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Abstract

This monograph is directed at researchers and developers who are
designing the next generation of web search user interfaces, by focusing
on the techniques and visualizations that allow users to interact with
and have control over their findings. Search is one of the keys to the
Web’s success. The elegant way in which search results are returned
has been well researched and is usually remarkably effective. However,



the body of work produced by decades of research into information
retrieval continues to grow rapidly and so it has become hard to syn-
thesize the current state-of-the-art to produce a search interface that
is both highly functional, but not cluttered and distracting. Further,
recent work has shown that there is substantial room for improving the
support provided to users who are exhibiting more exploratory forms
of search, including when users may need to learn, discover, and under-
stand novel or complex topics. Overall, there is a recognized need for
search systems to provide effective user experiences that do more than
simply return results.

With the aim of producing more effective search interfaces, human
computer interaction researchers and web designers have been devel-
oping novel interactions and features that enable users to conveniently
visualize, parse, manipulate, and organize their Web search results.
For instance, while a simple set of results may produce specific infor-
mation (e.g., the capital of Peru), other methods may let users see
and explore the contexts of their requests for information (more about
the country, city, and nearby attractions), or the properties that asso-
ciate groups of information assets (grouping hotels, restaurants, and
attractions by their type, district, or price). Other techniques support
information-seeking processes that may last weeks or months or may
even require collaboration between multiple searchers. The choice of
relevant result visualization strategies in new search systems should
reflect the searchers and the higher-level information needs that moti-
vate their searches. These examples provide further motivation for sup-
porting designers, who are challenged to synthesize and understand the
breadth of advances in search, so that they can determine the bene-
fits of varied strategies and apply them appropriately to build better
systems.

To support researchers and designers in synthesizing and under-
standing the advances in search, this monograph offers a structured
means to think about web search result visualization, based on an
inclusive model of search that integrates information retrieval, infor-
mation seeking and a higher-level context of tasks and goals. We exam-
ine each of these levels of search in a survey of advances in browsers
and related tools by defining search-related cognitive processes and



analyzing innovative design approaches. We then discuss evaluations
at each of these levels of search, presenting significant results and iden-
tifying both the traditional and novel means used to produce them.
Based on this examination, we propose a taxonomy of search result
visualization techniques that can be used to identify gaps for future
research and as a reference for designers of next generation web search
systems.



1
Introduction

This monograph is for designers thinking about how they might
enhance the experience of discovering, exploring and putting to work
information they can access over the Web. This monograph is also for
researchers who may be interested in how search interaction approaches
have developed over the past decade. In both cases, a fundamental ques-
tion is at play: what else users could possibly need besides Google to
search the Web? That’s a fair question, and readers of this survey may
have the same question. So to tackle that head on, let us agree: Google
is really good. For what it does.

Our monograph considers the approaches for exploring informa-
tion spaces that Google’s elegant keyword search cannot do. Over the
past decade, research on alternative search paradigms has emphasized
Web front ends on single or unified databases. Such work is productive
when the designer has the luxury of working with well-curated docu-
ments from a single source, but the elegant visualization or well-tailored
faceted browser may not scale to the size and diversity of Web-based
information, links, scientific data sets, personal digital photos, creative
videos, music, animations, and more. So why does keyword search
scale? Because (a) huge resources have been thrown at the problem
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and (b) textual data have a satisfying and compliant order to it. We
hope this monograph shows that the research and evaluations of alter-
native approaches to data exploration for knowledge building are the
best preparation we have for the next generation Web, the Web of
Linked Data.

In a little more than a decade the Web has become the default
global repository for information. Many factors have contributed to
this remarkable result, from the success of the robust technologies that
enable its networked connections, to the commercialization of the back-
bone that enticed business to support and utilize it, to the ease with
which ordinary citizens can publish information to it. But perhaps the
key technology that took the Web from a useful supplement of current
information practice to become the default communication medium
is search. Web search, as provided by Google, Microsoft, Yahoo, etc.,
enables users to find the information they want via the simplest of
interaction paradigms: type some keywords into a box and get back an
informative result list that is ranked, as if by magic, so that the first
results most likely match what we’re trying to find.

Search engines automated what was initially a community-based
and commercially coordinated Easter egg hunt: category systems were
proposed and documents as they were found either by humans recom-
mending them to such sites, or discovered by human trawlers and some
early web crawlers, were assigned to categories. The Web was set up
like a giant Yellow Pages. Further, before these nascent directories, the
Web was explored by the link. As recently as 2004, surfing the Web was
still a common trope for browsing the Web, following from link to link,
from one site to another. Not unlike blogs today, web sites might publish
best new finds on a topic, and away one would go. Only five years later,
who “surfs” or presumes to browse “the Web”? It has grown beyond
that scale of the surfable, with its pockets of Dark Web and ice caps of
Public Web, where so much more than is indexed by search engines is
below the visible water line of documents. This growth is itself related
to the existence of search: because it can be found by search, rather
than relying on recommendations alone, it is worth publishing on the
Web; indeed it is necessary to publish on the Web. Because conversely,
if it cannot be found on the Web, does it exist?
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Search as embodied by the text box and keyword has framed our
understanding of what the Web is [145]. It has become so ubiquitously
associated with the Web that it is difficult to find a web browser that
does not have as a default tool, a keyword search box built into upper
right of the browser window, right next to the box for the location.
In some cases the URL address bar is already