. Obviously the ordering
r∗ cannot be formalized specifically (otherwise it would be a Sorting
Problem) therefore, usually, an IR system returns an ordering rf(q) that
is obtained by sorting documents in D according to scores computed
by a function f over the query q, i.e., f(q). Formally, both r∗ and
rf(q) are binary relations over D × D that fulfill the properties of a
weak ordering (i.e., asymmetric, and negatively transitive). A relation
r contains pairs (di,dj) such that dj is ranked higher than di, i.e.,
di <r dj . To optimize f(q) in order to produce a ranking as close as
possible to the optimal one r∗, we need to define the similarity between
two orderings: r∗ and rf(q). In the literature one of the most used
metric to measure similarity between two ranked lists is the Kendall’s
τ distance metric [120]. Basically it consists of counting the number of
concordant – P – and discordant – Q – pairs in r∗ and rf(q). In a finite
domain of m total documents in the collection, i.e., |D| = m, and the
total number of pairs is, thus,

(
m
2

)
. Kendall’s τ can be defined as

τ(ra, rb) =
P − Q

P + Q
= 1 − 2Q(

m
2

)
Maximizing τ(r∗, rf(q)) is equivalent to minimize the average rank

of relevant documents. Furthermore, it is proven the following theorem
relating the Kendall’s τ with the Average Precision [25].

Theorem 4.1. Let f(q) be a ranking function returning the ranking
rf(q) for query q. Let R be the number of relevant documents, and let
Q be the number of discordant pairs with respect to the optimal rank.
The Average Precision AvgPrec of the scoring function f is bounded by

AvgPrec(rf(q)) ≥ 1
R

[
Q +

(
R + 1

2

)]−1
(

R∑
i=1

√
i

)2

The above argument shows that maximizing τ(r∗, rf(q)) is connected
to improved retrieval quality in multiple frameworks.

Therefore, we are able to define the problem of learning a ranking
function as an optimization problem.
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Learning a Ranking Function Problem [111]. For a fixed and
unknown distribution Pr(q,r∗) of queries and target rankings on a doc-
ument collection D with m documents, the goal is to learn a retrieval
function f(q) for which the expected Kendall’s τ

τPr(f) =
∫

τ(r∗, rf(q))dPr(q,r∗)

is maximal [111].
The learner we are seeking selects a ranking function f from a family

of ranking function F maximizing the empirical expected τ on the
training sample set S, an independently and identically distributed
training sample set containing n queries qi with their rankings r∗

i , i =
1, ...,n

τS(f) =
1
n

n∑
i=1

τ(rf(qi), r
∗
i )

We consider a class of linear ranking functions satisfying

(di,dj) ∈ f�w(q) ⇔ �wΦ(q,di) > �wΦ(q,dj)

where �w is a weight vector that is the one learnt by the learning algo-
rithm, and Φ(q,d) is a mapping onto features describing the matching
of query q and document d: much in the spirit of Fuhr [82] and Fuhr
et al. [84]. By introducing (non-negative) slack variables ξi,j,k we can
formulate the problem as an optimization problem known as Ranking
SVM [111]:

Definition 4.1. Ranking SVM

minimize: V (�w,�ξ) = 1
2 �w · �w + C

∑
ξi,j,k

subject to:

∀(di,dj) ∈ r∗
1 : �w(Φ(q1,di) − Φ(q1,dj)) ≥ 1 − ξi,j,1

. . .

∀(di,dj) ∈ r∗
n : �w(Φ(q1,di) − Φ(q1,dj)) ≥ 1 − ξi,j,1

∀i∀j∀k:ξi,j,k ≥ 0
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In the definition above, C is a parameter used to allow the trade-off
of margin size against training error. This problem can be solved using
an SVM, and Joachims [111] shows how it can be extended to include
also non-linear ranking functions.

The learnt ranking function is, then, used to sort the documents by
their values of the retrieval status value rsv(q,di) = �wΦ(q,di).

Actually, there is a little trick to adopt in the implementation of
the Ranking SVM problem. Since the whole feedback is not available
for each query, i.e., we do not have ranking information for the whole
collection, we must adapt the Ranking SVM to partial data by replacing
r∗ with the observed preferences r′. Given a training set S

(q1, r
′
1),(q2, r

′
2), . . . ,(qn, r′

n)

with partial information about the target ranking, this results in the
following problem

Definition 4.2. Ranking SVM (partial)

minimize: V (�w,�ξ) = 1
2 �w · �w + C

∑
ξi,j,k

subject to:

∀(di,dj) ∈ r′
1: �w(Φ(q1,di) − Φ(q1,dj)) ≥ 1 − ξi,j,1

. . .

∀(di,dj) ∈ r′
n: �w(Φ(q1,di) − Φ(q1,dj)) ≥ 1 − ξi,j,1

∀i∀j∀k:ξi,j,k ≥ 0

The resulting retrieval function is, thus, defined using the same
SVM approach of the non-partial problem. The function chosen is the
one that has the lowest number of discordant pairs with respect to the
observed parts of the target ranking.

Radlinski and Joachims [175] and Joachims et al. [113] show
some experimental results. In particular, Radlinski and Joachims [175]
show that using Query Chains helps in improving the retrieval qual-
ity. Through a user study made on training data from the Cornell
University Library’s search engine they showed that 32% of people
preferred the rankSVM performance trained over QC over a 20% of
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people preferring the non-rankSVM version of ranking (48% of people
remained indifferent). Furthermore, 17% against 13% of users preferred
the rankSVM using QC than the rankSVM not using QC (here, 70%
of people remained indifferent).

Other approaches to learn to rank use different learning algorithms.
RankNet, for instance, is said to be used by the Microsoft’s Live search
engine [136], it adopts a neural network approach to tackle the prob-
lem of learning a ranking function [51]. Several other approaches have
been proposed during these last years: RankBoost [81], GBRank [244],
LambdaRank [52], NetRank [3], just to name a few. An interesting
source of information for this kind of algorithms is the Learning to
Rank11 workshop that, usually, makes his proceedings available online.

For readers interested in deepening their knowledge on learning to
rank, a very interesting survey has been published in the same series
of the present survey [140].

4.6 Query Spelling Correction

One of the neatest features of a search engine is the ability of “mag-
ically” detecting the mistyped queries. There is no magic, obviously,
and the use of information on past queries is of utmost importance to
infer Spelling Corrections in mistyped queries.

At a first glance, this may look pretty much similar to the problem
of Query Suggestion. Indeed Query Spelling Correction is a little bit
subtler. This is particularly true in web search engines where queries are
composed by using terms drawn from a vocabulary of conversational
words and people names (i.e., Brittany Spears12). Furthermore, contex-
tual information are also extremely important. For instance, consider
the two queries “flash grdn”, and “imperial grdn”. It is straightfor-
ward to correct the first occurrence of “grdn” with “gordon”, whereas
the second one with “garden”. This simplicity derives from the term
before “flash gordon” is a popular comics character, for instance. Query

11 Google for “workshop learning to rank” for a list of URLs of past workshops’ editions.
12 Note that we have mistyped the name Britney to demonstrate the subtleties of query

spelling. The word Brittany is, in fact, recognized as correct by many spell checkers (see
Figure 4.8) whereas the word Britney is not. This is true on our particular spell checker,
at least.
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Fig. 4.8 The word Brittany representing the name of a person is correctly recognized as
valid.

Fig. 4.9 An example of how a popular search engine helps a user who mistyped the word
Britney in Brittany.

spelling correction is not free from errors. Someone looking for “mau-
rizio marin” might not look for “marino marin” like, instead, it is
suggested.13 Figure 4.9 shows the correction presented for the query
“Brittany Spears” into the query “Britney Spears”.

Intuitively, Query Logs constitute a very comprehensive knowl-
edge base for building spelling correction models that have to be
based on the actual usage of a language and not (only) on a pre-
built vocabulary of terms. Indeed, recently, there have been proposed
works dealing with spelling correction using web search engines’ query
logs [8, 60, 67, 133, 162]. Note that the näıve approach of extracting
from query logs all the queries whose frequencies are above a certain
threshold and consider them valid is not correct. In fact, it can be the
case that a misspelled query like “britny spears” is far more frequent
than correctly spelled queries like “relational operator” or “bayesian
net”: shall “britny spears” be suggested as a possible correction in
those cases?

Cucerzan and Brill [67] develop a very powerful technique to deal
with query correction using information out of query logs. Authors of

13 At least at the time this survey was written.
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the paper very nicely introduce the problem formulation by reviewing
the prior work and by iteratively refining the model to include the most
interesting case of web search.

The most classical methodology followed for spelling correction
dates back to 1964 when Damerau [71] published the seminal work
on spelling correction. Basically the idea behind traditional spelling
correction is the following. Use a lexicon/dictionary made up of ∼100K
words. Flag words not found in lexicon as misspellings. Suggest lexi-
con words that are small edit distance14 from unrecognized word. More
formally, let Σ be the alphabet of a language and L ⊂ Σ∗ a broad cov-
erage lexicon of the language. The definition given by Damerau [71] of
lexicon-based spelling correction is:

Definition 4.3. Given an unknown word w ∈ Σ∗ \ L, lexicon-
based spelling correction finds w′ ∈ L such that dist(w,w′) =
minv∈L dist(w,v).

Here, the function dist(·, ·) is a string distance function. Damerau [71]
proposes to use the Edit distance to evaluate how similar two strings
are. The major drawback of the problem formulation given in Def-
inition 4.3 is that it does not consider the frequency of words in a
language. Let us, then, refine the above formulation by thresholding
the maximum distance allowed and to get the term with the maximum
probability of occurrence. Formally:

Definition 4.4. Given an unknown word w ∈ Σ∗ \ L, find w′ ∈ L such
that dist(w,w′) ≤ δ and P (w′) = maxv∈L,dist(w,v)≤δ P (v).

In this formulation, all distances are set to be δ at maximum, and within
the terms at that maximum distance the most likely word is suggested.
The most important fact is that prior probabilities are computed over
a given language. Therefore, it allows the conditioning on the basis of
a given language. Also this formulation is not free from drawbacks:
it does not consider, for instance, the actual distances between each

14 Edit distance is usually defined as a measure over the number of characters that need to
be changed, added, removed or transposed to convert one word to another.
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candidate and the input word. The following definition does consider
that distance by conditioning the probability of a correction on the
original spelling P (v|w):

Definition 4.5. Given an unknown word w ∈ Σ∗ \ L, find w′ ∈ L

such that dist(w,w′) ≤ δ and P (w′|w) = maxv∈L,dist(w,v)≤δ P (v|w) =
maxv∈L,dist(w,v)≤δ P (w|v)P (v).

The skilled reader shall recognize the application of the Bayes’ theo-
rem to rewrite the objective function as P (v|w) = (P (w|v)P (v))/P (w)
where P (v) is the language model, and P (w|v) is the error model. The
term P (w) can be omitted since it does not depend on v thus does not
influence the computation of the minimum.

In general, the above three formulations consider words to be cor-
rected in isolation. This means situations like the one shown above
when the two queries “flash grdn”, and “imperial grdn” had to be cor-
rected in a different way are not taken into consideration. A formulation
taking into consideration this issue of contextual spelling correction is
the following:

Definition 4.6. Given a string s ∈ Σ∗, s = clwcr, with w ∈ Σ∗ \ L

and cl, cr ∈ L∗, find w′ ∈ L such that dist(w,w′) ≤ δ and P (w′|clwcr) =
maxv∈L,dist(w,v)≤δ P (v|clwcr).

That is, we are considering contextual information like the words pre-
ceding (cl) and following (cr) the given word to be corrected. The last
formulation cannot consider query corrections where two valid words
have to be concatenated into an out of lexicon word. For instance, the
query “robert louis steven son” is composed by all valid queries, yet it
is very likely that actually the correct query should have been “robert
louis stevenson” despite the fact that both “steven” and “son” are two
valid words.

The above observations lead to a very general formulation of the
problem that is the following:

Definition 4.7. Given s ∈ Σ∗, find s′ ∈ Σ∗ such that dist(w,v) ≤ δ and
P (s′|s) = maxt∈Σ∗,dist(s,t)≤δ P (t|s).
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In the above definition, it is important to remark that the formulation
does not make use of any explicit lexicon of the language considered.
In a sense, it is the query log induced language that matters and string
probabilities are extracted from the query log itself.

Definition 4.7 is general and correct, yet it cannot be used to derive
any algorithm to perform spelling corrections. First of all, it has to be
noticed that query spelling correction can be formulated as an itera-
tive process. Consider this query: “roberl louis steven son”. The cor-
rect query formulation is, very likely, “robert louis stevenson” and the
steps that can be followed to converge to the correct formulation are:
“roberl louis steven son” → “robert louis steven son” → “robert louis
stevenson”. How to pass from string s to string s1? Using the query
log information to observe that relatively frequently s1 appears in the
log. Therefore, if s0 is a misspelled query, the algorithm aims at using
query log information to find a succession of queries s1, . . . ,sn such that
si into sj (0 ≤ i < j ≤ n), sn is the correct spelling. Formally this leads
to the following definition:

Definition 4.8. Given a string s0 ∈ Σ∗, find a sequence s1, . . . ,sn ∈
Σ∗ such that for each i ∈ 0, . . . ,n − 1 there exist the decomposi-
tions si = w1

i,0 . . .wli
i,0,si+1 = w1

i+1,1 . . .wli
i+1,1, where wk

j,h are words or
groups of words such that dist(wk

i,0,w
k
i+1,1) ≤ δ, ∀i ∈ 0, . . . ,n − 1, ∀k ∈

1, . . . , li and P (si+1|si) = max
t∈Σ∗,dist(si,t)≤δ

P (t|si), ∀i ∈ 0, . . . ,n − 1, and

P (sn|sn−1) = maxt∈Σ∗,dist(sn,t)≤δ P (t|sn).

A misspelled query that can be corrected by a method applying
the above definition is, for example, s0 =“britenetspaer inconcert” can
be transformed into s1 = “britneyspears in concert” and successively
into s2 = “britney spears in concert”, and finally “britney spears in
concert”. Obviously, for the above method to work some assump-
tions have to be done. First of all we must fix a maximum number
of tokens into which a single word can be split, Cucerzan and Brill [67]
choose to split into bigrams at maximum. Furthermore, it is essen-
tial for such an approach to work correctly that query logs adhere to
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three properties:

(1) words in the query logs are misspelled in various ways,
from relatively easy-to-correct misspellings to very-difficult-
to-correct ones, that make the user’s intent almost impossible
to recognize;

(2) the less difficult to correct a misspelling is the more frequent
it is;

(3) the correct spellings tend to be more frequent than mis-
spellings.

Cucerzan and Brill [67] implement a very nice and efficient algo-
rithm to correct misspelled queries. Basically, what they do is to explore
through a viterbi search algorithm the space of all possible corrections
selecting from time to time the most likely correction out of a trusted
lexicon of words and a lexicon of words built over a query log. The
algorithm is made efficient since it does not allow simultaneous correc-
tion of two adjacent words. Therefore, the query “log wood” would not
be corrected into “dog food” by mistake only because the first is less
frequent than the second in the query log.

Cucerzan and Brill [67] also propose a quite accurate evaluation of
the effectiveness of the method they propose. The evaluation has been
performed over a set of 1044 unique and randomly sampled queries from
a daily query log, which were annotated by two annotators whose inter-
agreement rate was 91.3%. For those queries considered as misspellings,
the annotators provided also corrections. The overall precision of the
system was 81.8%, that is in the 81.8% of the cases the system either
classified a query as valid, or recognized a misspelled query and pro-
posed a valid correction. The first case occurred in the 84.8% of the
cases, whereas in the 67.2% of the cases the system either did not rec-
ognize a misspelling or it proposed an invalid correction.

Something that has not very deeply studied by authors of the work
is the error model, that is the probability distribution P (s|t) of mis-
spelling the word s with t. This important issue, crucial for letting
the spell-checking algorithm to work with high precision, is thoroughly
studied by Ahmad and Kondrak [8]. Basically, they run an Expectation-
Maximization (EM) algorithm to update iteratively the error model
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and to detect “frequent” substitution patterns. These frequent sub-
stitution patterns are then plugged into the error model to boost edit
distance computations and to make that more effective to correct errors
typical in query logs. To enhance the precision of these methods based
on statistics from query logs, Chen et al. [60] have recently proposed to
adopt information from target pages. This way, a richer text repository
is available to be able to detect a greater number of patterns to be
“injected” into the edit distance computation function.

4.7 Summary

One of the possible uses of knowledge mined from query logs is to
enhance the effectiveness of the search engine. By effectiveness we mean
the capability of the search engine to answer with the best possible
results to the query issued by a particular user. That is, we aim at
presenting each user the most suitable possible list of results for his
specific needs. This technique, known as personalization, is one of the
major topics presented in this section.

When a query is badly formulated, or user is too generic or too
specific, query suggestion and query expansion are the other two tech-
niques that are used to improve the search experience. The former is
an explicit help request from the search engine to the user. That is, the
user is presented with a list of query suggestions among which we aim
at including queries steering the user towards his specific information
need. The latter is an implicit technique used by the search engine to
modify (by adding search terms) the query in order to make it more
expressive.

Learning to rank is used to “learn” static scores, i.e., query-
independent, for web pages. Some of the most recently proposed tech-
niques make use of information about how users click on results for a
query. One of the most interesting claims (that has been empirically
evaluated) is that, instead of considering a click as a distinguishing sign
of importance, it is more effective to consider the relative clicking order
among results. A click on the ith result demote all the previous results,
that is clicks are considered as a sort of preference vote.
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The last part of the present section presented the very recent
literature about how search engines exploit information about queries
submitted in the past to spell-check (and correct) submitted queries.
This prevent them to correct the query “Brittany” (Figure 4.8) and
allow to correctly detect the spelling error in the query “Brittany
Spears” (Figure 4.9).



5
Enhancing Efficiency of Search Systems

Quoting a passage of Baeza-Yates et al. [14]:

“The scale and complexity of web search engines, as well
as the volume of queries submitted every day by users,
make query logs a critical source of information to opti-
mize precision of results and efficiency of different parts
of search engines. Features such as the query distribu-
tion, the arrival time of each query, the results that
users click on, are a few possible examples of informa-
tion extracted form query logs. The important question
to consider is : can we use, exploit, or transform this
information to enable partitioning the document collec-
tion and routing queries more efficiently and effectively
in distributed web search engines?”

This means that dealing with efficiency in web search engines is as
important as it is dealing with user preferences and feedback to enhance
effectiveness. Literature works show that usage patterns in web search
engine logs can be exploited to design effective methods for enhancing
efficiency in different directions.

104
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In these last years, the majority of research studied how to exploit
usage information to make caching and resource allocation, effective
in highly distributed and parallel search systems. In addition, there
is a novel trend to exploit usage information from query logs also for
Crawling [57] purposes. In particular two recently published papers
deal with a novel user-centric notion of repository quality [158], and a
novel prioritization scheme for page crawling ordering based on usage
information [159]. We do not enter too much into the details of this
novel research activity, still we strongly encourage readers interested
in crawling to look through those papers since they represent a nice
view point exploiting query log information to enhance the crawling
process.

5.1 Caching

Caching is the main mean with which systems exploit memory hierar-
chies. There is a whole body of literature on systems where caching is
extensively studied [99, 206]. Furthermore, in web architectures caching
is exploited to enhance the user’s browsing experience and to reduce
network congestion [165].

Caching is a well-known concept in systems with multiple tiers of
storage. For simplicity, consider a system storing N objects in rela-
tively slow memory, that also has a smaller but faster memory buffer
of capacity k which can store copies of k of the N objects (N � k).
This fast memory buffer is called the cache. The storage system is pre-
sented with a continuous stream of queries, each requesting one of the
N objects. If the object is stored in the cache, a cache hit occurs and
the object is quickly retrieved. Otherwise, a cache miss occurs and the
object is retrieved from the slower memory. At this point, the storage
system can opt to save the newly retrieved object in the cache. When
the cache is full (i.e. already contains k objects), this entails evicting
some currently cached object. Such decisions are handled by a replace-
ment policy, whose goal is to maximize the cache hit ratio (or rate) —
the proportion of queries resulting in cache hits.

Often, access patterns to objects, as found in query streams,
are temporally correlated. For example, object y might often be
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requested shortly after object x has been requested. This motivates
prefetching — the storage system can opt to retrieve and cache y upon
encountering a query for x, anticipating the probable future query
for y.

Caching in web search engine [132] is, basically, a matter of stocking
either results, partial results, or raw posting lists, into a smaller, and
faster to lookup, buffer memory. Usually, in real systems, caching uses
a combination of the three above kinds, and the final system appears as
in Figure 5.1. The figure is only a slight modification of the architecture
depicted in Figure 1.2 and shows that the placement of this cache mod-
ules within the architecture does not require massive modifications.

Fig. 5.1 Caching module placement within the typical structure of a web search engine
shown in Figure 1.3.
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The right to decide what results are to be kept in cache is acknowl-
edged to the caching policy. In case of the cache running out of space,
the caching policy is responsible for expunging a result in favor of
another retained to be more likely to be requested in future.

In web search engines caching has been studied since 2000 when
Markatos presented the (probably) first work specifically targeted on
exploiting caching possibilities in web search engines [144].

The setting with respect to search result caches in web search
engines consists of result pages of search queries to be cached. A search
query is defined as a triplet q = (qs,from,n) where qs is a query string
made up of query terms, from denotes the relevance score of the first
result requested, and n denotes the number of requested results. The
result page corresponding to q would contain the results whose rele-
vance score with respect to qs are from,from + 1, . . . ,from + n − 1.
The value of n is typically 10. Search engines set aside some storage to
cache such result pages. Indeed, a search engine is not a typical two-
tiered storage structure. Results not found in the cache, in fact, are not
stored in slower storage but rather need to be generated through the
query evaluation process of the search engine.

Prefetching of search results occurs when the engine computes and
caches p · n results for the query (qs,from,n), with p being some small
integer constant, in anticipation of follow-up queries requesting addi-
tional result pages for the same query string.

Caching (often with the name of paging) has also been studied the-
oretically in the past, within the formal context of Competitive Analy-
sis, by many researchers. The seminal paper of Sleator and Tarjan [205]
showed that the Least Recently Used (LRU) paging strategy is optimal
with respect to a competitive point of view.

Projected onto search engines, competitive analysis has been
performed by Lempel and Moran [130] to show that it is possible
to design an online paging scheme, tailored to search engine query
workloads, that incurs in an expected number of cache misses no
greater that four times the expected number of misses that any online
caching algorithm would experience. In the following, we are going to
present some of the most notably results in web search engine caching
technology at all levels.
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5.1.1 Caching and Prefetching of Query Results

We already showed in Query Nature section that Power-law arises in
the distributions regulating usage patterns in real-world web search
engines: TodoBR [186], Yahoo! [15], Tiscali [74], and so on and so forth.

Caching in web search engines immediately recalls the storing of
results of previously computed queries in a faster memory area. This
kind of caching is known as: caching of search results. A good deal of
research has been (and it is currently) conducted on how efficiently it
manage the (small) space dedicated to the cache in an optimal way.
Obviously, caching policies depend heavily on how requests are dis-
tributed. The idea behind the ideal (and theoretically optimal) Belady’s
OPT cache policy: “in case of miss and cache full, replace the page
that will be accessed farthest in the future” [38]. Unfortunately, this
would require the cache to be “Clairvoyant,” that is, it would require
the cache to know in advance the rest of the query stream. There-
fore, caching policies can only aim at approximating OPT as better as
possible.

Roughly speaking, locality of accesses means that queries repeat
themselves within (relatively) small periods of time, and caching should
exploit this kind of regularities to keep copies of “likely-to-be-accessed-
in-the-future” queries.

The caching design space is two-dimensional: choosing the caching
policy in order to increase as much as possible the hit-ratio [24, 74,
129, 131, 144, 201] and optimizing the architecture of the caching sys-
tem [15, 26, 74, 137, 186, 201] to improve response time and throughput
(number of queries per second) of the search engine. Both dimensions
are important since higher hit-ratios often correspond to lower response
times and higher throughput.

Markatos [144] describes different, state-of-the-art, caching policies
and compares the hit-ratio obtained on an Excite log. The paper does
not propose any explicit policy tailored to specific statistical properties
of a query log. Furthermore, it does not consider the possibility of
exploiting a prefetching strategy in order to prepare the cache to answer
possible requests for following pages. Nevertheless, the research shows
the feasibility of caching in search engines.
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The four different policies tested on a query stream coming out of
the Excite query logs were LRU, FBR, LRU/2 and SLRU.

LRU is among the most famous algorithms for cache replacement
policies. LRU, also known as move-to-front, works by using a First-
In First-Out (FIFO) queue to store query results. When the submitted
query is present in the cache buffer it is shifted to the front of the queue.
If the query is not in cache, then it is forwarded to the underlying search
level and when the results are back, the new query entry is pushed to
the top of the queue. If the cache was full the last element of the cache
is evicted before the new element is put on top.

The FBR replacement algorithm [180] maintains the LRU ordering
of all blocks in the cache, but replaces the block in the cache that is
least frequently used (LFU) and in case of more than one, the LRU.

LRU/2 is a replacement policy that opts for evicting queries
whose second-to-last access is least recent among all penultimate
accesses [152].

SLRU combines both recency and frequency of access when making
a replacement decision. In [119] it is stated:

“An SLRU cache is divided into two segments, a proba-
tionary segment and a protected segment. Lines in each
segment are ordered from the most to the least recently
accessed. Data from misses is added to the cache at
the most recently accessed end of the probationary seg-
ment. Hits are removed from wherever they currently
reside and added to the most recently accessed end of
the protected segment. Lines in the protected segment
have thus been accessed at least twice. The protected
segment is finite, so migration of a line from the proba-
tionary segment to the protected segment may force the
migration of the LRU line in the protected segment to
the most recently used (MRU) end of the probationary
segment, giving this line another chance to be accessed
before being replaced. The size limit on the protected
segment is an SLRU parameter that varies according
to the I/O workload patterns. Whenever data must be
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Fig. 5.2 Comparison of different policies hit-ratios on varying the cache size (in MB). Results
are computed over queries in the Excite log [144].

discarded from the cache, lines are obtained from the
LRU end of the probationary segment.”

Figure 5.2 reports result obtained by the four policies over the
whole log by varying the cache size. The different replacement poli-
cies behaves differently depending on the cache size. For very small
cache sizes (<100 MB) FBR performs better than LRU/2. For large
caches LRU/2 performs a little better than FBR. However, in all cases,
SLRU performs very close to the best of FBR and LRU/2. Suggesting
that SLRU might be the policy of choice.

Furthermore, since LRU and SLRU seem to be the best policies in
terms of management complexity and hit-ratio, from now on we restrict
our discussion mainly on these two policies. Furthermore, to better
highlight the differences of LRU and SLRU policies and to analyze the
performance of the two policies for very large caches, the histogram in
Figure 5.3 compares LRU and SLRU for the same Excite log (2.2 GB
of data) on caches whose size varies between 1 MB and 2,160 MB.

The first observation is that both LRU and SLRU perform roughly
the same for caches bigger than 1 GB. Caches of that size, anyway, are
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Fig. 5.3 SLRU vs. LRU in Result Caching: Excite log [144].

not of significant interest for such a small log. Instead, it is interesting
to notice the slight advantage of SLRU over LRU for mid-sized caches.
For example, for a 270 MB cache, SLRU scored a 18.8% against a 16.4%
of LRU’s hit-ratio.

The work of Markatos only proposes the analysis of existing
caching policies over a real-world search engine workload. Even though
Markatos timely address the problem of result caching in web search
engines, it does not present any new policies specifically tailored on
such a workload.

The first two policies that have been proposed and that exploit
the characteristics of search engine query logs are Lempel and Moran’s
PDC (Probabilistic Driven Caching) [129] and Fagni et al. SDC (Static
Dynamic Caching) [74]. Furthermore, incidentally both papers intro-
duce the concept of prefetching in web search engine result caches.
Prefetching [74, 129, 131] is another possibility for increasing the hit-
ratio of result caching policies. As said briefly in the initial part of this
section, it, basically, consists of anticipating user requests by caching
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not only the result page requested but also the successive p (where p

is the prefetching parameter). Information extracted from query logs
can be used to tune finely the prefetching policy as shown by Fagni
et al. [74].

The idea behind PDC is to associate a probability distribution to
all the possible query that can be submitted to a WSE. The distribu-
tion is built over the statistics computed on the previously submitted
queries. For all the queries that have not previously seen, the distribu-
tion function evaluates to zero. This probability distribution is used to
compute a priority value that is exploited to maintain an importance
ordering among the entries of the cache. In practice, the higher the
probability of a query to be submitted the higher it is ranked within
the cache once it is actually appeared. Indeed, the probability distribu-
tion is used only in the case of queries requesting the pages subsequent
the first. For the first page of results a simple SLRU policy is used.
Note that PDC, also consider a model of users’ behavior. Within this
model, a query-session starts with a request to the WSE. At this point
two ways are possible: he can either submit a follow-up query (i.e. a
query requesting the successive page of results), or he can give up and
possibly start a new session by submitting a different query. A session
is considered over, if no follow-up query appears within τ seconds. This
model is respected in PDC by demoting the priorities of the entries of
the cache referring to the queries submitted more than τ seconds ago.
Note that the caching policy for the queries requesting the second, and
over, page of results are ordered following a priority computed using
the statistical data available. A priority queue is used to keep 2nd+
page of results sorted according to their priority. They evict from the
section the entry which has the lower priority only if the ready-to-
enter query has a priority greater than that. Conversely, the queries
referring to the first page of results are managed by a separate SLRU
cache. The results on a query log of Altavista containing queries sub-
mitted during a week of 2001, are very good. Using a cache of 256,0001

elements using PDC and prefetching 10 pages of results, the authors

1 Differently from Markatos’ paper, results are expressed as number of entries. Estimating
an entry of size 4KB, 256,000 elements correspond, roughly, to 1GB of memory.



5.1 Caching 113

Fig. 5.4 Comparison of PDC with SLRU and LRU on varying cache size and the proba-
tionary segment sizes of SLRU [129].

obtained a hit-ratio of about 53.5%. For a more comprehensive picture,
Figure 5.4 from the paper shows a comparison of PDC with LRU and
SLRU on varying cache size and probationary segments size. Unfortu-
nately the policy seems to be quite expensive in terms of time-to-serve
for each request (in particular those causing a cache miss). Due to the
priority queue used to keep queries sorted, an amortized complexity of
O(n logn) dominates the overall complexity.

Interestingly, as far as we are aware of, PDC is the first caching
policy which may not apply the eviction policy in case of full cache
and miss. In fact, the result currently considered may not be stored in
cache if all the priorities of the current entries are higher.

Also the SDC policy, proposed by Fagni et al. [74] is an effective
exploitation of historical usage data. As in PDC, SDC integrates both
caching and prefetching at the same time. SDC is the acronym of Static
Dynamic Caching since it basically integrates two types of caching:
static and dynamic.

Static cache was previously analyzed by Markatos [144] where it
is shown that a static-only cache of query results badly performs on
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the tested log. The merit of SDC, instead, is to have mixed the two
concept of Static and Dynamic caching trying to balance the benefits
in terms of capturing frequent queries by means of the Static caching,
and recent queries, by means of the Dynamic policy.

In the static cache, the set of the most-frequently-submitted-in-the-
past queries is kept. The dynamic cache is a cache managed through
a traditional replacement policy. Differently from PDC, SDC manage-
ment complexity is constant, i.e. O(1), whenever a constant policy is
used in the dynamic section. PDC, instead, exhibit a O(logk) amortized
management complexity. Furthermore, SDC introduces a novel kind of
prefetching that exploits a particular and peculiar characteristics of
web search users behavior: Adaptive Prefetching. It has been observed
that when a user go through the ith (i ≥ 2) page of results then he
will, with high probability, explore also the (i + 1)th page. Therefore,
adaptive prefetching simply consists of performing prefetching when-
ever a request refers to the ith (i ≥ 2) result pages. That is prefetching
is performed only in case of requests for the second, or greater, page of
results.

Figure 5.5 shows that SDC resulted to be superior on hit-ratios
achieved by a search system with a traditional completely dynamic
policy. For example, on a cache table containing 256,000 results from
the Altavista log, the hit-ratio of a pure LRU is about 32%, while SDC
with LRU as the dynamic policy on the 40% of the cache size (i.e. about
100,000 results) obtains a hit-ratio of about 55% when a prefetching
factor of 10 is used.

In their paper Fagni et al. [74] claim the superiority of SDC being
due to the way it exploits the power law in the query log. Queries
that frequently appear, not necessarily present the recency property
(i.e. the same frequent query might be submitted after an arbitrary
large number of distinct queries). If this assumption is true, and if
the LRU queue is not large enough, then some frequent query could
be evicted before they will be requested again.2 To assess this, Fig-
ures 5.6(a) and 5.6(b) reports the cumulative number of occurrences of

2 Cache policies not affected by this problem are said to be scan-resistant. LRU is not
scan-resistant
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Fig. 5.5 Comparison of SDC adopting LRU and PDC as dynamic policies on varying static
cache size and prefetching factor. The case of fstatic = 0 corresponds to the pure (all
dynamic) policy [74].

each distance, measured as the number of distinct queries received by
AltaVista and Yahoo! in the interval between two successive submis-
sions of each frequent query [74, 15]. From the two figures in 5.6 we can
conclude that even if we set the size of an LRU cache to a relatively
large number of entries, the miss rate results to be high anyway.

Policies exploiting historical usage information like PDC or SDC
might suffer of data model staling. The model built over a period might
be not valid anymore in the next period. Baeza-Yates et al. [15, 16]
use a static cache containing the 128,000 most frequent queries from
a Yahoo! log has been used to test the hit-ratio trends on an hourly
basis. Figure 5.7 shows that the hit-ratio is quit stable (ranging from
0.25 to 0.35) within a period of at least a week (for this particular
query log, obviously). Indeed, there is a slight downward trend from
left to right indicating a very limited entry staling problem. Also, there
is a clear periodic trend in the plot indicating that for certain kind of
queries, repetitions are more frequent during certain times of the day.
These two observations need a more careful analysis, that indeed has
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(a)

(b)

Fig. 5.6 Cumulative number of occurrences of each distance, measured as the number of
distinct queries received by AltaVista and Yahoo! in the interval between two successive
submissions of each frequent query. (a) Altavista (from [74]) and (b) Yahoo! (from [15]).
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Fig. 5.7 Hourly hit-ratio for a static cache holding 128,000 answers during the period of a
week. Figures drawn from a Yahoo! query log [15].

not been done in the paper by Baeza-Yates et al. [15, 16], that could
highlight fine tuned caching policies for different periods of the day
(or year).

Recently Baeza-Yates et al. [15, 16] showed a caching algorithm
exploiting an admission policy to prevent infrequent queries from taking
space of more frequent queries in the cache [24]. The admission policy
checks query features like, for instance, length in characters, in words,
etc., and decides whether considering or not the query for being cached.
Results have shown the superiority of the approach over SDC from a
hit-ratio point of view. Unfortunately, the computational complexity
of the policy is high, thus (likely), jeopardizing the benefits of a higher
hit ratio from a throughput point of view.

5.1.2 Caching of Posting Lists

As said above, caching of query results is, most likely, the first
thing coming to your mind when speaking about caching in web search
engines. Posting list caching also exists , and it is as important as result
caching.

As it has been seen in the Introduction, posting lists are used during
the computation of query results. In less recent search systems, posting
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lists were thought to be stored on disk. In more modern web search
systems, anyway, due to partitioning of data in large scale distributed
search engines, it is very likely that the entire posting lists would be
stored on memory. In both cases, anyway, having a more compact and
faster structure storing frequently accessed lists might be of help for
improving query answering time. This is the idea behind posting list
caching: storing frequently accessed lists to reduce delays due to list seek
and retrieval operations.

Furthermore, posting list caching and query result caching are not
exclusive: if both used “cum grano salis”, overall performance might
end up being sensitively improved [15, 16].

Posting list caching has not received a lot of attention in the past,
yet in these papers [15, 26, 137, 186], it has been shown to be an effective
way to increase an Index server performance.

Basically, the potential effectiveness of posting list caching comes
from the high recurrence rate of a few query terms. Think for instance to
queries like “britney spears”, “britney spears scandal”, “britney spears
songs”, “britney spears home page”, etc. They all share the common
terms “britney” and “spears” and caching those lists will save retrieval
time when processing queries in the examples. It has been shown that
a high percentage of query terms are submitted repeatedly. Therefore,
at least in theory, an infinite posting list cache would obtain a very
high hit-ratio. For instance, Baeza-Yates et al. [15, 16] showed that a
posting list cache using LRU as the replacement policy would reach a
terrific hit-ratio of more than 90% for relatively large caches.

Again, as in the case of query results, traditional caching policies
can still be used for posting lists as well. Anyway, more sophisticated
policies can be devised.

In fact, caching posting lists is fundamentally different from caching
query results because posting lists are of variable lengths, whereas query
results are of fixed-size. For example, the posting list of a very common
term is extremely longer than a list referring to an uncommon term like,
for instance, a typo. Starting from this observation successful posting
cache policies consider also the size of the posting lists among the fea-
tures used to decide upon evictions. Baeza-Yates et al. [15, 16], consider
both dynamic and static caching. For dynamic caching, they use two
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well-known policies, LRU and LFU, as well as a modified algorithm
that takes posting-list size into account.

Before discussing the static caching strategies, let us recall some
notation used by authors in the original paper: let fq(t) denote the
query-term frequency of a term t, that is, the number of queries con-
taining t in the query log, and fd(t) to denote the document frequency
of t, that is, the number of documents in the collection in which the
term t appears.

The first strategy considered, is the algorithm proposed by Baeza-
Yates and Saint-Jean [26], which consists in selecting the posting lists of
the terms with the highest query-term frequencies fq(t). This algorithm
is called Qtf . Interestingly, there is a trade-off between fq(t) and fd(t).
Terms with high fq(t) are useful to keep in the cache because they are
queried often. On the other hand, terms with high fd(t) are not good
candidates because they correspond to long posting lists and consume
a substantial amount of space. In fact, the problem of selecting the best
posting lists for the static cache can be seen as a standard Knapsack [54]
problem: given a knapsack of fixed capacity, and a set of n items, such
as the ith item has value ci and size si, select the set of items that fit
in the knapsack and maximize the overall value. In our case, “value”
corresponds to fq(t) and “size” corresponds to fd(t). Therefore, a sim-
ple greedy algorithm for the knapsack problem is employed: select the
posting lists of the terms with the highest values of the ratio fq(t)/fd(t).
This algorithm is called QtfDf .

Two different variations of QtfDf has been tested: static QtfDf

and dynamic QtfDf . In static QtfDf a static cache has been filled in
with the knapsack-like algorithm, whereas in dynamic QtfDf the entry
with the lowest fq(t)

fd(t)
is evicted, in case of cache-miss and cache full.

Results, in terms of hit-ratio, of different caching policies have been
reported in Figure 5.8. The cache size, in this experiment, is mea-
sured as a fraction of the total space required to store the posting
lists of all terms. The most important observation from the results
is that the static QtfDf algorithm has a better hit rate than all the
dynamic algorithms. An important benefit, that static cache has, is
that it requires no eviction and it is hence more efficient when evaluat-
ing queries. However, if the characteristics of the query traffic change



120 Enhancing Efficiency of Search Systems

Fig. 5.8 Hit rate of different strategies for caching posting lists on queries in the Yahoo!
log [15]. Cache size is expressed as the percentage of total memory used to store the whole
index in memory.

Fig. 5.9 Impact of distribution changes on the static caching of posting lists [15]. Cache size
is expressed as the percentage of total memory used to store the whole index in memory.

frequently over time, then it requires re-populating the cache often or
there will be a significant impact on hit rate.

To estimate the impacts of this sort of topic shift on query logs,
Figure 5.9 reports measures on the effect on the QtfDf algorithm of
the changes in a 15-week Yahoo! query log.
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The query term frequencies is computed over the whole stream in
order to select which terms to cache, and then compute the hit-ratio
on the whole query stream. Obviously, since this computation assumes
perfect knowledge of the query term frequencies, this hit-ratio is to
be considered as an upper bound to the maximum hit-ratio attain-
able. A realistic scenario is simulated using the first 6(3) weeks of the
query stream for computing query term frequencies and the following
9(12) weeks to estimate the hit-ratio. As Figure 5.9 shows the hit-ratio
decreases by less than 2% from the upper bound. Therefore, the static
QtfDf strategy can be considered as a very good approximation of the
behavior of the optimal policy for a long time.

Caching is not just a matter of improving hit-ratio of its policy.
Indeed, as it has also been pointed out and shown by Lempel and
Moran [130], optimal policies for graph based workload models are
possible at the cost of a linear time in the number of cache entries.
Obviously, a linear time cache management is useless since it is pro-
hibitively expensive. PDC exploits a reduced model that allows a log-
arithmic, i.e. O(logk), management policy. A high management cost
may jeopardize the benefit of a high hit-ratio. Furthermore, in a real
setting on the same machine many different index server instances run
in parallel (via multi-threading) and it is inconceivable to think of sev-
eral private copies of the cache for every index server. While a shared
cache reduces the space occupancy, it introduces the need of a regulated
concurrent access to the cache structure by each thread, i.e. a spin-lock
around the cache. Therefore, each access implies lock acquisition, cache
management (in case of miss the management time is higher due to the
querying phase), and lock release. The more efficient the cache manage-
ment phase, the higher the scalability of the querying system as more
concurrent tasks can run in parallel.

Therefore, having a static caching policy is important since, being
the buffer read-only, it does not require any management operation
and therefore, no lock is needed around the shared cache. This impacts
heavily on the cache performance. Fagni et al. [74] assessed the through-
put of a SDC cache under two different conditions: a lock around all the
cache, a lock only on the dynamic set. Note that this last setting is the
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Fig. 5.10 Throughput of a caching system (in number of queries served per second) for
fstatic = 0.6 as a function of the number of concurrent threads used and different locking
policies [74].

one which realistically should be used to manage concurrent accesses
to a SDC cache.

Figure 5.10 reports the results of some of the tests conducted. In par-
ticular, the figure plots, for fstatic = 0.6 and no prefetching, the through-
put of an SDC caching system (i.e., the number of queries answered
per second) as a function of the number of concurrent threads contem-
porary and concurrently accessing the cache. The two curves show the
throughput of a system when each thread accesses in a critical section
either the whole cache (dashed line) or just the Dynamic Set (solid line).
Note that locking the whole cache is exactly the mandatory behav-
ior of threads when accessing a purely dynamic cache (i.e., fstatic = 0).
Throughput was measured by considering that a large bunch of 500,000
queries (from the Tiscali log) arrives in a burst. The size of the cache
was 50,000 blocks (quite small, though), while the replacement policy
considered was SLRU.

Therefore, the presence of the Static Set, which does not need to be
accessed using a mutex, permits to approximately double the number
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of queries served per second. Moreover, the caching system does not
only provides high throughput but can also sustain a large number of
concurrent queries. Performance starts degrading only when more than
200 queries are served concurrently.

Obviously the same argument holds also in case of posting list
caching.

5.2 Index Partitioning and Querying in Distributed Web
search Systems

As it have been pointed out by Baeza-Yates et al. [14] data distribution
is one of the most important aspect to optimize in a modern distributed
web search system. Engineering a fully distributed index server can be
as easy as just randomly spreading data on the servers, or can be tricky
as carefully partitioning data into topically consistent document par-
titions. Moreover, a still open problem is to devise whether document
partitioning or term partitioning is the index partitioning method of
choice.

In this section, we revise the problem of selecting a collection in
a distributed information retrieval system. Then, we analyze the first
efforts towards using knowledge extracted from answers to submitted
queries. Finally, we review how to apply these methods to search sys-
tems and we show how such methods can improve greatly the perfor-
mance and reduce the costs of search engines.

5.2.1 Partitioning and Querying in Federated Distributed
IR Systems

Parallel and distributed computing techniques have been used since
many years, so far [182]. The majority of the methods that have been
proposed so far makes use of knowledge acquired from past users’ activ-
ity models obtained by mining web search engine query logs. The reader
interested in such techniques shall find many juicy details in literature
works such as [56, 83, 89, 90, 91, 98, 138, 166, 167, 194, 226, 232, 238].
In the following we review some of the basic techniques used just to set
the ground for the future discussion on methods using users’ feedback.
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Nowadays, the mostly used parallel architectures are: Cluster of
PC, Grid platforms, and the more modern Cloud computing facilities.
The former consists of a collection of interconnected stand-alone PCs
working together as a single, integrated computing resource [53, 40].
The latter is a distributed computing infrastructure for advanced sci-
ence and engineering. The underlining problems of Grid concepts con-
sist of coordinating resource sharing and problem solving in dynamic,
multi-institutional, virtual organizations [79, 80]. Yahoo! Grid [235], for
instance, is an example of how distributed computing is used within a
large search company to improve their performance.

Since realistic web search engines usually manage distinct indexes,
the only way to ensure timely and economic retrieval is designing the
broker module so that it forwards a given query only to the workers
managing documents related to the query topic. Collection Selection
plays a fundamental role in the reduction of the search space. Particular
attention should be paid, though, when using such a technique in a
real web search system since the loss of relevant documents resulting
from the exclusion of some Index servers, could impact dramatically,
by degrading the overall effectiveness, on the system’s performance.

A collection selection index (CSI), summarizing each collection as
a whole, is used to decide which collections are most likely to contain
relevant documents for a submitted user’s query. Document retrieval,
actually, only takes place at such collections.

Hawking and Thistlewaite [98] and Craswell et al. [65] compare
several selection methods. They showed that the method of using only
a näıve collection selection index may lack effectiveness. This implies
that many proposals try to improve both the effectiveness and the
efficiency of the previous schema.

Moffat et al. [151] use a centralized index on blocks of B docu-
ments. For example, each block might be obtained by concatenating
documents. A query first retrieves block identifiers from the central-
ized index, then searches the highly ranked blocks to retrieve single
documents. This approach works well for small collections, but causes
a significant decrease in precision and recall when large collections have
to be searched.
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Garcia-Molina et. al. [89, 90, 91] propose GlOSS, a broker for a
distributed IR system based on the boolean IR model that uses statis-
tics over the collections to choose the ones which better fits the user’s
requests. The authors of GlOSS made the assumption of independence
among terms in documents so, for example, if term A occurs fA times
and the term B occurs fB times in a collection with D documents,
than they estimated that (fA/D) · (fB/D) · D documents contain both
A and B. Authors of GlOSS generalize their ideas to vector space IR
systems (gGlOSS) and propose a new kind of server, called hGlOSS,
that collects information for a hierarchy of several GlOSS servers and
select the best GlOSS server for a given query.

Xu and Croft [232] analyze collection selection strategies using
cluster-based language models. Xu et al. propose three new methods
of organizing a distributed retrieval system, called global clustering,
local clustering, and multiple-topic representation. In the first method,
assuming that all documents are made available in one central reposi-
tory, a clustering of the collection is created; each cluster is a separate
collection that contains only one topic. Selecting the right collections
for a query is the same as selecting the right topics for the query. The
next method is local clustering and it is very close to the previous one
except for the assumption of a central repository of documents. This
method can provide competitive distributed retrieval without assuming
full cooperation among the subsystems. The last method is multiple-
topic representation. In addition to the constraints in local clustering,
the authors assume that subsystems do not want to physically par-
tition their documents into several collections. The advantage of this
approach is that it assumes minimum cooperation from the subsystem.
The disadvantage is that it is less effective than both global and local
clustering.

Callan et al. [56] compare the retrieval effectiveness of searching a
set of distributed collections with that of searching a centralized one
using an inference networks in which leaves represent document col-
lections, and nodes represent terms that occur in the collection. The
probabilities that flow along the arcs can be based upon statistics that
are analogous to tf and idf in classical document retrieval: document
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frequency df (the number of documents containing the term) and
inverse collection frequency icf (the number of collections containing
the term). They call this type of inference network a collection retrieval
inference network, or CORI for short. They found no significant dif-
ferences in retrieval performance between distributed and centralized
searching when about half of the collections on average were searched
for a query.

5.2.2 Query-based Partitioning and Collection Selection

The use of queries information on “traditional”, i.e. non-web, Dis-
tributed IR systems has been proposed in the past [55, 58, 195, 196,
197]. Only recently, it has been started to investigate the opportuni-
ties offered by collection selection architectures in web IR systems [169,
171, 170, 173].

Puppin [169] shows that combining different methods (collection
prioritization, incremental caching, and load balancing) it is possible
to reduce the load of each query server up to 20% of the maximum
by loosing only a fraction (up to 5%) of the precision attained by the
centralized system.

At the core of the technique shown by Puppin [169] there is a col-
lection partitioning strategy whose goal is to cluster the most relevant
documents for each query. The cluster hypothesis states that closely
associated documents tend to be relevant to the same requests [221].
Clustering algorithms, like k-means [104], for instance, exploit this
claim by grouping documents on the basis of their content.

The partitioning method used by Puppin et al. [171] is instead,
based on the novel query-vector (QV) document model, while that
introduced by Puppin and Silvestri [170] instead exploits the cluster
hypothesis the other way around. It clusters queries and successively
devises a document clustering. In the QV model, documents are rep-
resented by the weighted list of queries (out of a training set) that
recall them: the QV representation of document d is a vector where
each dimension is the score that d gets for each query in the query
set. The set of the QVs of all the documents in a collection can be
used to build a query-document matrix, which can be normalized and



5.2 Index Partitioning and Querying in Distributed Web search Systems 127

considered as an empirical joint distribution of queries and documents
in the collection. Our goal is to co-cluster queries and documents, to
identify queries recalling similar documents and groups of documents
related to similar queries. The algorithm adopted is by Dhillon et al. [72]
based on a model exploiting the empirical joint probability of picking up
a query/document pair. The results of the co-clustering algorithm are
then used to build the Collection Selection Index and to subsequently
perform collection selection.3

In alternative to the two popular ways of modeling documents, bag-
of-words and vector space, QV can be used to represent a document by
recording, in which documents are returned as answers to each query.
The query-vector representation of a document is built out of a query
log. The actual search engine is used in the building phase: for every
query in a training query set, the system stores the first N results along
with their score.

Table 5.1 gives an example. The first query q1 recalls, in order, d3
with score 0.8, d2 with score 0.5 and so on. Query q2 recalls d1 with
score 0.3, d3 with score 0.2 and so on. We may have empty columns,
when a document is never recalled by any query (in this example d5).
Also, we can have empty rows when a query returns no results (q3).

This concept can be stated more formally by the following definition
of the Query-vector model [170].

Definition 5.1. (Query-vector model) Let Q be a query log con-
taining queries q1, q2, . . . , qm. Let di1 ,di2 , . . . ,dini

be the list of documents

Table 5.1. In the query-vector model, every document is represented by the query it
matches (weighted with the score) [171].

Query/Doc d1 d2 d3 d4 d5 d6 ... dn

q1 — 0.5 0.8 0.4 — 0.1 ... —
q2 0.3 — 0.2 — — — ... 0.1
q3 — — — — — — ... —
q4 — 0.4 — 0.2 — 0.5 ... 0.3
... ... ... ... ... ... ... ... ...
qm 0.1 0.5 0.8 — — — ... —

3 The implementation of the co-clustering algorithm used in [169] is available at
http://hpc.isti.cnr.it/ diego/phd.



128 Enhancing Efficiency of Search Systems

returned, by a reference search engine, as results to query qi. Further-
more, let rij be the score that document dj gets as result of query qi

(0 if the document is not a match).
A document dj is represented as an m-dimensional query-vector

dj = [rij ]T, where rij ∈ [0,1] is the normalized value of rij :

rij =
rij∑

i∈Q

∑
j∈D

rij
(5.1)

In QV model, the underlying reference search engine is treated as a
black box, with no particular assumptions on its behavior. Internally,
the engine could use any metric, algorithm and document representa-
tion. The QV model is simply built out of the results recalled by the
engine using a given query log.

Definition 5.2. (Silent documents) A silent document is a doc-
ument never recalled by any query from the query log Q. Silent
documents are represented by null query-vectors.

Incidentally, this is another important benefit granted by the use of
historical query log information. The ability of identifying silent doc-
uments is a very important feature of the model because it allows to
determine a set of documents that can safely be moved to a supplemen-
tal index. Obviously, a silent document can become “audible” again.
For example, whenever it is about a topic that become suddenly pop-
ular due to a news event. In this case, a document re-distribution will
be needed and partitions will be created again.

The rij values defined according to Equation (5.1), form a contin-
gency matrix R, which can be seen as an empirical joint probability dis-
tribution and used by the cited co-clustering algorithm. This approach
creates, simultaneously, clusters of rows (queries) and columns (docu-
ments) out of an initial matrix, with the goal of minimizing the loss of
information.

Co-clustering considers both documents and queries. We, therefore,
have two different sets of results: (i) groups made of documents answer-
ing to similar queries, and (ii) groups of queries with similar results.
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The first group of results is used to build the document partitioning
strategy, while the second is the key to the collection selection strategy
(see below).

More formally, the result of co-clustering is a matrix P̂ defined as:

P̂ (qca,dcb) =
∑
i∈qcb

∑
j∈dca

rij

In other words, each entry P̂ (qca,dcb) sums the contributions of rij

for the queries in the query cluster a and the documents in document
cluster b. Authors call this matrix simply PCAP4 and its entries mea-
sure the relevance of a document cluster to a given query cluster, thus,
forming a Collection Selection Index that naturally induces a simple,
but effective, collection selection algorithm.

The queries belonging to each query cluster are chained together
into query dictionary files. Each dictionary file stores the text of each
query belonging to a cluster, as a single text file. For instance, if the
four queries “hotel in Texas”, “resort”, “accommodation in Dallas”,
and “hotel downtown Dallas Texas” are clustered together as the first
query cluster, the first query dictionary is qc1=“hotel in Texas resort
accommodation in Dallas hotel downtown Dallas Texas”. The second
query dictionary file could be, for instance qc2 =“car dealer Texas buy
used cars in Dallas automobile retailer Dallas TX”. A third query
cluster could be qc3 =“restaurant chinese restaurant eating chinese
Cambridge”.

When a new query q is submitted to the IR system, the BM25
metric [178] is used to find which clusters are the best matches: each
dictionary file is considered as a document, which is indexed using the
vector-space model, and then queried with the usual BM25 technique.
This way, each query cluster qci receives a score relative to the query q,
say rq(qci). In our example, if a user asks the query “used Ford retailers
in Dallas”, rq(qc2) is higher than rq(qc1) and rq(qc3).

This is used to weight the contribution of PCAP P̂ (i, j) for the
document cluster dcj , as follows:

rq(dcj) =
∑

i

rq(qci) · P̂ (i, j)

4 Because authors erroneously thought that the LATEX command to typeset P̂ was \cap{P}
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Table 5.2. Example of PCAP to perform col-
lection selection. We have three query clusters:
qc1=“hotel in Texas resort accommodation in
Dallas hotel downtown Dallas Texas”, qc2 =“car
dealer Texas buy used cars in Dallas automobile
retailer Dallas TX” and qc3 =“restaurant chinese
restaurant eating chinese Cambridge”. The second
cluster is the best match for the query “used Ford
retailers in Dallas”. The third document cluster is
expected to have the best answers.

PCAP dc1 dc2 dc3 dc4 dc5 rq(qci)
qc1 0.5 0.8 0.1 0.2
qc2 0.3 0.2 0.1 0.8
qc3 0.1 0.5 0.8 0

rq(dc1) = 0 + 0.3 × 0.8 + 0 = 0.24
rq(dc2) = 0.5 × 0.2 + 0 + 0 = 0.10
rq(dc3) = 0.8 × 0.2 + 0.2 × 0.8 + 0 = 0.32
rq(dc4) = 0.1 × 0.2 + 0 + 0 = 0.02
rq(dc5) = 0 + 0.1 × 0.8 + 0 = 0.08

Table 5.2 gives an example. The top table shows the PCAP matrix for
three query clusters and five document clusters. Suppose BM25 scores
the query-clusters, respectively, 0.2, 0.8 and 0, for a given query q.
We compute the vector rq(dci) by multiplying the matrix PCAP by
rq(qci), and the collections dc3, dc1, dc2, dc5, and dc4 are chosen in this
order.

The QV model and the PCAP selection function together are able
to create very robust document partitions. In addition, they allow the
search engine to identify, with great confidence, what the most author-
itative servers are for any query. These ideas, in fact, can be used to
design a distributed IR system for web pages. The strategy is as fol-
lows. First, we train the system with the query log relative to a training
period, by using a reference centralized index to answer all the queries
submitted to the system. The top-ranking results are recorded for each
query. Then, the co-clustering step is applied on the resulting query-
document matrix representing the QV formalization of the problem.
The documents are then partitioned onto several IR cores according to
the results of clustering.

In the experiments conducted by Puppin et al. [171], ∼ 6M doc-
uments are partitioned into 17 clusters: the first 16 clusters are the
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clusters returned by co-clustering, and the last one holds the silent
documents, i.e. the documents that are not returned by any query,
represented by null query-vectors (the 17th cluster is used as a sort of
supplemental index ). Authors partitioned the collection into 16 clusters
because empirically they observed that a smaller number of document
clusters would have brought to a situation with a very simple selection
process, while a bigger number would have created artificially small
collections.

After the training, collection selection is performed using the
method shown above. In this experiment, the broker actively chooses
which cores are going to be polled for every query. Actually, more
responsibility can be given to each core resulting in a more balanced
load and in a better precision (see load balancing strategy paragraph
below). The index servers holding the selected collections receive the
query and return their results, eventually merged by the broker. In
order to have comparable document ranking within each index core,
the global collection statistics are distributed to each IR server.

Authors were not able to obtain a list of human-chosen relevant
documents for each query (as it happens with the TREC data5). Never-
theless, following the example of previous works by Xu and Callan [231]
they compare the results coming from collection selection with the
results coming from a centralized index. In particular, they use the
intersection and competitive similarity metrics, adapted from Pan-
conesi et al. [61] and briefly recalled below.

Let GN
q denote the top N results returned for q by a centralized

index (ground truth), and let HN
q be the top N results returned for q

by the set of servers chosen by the collection selection strategy. The
intersection at N, INTERN (q), for a query q is the fraction of results
retrieved by the collection selection algorithm that appear among the
top N documents in the centralized index:

INTERN (q) =
|HN

q ∩ GN
q |

|GN
q |

5 The TREC web Corpus: WT10g is available at http://www.ted.cmis.csiro.au/TRECWeb/
wt10g.html.
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Given a set D of documents, we call total score the value:

Sq(D) =
∑
d∈D

rq(d)

with rq(d) the score of d for query q. The competitive similarity at N ,
COMPN (q), is measured as:

COMPN (q) =
Sq(HN

q )
Sq(GN

q )

This value measures the relative quality of results coming from col-
lection selection with respect to the best results from the central index.
In both cases, if |GN

q | = 0 or Sq(GN
q ) = 0, the query q is not used to

compute average quality values.
This strategy is tested on a simulated distributed web search engine.

They use the WBR99 web document collection,6 of 5,939,061 docu-
ments, i.e. web pages, representing a snapshot of the Brazilian web
(domains.br) as spidered by the crawler of the TodoBR search engine.
The collection consists of about 22 GB of uncompressed data, mostly in
Portuguese and English, and comprises about 2,700,000 different terms
after stemming.

Along with the collection, a query log of queries submitted to
TodoBR has been used, in the period January–October 2003. The first
three weeks of the log has been selected as the training set and it is
composed of about half a million queries, of which 190,000 are distinct.
The main test set is composed by the fourth week of the log, compris-
ing 194,200 queries. The main features of test setup are summarized in
Table 5.3.

Zettair7 was used as the central search engine. Zettair is a compact
and fast text search engine designed and written by the search engine
Group at RMIT University. This IR system has been modified so to
implement different collection selection strategies (CORI and PCAP)
in the Query Broker front end.

6 Thanks to Nivio Ziviani and his group at UFMG, Brazil, who kindly provided the collec-
tion, along with logs and evaluated queries.

7 Available under a BSD-style license at http://www.seg.rmit.edu.au/zettair/.
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Table 5.3. Main features of test set.

d 5,939,061 documents taking (uncompressed) 22GB
t 2,700,000 unique terms

t′ 74,767 unique terms in queries
tq 494,113 (190,057 unique) queries in the training set
q1 194,200 queries in the main test set (first week — TodoBR)

To assess the quality of the approach, Puppin et al. [172] perform
a clustering task aimed at document partitioning and collection selec-
tion, for a parallel information retrieval system. To be as complete
as possible, different approaches to partitioning and selection have
been compared. First of all, documents are partitioned into 17 clusters.
For partitions created with co-clustering, the 17th cluster, or overflow
cluster (OVR), holds the supplemental index, which stores the silent
documents. The tested approaches are:

• Random: a random allocation. This is, to the best of our
knowledge, the most popular approach to document parti-
tioning among commercial search engines [33].

• Shingles: k-means clustering of document signatures com-
puted using shingling [50]. Shingles have already been used
in the past for clustering text collections, [50] and for detect-
ing duplicate pages [63, 102]. It has also been shown to be a
very effective document representation for identifying near-
duplicate documents.

• URL-sorting : it is a very simple heuristics, which assign doc-
uments block-wise, after sorting them by their URL; this
is the first time URL-sorting is used to perform document
clustering; this simple technique, already used for other IR
tasks [43, 177, 202], can offer a remarkable improvement over
a random assignment.

• k-Means: k-means clustering over the document collection,
represented by query-vectors.

• Co-clustering : co-clustering algorithm is used to compute
documents and query clusters. Sixteen document clusters and
128 query clusters have been created through 10 iterations
of the co-clustering algorithm.
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Table 5.4. Comparison of different clustering and selection
strategies: intersection (percentage) at 5, 10, 20.

1 2 4 8 16 OVR

INTER5
CORI on random 6 11 25 52 91 100
CORI on shingles 11 21 38 66 100 100
CORI on URL sorting 18 25 37 59 95 100
CORI on kmeans qv 29 41 57 73 98 100
CORI on co-clustering 31 45 59 76 97 100
PCAP on co-clustering 34 45 59 76 96 100

INTER10
CORI on random 5 11 25 50 93 100
CORI on shingles 11 21 39 67 100 100
CORI on URL sorting 18 25 37 59 95 100
CORI on kmeans qv 29 41 56 74 98 100
CORI on co-clustering 30 44 58 75 97 100
PCAP on co-clustering 34 45 58 76 96 100

INTER20
CORI on random 6 12 25 48 93 100
CORI on shingles 11 21 40 67 100 100
CORI on URL sorting 18 24 36 57 95 100
CORI on kmeans qv 29 41 56 74 98 100
CORI on co-clustering 30 43 58 75 97 100
PCAP on co-clustering 34 45 58 75 96 100

CORI is the collection selection function of choice in all the tests
performed, excepting the last one, where PCAP has been used. Results
are shown in Table 5.4. Intersection at 5, 10, 20 (INTER5, INTER10,
INTER20) is computed, when using only a subset of servers is chosen
on the basis of the ranking returned by the collection selection func-
tion used. The first column shows the value of the INTERk measure
when only the most promising server is used to answer each query. The
following observation can be made.

Shingles offer only a moderate improvement over a random allo-
cation and a bigger improvement when a large number of collections,
about half, are chosen. Shingles are not able to cope effectively with the
curse of dimensionality. Experimental results show that URL-sorting is
actually a good clustering heuristic, better than k-means on shingles
when a little number of servers is polled. URL-sorting is even better if
we consider that sorting a list of a billion URLs is not as complex as
computing clustering over one billion documents. This method, thus,
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could become the only one feasible in a reasonable time within large
scale web search engines if no usage information can be used.

Results improve dramatically when we shift to clustering strate-
gies based on the query-vector representation. The results of using
CORI over partitions created with k-means on query-vectors (a value
of INTERk of about 29% when a single partition is queried) are much
better than the results obtained by other clustering strategies that do
not exploit usage information (obtaining an INTERk score up to 18%).

Even better does co-clustering behave. Both CORI and PCAP on
co-clustered documents are superior to previous techniques, with PCAP
also outperforming CORI by about 10% (from 30% to 34%). This result
is even stronger when we watch at the footprint of the collection rep-
resentation, which is about five times smaller for PCAP [171].

We can conclude, thus, that by choosing a fixed, limited number of
servers to be polled for each query, the system can return a very high
fraction of the relevant results.

We report results on COMPN (q) later on this section. This strategy
can cause a strong difference in the relative computing load of the
underlying IR cores, if one server happens to be hit more often than
another: the IR system results to be slowed down by the performance
of the most loaded server. In Figure 5.11, we show a sample of the
peak load reached by the Index servers when we use the four most
authoritative collections for every query (i.e. the FIXED strategy by
Puppin [169]), with the presence of an LRU result cache of 4,000 entries:
it varies from 100 to about 250 queries out of a rotating window of 1000
queries.

The LRU cache is used to make experiments as realistic as possible.
Not filtering queries through an LRU cache would make things even
worse. Roughly speaking, we can design a load-driven collection selec-
tion system where more servers can choose to answer a given query,
even if they are not the most authoritative for it, if they happen to
be momentarily under-loaded. Furthermore, this way, the system can
exploit the load differences among servers to gather more possible rele-
vant results. We can instruct the IR cores about the maximum allowed
computing load, and let them drop the queries they cannot serve. In
this configuration, the broker still performs collection selection, and
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Fig. 5.11 Computing pressure (sample) on the cores when using different routing strategies:
routing to the four most promising servers for each query (FIXED), load-driven routing
capped to 24.7% load (BASIC), boost with four servers, cap to 24.7% (BOOST) and boost
with incremental cache (INC). The load is measured as the number of queries that are
served by each core from a window of 1,000 queries. BASIC, BOOST and INC are able to
improve results by utilizing the idle resources: there is no need for additional computing
power [169].

ranks the collections according to the expected relevance for the query
at hand. The query is broadcasted, but now every server is informed
about the relevance it is expected to have w.r.t. the given query. At
this point, each Index server can choose to either serve, or drop the
query, according to its instant load.8

The most promising core receives a query tagged with top priority,
equal to 1. The other cores c receive a query q tagged with linearly
decreasing priority pq,c (down to 1/N , with N cores). At time t, a core

8 An implementation issue arising here is to give the query broker the ability to determine
if a query has been answered or not by a core. If the query is accepted, the core answers
with its local results. Otherwise, it can send a negative acknowledgment. Alternatively,
the broker can use a time-out, so to guarantee a chosen query response time.



5.2 Index Partitioning and Querying in Distributed Web search Systems 137

c with current load c,t serves the query q if:

c,t × pq,c < L

where L is a load threshold that represents the computing power avail-
able to the system. This is done to give preferred access to queries on
the most promising cores: if two queries involve a core c, and the load
in c is high, only the query for which c is very promising is served by
c, and the other one is dropped. This way, overloaded cores are not hit
by queries for which they represent only a second choice.

If the condition at the index server is met, the core computes its
local results and returns them to the broker. In this model, thus, the
broker, instead of simply performing collection selection, performs a
process of prioritization, i.e. chooses the priority that a query should
get at every Index server.

In the experimental evaluation three query routing strategies are
devised and compared:

• Fixed 〈T 〉: the query is routed to the T most relevant servers,
according to a collection selection function, with T given
once for all. This allows us to measure the computing power
required to have at least T servers answer a query (and to
have a guaranteed average result quality).

• Load-driven basic (LOAD) 〈L〉: the system contacts all
servers, with different priority. Priority ranges from 0 down
to 1/N (on a system with N cores). The load threshold on
cores is fixed to L.

• Load-driven boost (BOOST) 〈L,T 〉: same as load-driven, but
here we contact the first T servers with maximum priority,
and then the other ones with linearly decreasing priority.
By boosting, we are able to keep the lower loaded servers
closer to the load threshold. Boosting is valuable when the
available load is higher, as it enables us to use the lower
loaded servers more intensively. If the threshold L is equal to
the load reached by FIXED 〈T 〉, we know that we can poll
T servers every time without problems. The lower-priority
queries are dropped when we get closer to the threshold.
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Using the load-driven strategy, we are able to keep busy all the cores
in the system by asking them to answer also the queries for which they
are less authoritative (see Figure 5.11).

The last optimization shown by Puppin [169] is incremental caching.
Basically, it is a caching scheme, i.e. all the consideration above on
caching still hold, plus it has an additional information per query
that records which servers have answered back with results. There-
fore, the incremental cache holds the best r results returned thus far by
the underlying search service. Performance, obviously, depends on the
policy used. In this case, however, hit-ratio and throughput are not the
only measurable results: precision of results returned for each query
is also important due to the fact that the higher the number of times
a query is requested the higher the precision gets. Since queries fol-
low a power-law, we expect precision of frequent queries to stabilize to
the maximum attainable possible, after a very few references to those
queries.

To formalize in detail incremental caching, we need to redefine the
type of entries stored in a cache line.

Definition 5.3. A query-result record is a quadruple of the form
〈q,p,r,s〉, where q is the query string, p is the number of the page
of results requested, r is the ordered list of results associated with q

and p, s is the set of servers from which results in r are returned. Each
result is represented by a pair 〈doc id,score〉.

If we cache an entry 〈q,p,r,s〉, this means that only the servers in s

answered, and that they returned r. Also, since in an incremental cache
the stored results might be updated, we need to store the score (along
with the document identifier) to compare the new results with the old
ones.

The complete algorithm is formally shown in Table 5.5. Results in
an incremental cache are continuously modified by adding results from
the servers that have not been queried yet. The set s serves to this
purpose and keeps track of the servers that have answered so far.

When load-driven selection is used, only the results coming from
the polled servers are available for caching. In case of a subsequent hit,
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Table 5.5. The incremental cache algorithm, as performed by the search engine
broker. The case when the cache is not full is straightforward and not shown [169].

For a query with topic q, result page p, with a selection function ρ(q).

1. Look up (q,p).
2. If not found:

1. tag the query with priorities ρ(q);

2. let s be the set of servers that accepted the query;

3. let r be the result set coming from s;

4. select and remove the best candidate for replacement;

5. store 〈q,p,r,s〉;
6. return r to user.

3. If found 〈q,p,r,s〉:
1. tag the query with priorities ρ(q) for the remaining

servers;

2. let s2 be the set of servers that accepted the query;

3. let r2 be the result set coming from s2;

4. add s2 to s;

5. merge r2 with r (sorting by score);

6. return r to user.

the selection function gives top priority to the first server that was not
polled before. Let us say, for example, that for a query q, the cores
are ranked in this order: s4, s5, s1, s3 and s2. In other words, s4 has
priority 1. Now, let us say that only s4 and s1 are actually polled, due
to their lower load. When q hits the system a second time, s5 has the
top priority, followed by s3 and s2. Their results are eventually added
to the incremental cache.

This strategy does not add computing pressure to the system w.r.t.
to boost (see Figure 5.11). The advantage comes to the fact that
repeated queries get higher priority also for the low-relevance servers,
at the cost of other non-repeated queries.

It is important to emphasize that load-driven routing and
incremental caching strategy work independently from the selection
function, which is used as a black box. Puppin [169] uses PCAP,
yet these concepts can be successfully utilized with any other collec-
tion selection algorithm. Across all configurations, load-driven routing,
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combined with incremental cache, clearly surpasses the other strategies.
Furthermore, changing from fixed to load-driven routing and incremen-
tal caching does not add computing pressure: results can be improved
with the same computing requirements in the IR cores, at the cost of
a negligibly higher cache complexity.

In Figure 5.12, we show the competitive similarity of different strate-
gies, under this model, for the tests performed with the TodoBR log.
With a peak load set to the average load of FIXED 〈1〉, i.e. the aver-
age load needed to always poll only the most promising server for
every query, the strategy based on load-driven routing and incremen-
tal caching surpasses a competitive similarity of 65% (with an 80%
COMP10).

Moreover, in order to assess how the strategy exploits the underlying
cluster, in Table 5.6 the average number of servers per query is shown.
While the configuration without collection selection polls more servers
on average (see Table 5.6), they are less relevant for the queries, and the
final results are better for the approaches based on collection selection,
which poll fewer, but more relevant, servers.

Fig. 5.12 Comparison with real query timing information on TodoBR [169].
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Table 5.6. Average number of servers polled per query with different strategies, for dif-
ferent load levels. FIXED* polls a fixed number of servers, but queries can be dropped
by overloaded servers. Even if Boost and Boost + Incremental Caching are utilizing, on
average, a smaller number of servers than broadcast (i.e. no collection selection), the choice
is more focused and gives better results [169].

1 2 3 4 5 6 7 8

FIXED* 0.86 1.77 2.75 3.64 4.58 5.56 6.50 7.41
NO COLL 5.72 7.57 9.17 10.43 11.43 12.08 12.59 13.04
NO COLL+INC 8.72 10.35 11.57 12.65 13.31 13.90 14.26 14.61
BOOST 2.04 2.88 3.78 4.68 5.57 6.47 7.30 8.23
BOOST+INC 5.32 6.52 7.69 8.78 9.70 10.57 11.34 12.05

9 10 11 12 13 14 15 16 16+OVR
FIXED* 8.33 9.26 10.23 11.15 12.06 13.04 14.01 15.08 16.34
NO COLL 13.45 13.86 14.16 14.57 14.86 15.19 15.40 15.63 16.34
NO COLL+INC 14.88 15.14 15.37 15.58 15.77 15.92 16.06 16.17 16.62
BOOST 9.14 9.98 10.91 11.93 12.85 13.83 14.71 15.50 16.34
BOOST+INC 12.65 13.17 13.67 14.19 14.68 15.16 15.64 15.98 16.62

5.2.3 Partitioning and Load Balancing in Term-partition
based Search Engines

Term-partitioning has always been considered not as effective as doc-
ument partitioning in real search settings. Nonetheless, some recent
works have made this fact not as solid as before. Due to recent proposals
of a pipelined architecture, the term partitioning approach is now
attracting some attention again [150]. According to this partitioning
strategy, the set of terms occurring in the index, i.e. the lexicon, is parti-
tioned among the Index servers, and each server is able to discover only
the documents containing a subset of the lexicon. The strategies pro-
posed so far suffer from a significant load imbalance, due, again, to the
power-law distribution of terms in user queries and indexed documents.

In the classical term partitioning approach, the query is segmented
into several disjoint sub-queries. Each sub-query must be sent to the
server that is responsible for the corresponding terms. Note that each
sub-query can be served locally by each server that has to return, in
principle, the whole result list. Then, local results must be merged in
order to produce the list of relevant DocIDs to be returned to the user.
In the pipelined approach, the broker, after dividing the query into sub-
queries, packs them up into a structure denoting the list of servers to
invoke. The first server of the list receives the whole query-pack, resolves
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its sub-query, sends its own results, along with the remainder of the
query-pack, to the second server in the list. This, in turn, resolves its
sub-query and merges the results with those received from the previous
index server. This process goes on until no more sub-queries are left and
the last index server in the list is able to select the r best documents
that are sent back to the broker. Finally, the broker returns the rendered
result page to the user.

Term-partitioning is easily explained through an example. Suppose
we have an index built on a toy collection made up of three documents:
d1 = {t1, t2}, d2 = {t1, t3}, d3 = {t2, t3}. Suppose, we have two index
servers and we store t1, and t2 on server 1, t3 on server 2. First server’s
index contains t1 → {d1,d2}, and t2 → {d1,d3}. Server number two con-
tains t3 → {d2,d3}. If a user submits a query consisting of terms t1 and
t2 only the first server is involved in the resolution. For the query t1 and
t3, instead, both servers are involved. In traditional term partitioning
the broker sends t1 and t2 separately to server 1 and 2, respectively. In
pipelined term-partitioning the broker packs t1 and t2, sends the packet
to server 1, which extracts t1’s postings. Afterwards, server 1 forwards
t2 along with the list {d2,d3} to server 2. Finally, server 2 sends the
list consisting of the document d2 back to the broker.

From the above example, it is quite clear why term-partitioning
suffers a lot from the imbalance problem. If the query stream consists
of all resubmissions of query t1 and t2, then server two is never involved
in a query resolution. Balancing the load is, therefore, the first objective
if we want to prove the applicability of term partitioning in real-world
web search engines.

Results of preliminary studies made [139, 149, 240] are good and
promising. The aim at balancing the load in a term-partitioned dis-
tributed search system using information about how terms are dis-
tributed across requests in the past. Anyway, none of the proposed
studies have shown, yet, that term-partitioning can be better than
document-partitioning.

The load balancing problem is also addressed by Moffat et al. [149],
where the authors exploited both term frequency information and post-
ings list replication to improve load balancing in their pipelined WSE.
Although they showed a strong improvement of about 30% in the
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throughput of the system, still the document partitioning approach
behaves better. The term distribution strategy used is called fill small-
est. It basically consists in applying a bin-packing heuristic to fill up
the partitions by weighting each term with its frequency of occurrence
within a stream of queries. This technique is enhanced by exploiting
partial replications of terms and associated postings lists. As replication
strategy, they proposed to replicate up to 1,000 most frequent terms.
They also tested a multi-replicate strategy, in which they replicated
the 100 most frequent terms only: the most frequent one is placed
on all their eight servers, then the following nine frequent ones are
placed on four of them, and then the other 90 terms are placed on two
servers.

Nevertheless, believing in the potential of the pipelined query eval-
uation, authors envision in term partitioning a great potential. The
authors indicate as future directions of research the exploration of
load balancing methodologies based on the exploitation of term usage
patterns present in the query stream. Such patterns can drive both
the dynamic reassignment of lists while the query stream is being
processed, and the selective replication of the most accessed inverted
lists.

Such techniques are studied by Lucchese et al. [139]. They demon-
strate the feasibility and efficacy of exploiting a frequent-patterns
driven partitioning of the vocabulary of terms among the servers, in
order to enhance the performance of a term-partitioned, large-scale,
pipelined WSE. The model they propose takes into account: correlation
of terms in user queries, the disk cost as, the OS buffer cache, and the
communication and computation overheads. They shown, through sim-
ulated results, that the novel model overcomes the performance limits
of the previous partitioning strategies.

Without entering too much into the theoretical details of the
methods by Lucchese et al. [139] we show some results proving that the
method effectively reduces the load unbalance and, at the same time,
reduces the number of queried servers. These two parameters create,
obviously, a trade-off. The parameter α is a value tuning the impor-
tance of load balancing over the average number of servers queried in
the original formula of Lucchese et al. [139].
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All the results are drawn from the TodoBR query log but the same
conclusions can be drawn also for other query logs. All query logs were
preliminarily cleaned and transformed into a transactional form, where
each query is simply formed by a query identifier and the list t1, t2, . . . , tq
of terms searched for. The terms were all converted to lower case, but
neither stemming nor stopword removal was performed. The first 2/3 of
each query log as used to drive the partitioning of the index, while the
last part was used to test the partitioning obtained. Since they do not
have available a real collections of documents coherent with the query
logs, they validated the proposed approach by simulating a broker and
assuming constant times for disk, retrieval and network disregarding
the lengths of the involved posting lists. It is worth noticing that the
model is however sound and as general as possible. The knowledge of
the actual values of the above parameters could be easily taken into
account during the term assignment process.

The figures reported in Table 5.13 show the percentage of queries
occurring in the test sets of the TodoBR query log as a function of the

Baseline Cases Term Ass.
Servers random bin packing α = 0.9
1 28 28 50
2 31 30 20
3 17 17 14
> 3 24 25 16

(a)

Replication Factors
0.0001 0.0005 0.001

bin term bin term bin term
Servers pack. ass. pack. ass. pack. ass.

TodoBR
1 42 54 56 62 63 67
2 31 22 22 18 19 16
3 12 10 9 8 8 8
> 3 15 14 12 11 10 9

(b)

Fig. 5.13 Term assignment results. (a) Percentages of queries as a function of the number of
servers involved in their processing. The parameter α states the how much load-balancing
should be preferred over term-packing [139] and (b) Effect of replicating the index entries
of most frequently queried terms [139].
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number of servers queried. Each column of the table refers to a different
assignment of terms to the partitions. In particular, the baseline cases
are random assignment – i.e. the traditional one, and bin packing [149].
The term assignment algorithm is executed with values of α equal to
0.8 meaning that we are preferring to lower the number of server per
query. The assignment strategy allows to remarkably increase the num-
ber of queries involving only one server. Obviously, the less the servers
involved in answering a query the lower the query response time and
the communication volume. On the TodoBR log the number of queries
served by a single server almost doubled w.r.t. the random and bin
packing assignments. As a consequence, the number of queries requir-
ing more than one server decreases correspondingly. We can see that
the number of queries solved by more than three servers is reduced by
at least 1/3 on TodoBR. The effect of replicating in all the servers the
index entries of some of most frequently queried terms was also tested.
By introducing only very small percentages of replicated terms, ranging
from 0.001% to 0.1% of the the total number of terms, the effect on
the average number of per-query servers were very remarkable. Indeed,
replication is very effective in reducing the average number of per-query
servers also in the baseline case of bin packing. However, the advan-
tages of using term assignment technique are remarkable also in these
tests.

Load balancing also improved. Figure 5.14(a) and 5.14(b) reports
the comparison of the average number of servers vs. load balancing in
TodoBR query log when term assignment is performed. In particular,
Figure 5.14(a) reports the case where the load balancing is preferred
over reducing the number of servers involved per query. Whereas, Fig-
ure 5.14(b) shows the effect on the load of giving more importance to
reducing the average number of servers involved per query.

Therefore, term assignments improved WSE throughput and query
response time with respect to random and bin packing [149] term
assignments. However, since a web search engine is a complex, highly
nonlinear environment, the analysis conducted by Lucchese et al. [139]
and thus the above results should be confirmed by testing performed
on an actual web search engines with an actual index.
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(a)

(b)

Fig. 5.14 Number of servers vs. load balancing in TodoBR term partitioning experiments.
From [139]. (a) Load balancing first and (b) Less servers best.
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5.3 Summary

Differently from the previous section, this one presented how the knowl-
edge mined from query logs can be used to speed-up query processing
in search engines. We showed two major directions:

• Caching, that consists in exploiting past usage information
to build cache replacement policies suitable for search engine
workloads;

• Data partitioning, that is the design of carefully chosen
strategies to improve the placement of data within a dis-
tributed web search engine. For this topic, we showed how to
improve both document and term partitioned search engines.



6
New Directions

As the title says we review some of the open problems and challenges
as highlighted by many scholars. Obviously, this section does not con-
tain any consolidated result but only some new ideas that are briefly
sketched.

6.1 Eye Tracking

As we have seen in the Enhancing Effectiveness section, relevance feed-
back is a very important mean with which one can improve the users’
search experience by adapting the engine’s ranking function to partic-
ular class of users, or to a particular time period.

Feedback of some sort can also be obtained by observing how people
interact with a search result page by tracking eye movements [70, 88,
93, 190].

As an example of what kind of information can be captured by eye
tracking techniques, Figure 6.1 shows users fixation patterns for a page
of web search results. It is clearly shown that users clearly read the
contextual descriptions, especially on the seventh result.

By using eye tracking some useful feedback information, not
previously available with click-through information, can be envisioned.

148
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Fig. 6.1 Heat map visualization of the areas across which three different users direct their
sights [70].

Indeed, a lot of nice applications for this kind of feedback can be
thought: learning how to better rank search results, how to place adver-
tisement in a way they capture more attention from users, etc.

For instance, Guan and Cutrell [93] perform the following experi-
ment: for a given search query the more relevant results (i.e. targets in
their terminology) are alternatively displayed (for different users) at the
top, in the middle, and at the bottom of search result page. Therefore,
this study empirically evaluates how people’s attention is distributed
across search results when the target is systematically manipulated to
be displayed at different positions. As a result, it is shown that people
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spend more time and are less successful in finding target results when
targets were displayed at lower positions in the list. When people could
not find the target results for navigational search, they either selected
the first result, or switched to a new query. From this study, it could
be concluded that

“the search engine could show variety of different search
results where “best” ranking is not clear so that users
could have an accurate estimation of the relevance of
results and then behave accordingly.”

Cutrell and Guan [70] describe a study that used eye tracking to
explore the effects of changes in the presentation of search results. An
interesting finding is that making snippets richer significantly improves
the performance in terms of attractiveness for informational queries,
but degrades performance for navigational queries. These results sug-
gest this difference in performance is due to the fact that as the snippet
length increases, users pay more attention to the snippet and less atten-
tion to the URL located at the bottom of the search result.

6.2 Web Search Advertisement

Web advertisement is more and more used by a continuously growing
number of commercial bodies [218].

Advertisement is another area in which relevance feedback and click-
through data can help a lot. Obviously, since the main goal of online
advertisement is to attract clicks, analyzing the characteristics of the
most clicked advertisement pages could help in determining a better
advertisement placement.

To be more precise, an advertisement can be modeled as a quadruple
〈T ,D,U ,K〉, where T is the title of the advertisement; D is the descrip-
tion – usually a few words that effectively describe what is advertised;
U is the URL of the landing page for that advertisement; K is a set of
keywords related to the advertised business with the relative maximum
amount of money the advertiser is willing to pay in case someone clicks
the advertisement.



6.3 Time-series Analysis of Queries 151

The maximum amount of money willed to pay in case of a click
on the relative advertisement, is called bid,1 and usually is part of
the advertisement ranking process. Indeed, the process of specifying a
maximum amount of money for a keyword is commonly referred to as
“to bid for a keyword”.

One of the main factors involved in the estimation of the CTR is
the relevance of the advertisement with respect to the user query. In
the simplest case this can be done by selecting all those advertisements
whose keywords match at least one term in the query. For instance, if a
user submit the query “first aid” all those advertisements that have bid
either for “first”, for “aid”, or both are selected. This, indeed, does not
keep into account any relevance judgement with respect to query results
possibly presenting users advertisements that are not of their interest.
Therefore, the number of clicks generated by this näıve technique can
be low and should be improved.

For instance, a straightforward way to enhance the CTR for an
advertiser is to count the number of clicks it has received in the past.
However, this näıve approach may result not as effective as possible.
In fact, it penalizes newly inserted, or rarely recalled advertisements.
Therefore, a finer analysis of query log entries and click-through data
could enable the finding of better ranking functions for advertisers.

6.3 Time-series Analysis of Queries

Here, we present an alternative viewpoint on query logs. Better to say,
queries can be viewed as signals in the domain of time. In each time
unit we record the occurrences of the query. This would result in a
sort of signal to which standard temporal series techniques may be
applied [59, 85, 222, 223, 243]. The techniques reported in the above
papers allow for the discovering of peculiar query features such as being
periodic, or bursty.

Adar et al. [2] use time series to predict (i) why users issue queries
and (ii) how users react and cause news spreading. In particular, a novel
way to compare signals coming from different sources of information.

1 This recall the action of bidding in auctions. Actually this auction-based mechanism is
part of the advertisement process.
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Dynamic Time Warping (DTW) is a way to compare two time series
also capturing behavioral properties by mapping inflection points and
behaviors such as the rise in one curve to the rise in the second, peak
to peak, run to run. Figure 6.2 shows an example of DTW, against a
simple linear mapping. Lines going from a curve to the other show how
events are mapped within each line.

Computing a DTW is simply done by a dynamical programming
algorithm minimizing the distance in terms of euclidean distance
between to time series points.

The algorithm shown in Figure 6.1 produces a two-dimensional
array, DTW, containing how the two time series maps. The best warp-
ing path is simply obtained by crawling the array from the extreme
corner in a backward fashion along the minimum gradient direction.

Fig. 6.2 The difference of using DTW against a simple linear mapping for comparing two
time series.

Table 6.1. Dynamic time warping algorithm.

Procedure DynamicTimeWarping(x, y).

(1) DTW[0,0] = 0;
(2) for i = 1..length(x)

(a) DTW[0, i],DTW[i,0] = ∞;

(b) for i = 1..length(x)

i. for i = 1..length(y)
A. cost = |x(i) − y(j)|;
B. DTW[i, j] = min(DTW[i − 1, j] + cost,

DTW[i, j − 1] + cost, DTW[i − 1, j − 1] + cost);
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Goal of the project described in the article, was to discover how
time-series were correlated in order to be able to use events in one
information source to predict those in another. For example as the
article reports: “one might expect a ramp-up much earlier for expected
events in the query-logs followed by a burst of posting and news activity
in the blog and NEWS datasets around the time of the actual event”.
The datasets used were two query logs (from MSN, and AOL), a blog
dataset, a NEWS dataset. By using human-based tests they devised
five different general trends in time-series-based behavior prediction.

News of the weird – Events that are so weird and/or strange to be
able to virally spread over a huge amount of people. Anticipated events
– Events that produce a lot of queries but only few blog posts. Famil-
iarity breed contempt – Events that are newsworthy but not searched
by users. Filtering behaviors – Events that have the capability of deep-
ening the filtering of categories. Elimination of noise – Events that
combined reduces the noise that might have been generated around a
topic, for instance a set of blog posts discussing a news article.

The models describing the aggregated and social behavior of users
studied by Adar et al. [2] can be used in practice, for instance, to
analyze the market, or to make search engines more reactive to changing
user needs.

There are still many open issues that are interesting to, at least,
enumerate:

• The effects of query log analysis on exploratory search.
• Complex and interactive question answering.
• Client-side instrumentation (including keystroke and mouse

movement analysis).
• Direct mental activity analysis.

This shows how this research field is still in its infancy and needs the
efforts of many researchers to enable a better search experience for
end users. On the other hand, search companies should find a way to
give researchers not working in private companies access to query log
information. In this case, not only search experience is enhanced, but
also REsearch experience will be.
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6.4 Summary

This section is a sort of “What’s Next?” for the topic presented in this
survey. We have presented some challenging problems whose solutions
are trailblazing. These problems have not fully solved, yet. In particu-
lar, very few research papers have been presented on how to improve
the effectiveness (read “incomes”) of advertisement placement algo-
rithms. We strongly believe that one of most promising directions is,
thus, represented by using query log information.



7
Conclusions

This work has covered some of the most important issues in web search
engine optimization through past query mining. Starting from first
order statistics of query distributions (i.e. query frequency, click fre-
quency, page popularity, etc.), we have shown more complex analyses
of historical web search usage data such as: query sessions (also known
as query chains) and social relations between queries (i.e. folksonomies).

Results and observations from this introductory parts meet the two
central sections where technique for enhancing search effectiveness and
efficiency are presented.

Due to the experimental nature of these analyses, results are, to
some extent, fragmented into several parts that, in the vast majority
of the cases, are taken by the relative articles published in literature.
Actually, a comparison of the various techniques would require to re-
implement them and this was beyond the scope, and not much in the
spirit of this work.

To conclude we really hope to have been able to give readers the
basic tools they can use for working on this, still quite young, field of
query log mining.
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Italy, May 2004.

[202] F. Silvestri, “Sorting out the document identifier assignment problem,” in
Proceedings of the 29th European Conference on Information Retrieval, April
2007.

[203] F. Silvestri, S. Orlando, and R. Perego, “Assigning identifiers to documents to
enhance the clustering property of fulltext indexes,” in SIGIR ’04: Proceedings
of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 305–312, New York, NY, USA:
ACM, 2004.

[204] F. Silvestri, S. Orlando, and R. Perego, “Wings: A parallel indexer for web
contents,” in International Conference on Computational Science, pp. 263–
270, 2004.

[205] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging
rules,” Communications of the ACM, vol. 28, no. 2, pp. 202–208, 1985.

[206] A. J. Smith, “Cache memories,” ACM Computing Surveys, vol. 14, no. 3,
pp. 473–530, 1982.

[207] M. Speretta and S. Gauch, “Personalized search based on user search histo-
ries,” in Web Intelligence, pp. 622–628, 2005.

[208] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic, “From e-sex to
e-commerce: Web search changes,” Computer, vol. 35, no. 3, pp. 107–109,
2002.

[209] A. Spink, S. Koshman, M. Park, C. Field, and B. J. Jansen, “Multitasking
web search on vivisimo.com,” in ITCC ’05: Proceedings of the International
Conference on Information Technology: Coding and Computing, (ITCC’05)
Volume II, pp. 486–490, Washington, DC, USA: IEEE Computer Society, 2005.

[210] A. Spink, H. C. Ozmutlu, and D. P. Lorence, “Web searching for sexual
information: An exploratory study,” Information Processing and Management,
vol. 40, no. 1, pp. 113–123, 2004.

[211] A. Spink and T. Saracevic, “Interaction in information retrieval: Selection and
effectiveness of search terms,” JASIS, vol. 48, no. 8, pp. 741–761, 1997.

[212] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic, “Searching the web:
the public and their queries,” Journal of the American Society for Information
Science and Technology, vol. 52, pp. 226–234, February 2001.

[213] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage min-
ing: Discovery and applications of usage patterns from web data,” SIGKDD
Explorations, vol. 1, no. 2, pp. 12–23, 2000.

[214] J. Teevan, E. Adar, R. Jones, and M. Potts, “History repeats itself: Repeat
queries in yahoo’s logs,” in SIGIR ’06: Proceedings of the 29th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 703–704, New York, NY, USA: ACM, 2006.

[215] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts, “Information re-retrieval:
Repeat queries in yahoo’s logs,” in SIGIR ’07: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 151–158, New York, NY, USA: ACM, 2007.



172 References

[216] J. Teevan, S. T. Dumais, and E. Horvitz, “Beyond the commons: Investigat-
ing the value of personalizing web search,” in Proceedings of Workshop on
New Technologies for Personalized Information Access (PIA ’05), Edinburgh,
Scotland, UK, 2005.

[217] J. Teevan, S. T. Dumais, and E. Horvitz, “Personalizing search via automated
analysis of interests and activities,” in SIGIR ’05: Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 449–456, New York, NY, USA: ACM Press, 2005.

[218] “The associated press: Internet ad revenue exceeds $21b in 2007,” 2008.
http://ap.google.com/article/ALeqM5hccYd6ZuXTns2RWXUgh6br4n1UoQ
D8V1GGC00.

[219] H. Turtle and J. Flood, “Query evaluation: Strategies and optimizations,”
Information Processing and Management, vol. 31, no. 6, pp. 831–850, 1995.

[220] M. van Erp and L. Schomaker, “Variants of the borda count method for
combining ranked classifier hypotheses,” in Proceedings of the Seventh Interna-
tional Workshop on Frontiers in Handwriting Recognition, pp. 443–452, Inter-
national Unipen Foundation, 2000.

[221] C. J. van Rijsbergen, Information Retrieval. London: Butterworths, 2nd ed.,
1979.

[222] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos, “Identifying similarities,
periodicities and bursts for online search queries,” in SIGMOD ’04: Proceed-
ings of the 2004 ACM SIGMOD International Conference on Management of
Data, pp. 131–142, New York, NY, USA: ACM, 2004.

[223] M. Vlachos, P. S. Yu, V. Castelli, and C. Meek, “Structural periodic measures
for time-series data,” Data Mining and Knowledge Discovery, vol. 12, no. 1,
pp. 1–28, 2006.

[224] D. Vogel, S. Bickel, P. Haider, R. Schimpfky, P. Siemen, S. Bridges, and
T. Scheffer, “Classifying search engine queries using the web as background
knowledge,” SIGKDD Explorations Newsletter, vol. 7, no. 2, pp. 117–122, 2005.

[225] X. Wang and C. Zhai, “Learn from web search logs to organize search results,”
in SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 87–94,
New York, NY, USA: ACM, 2007.
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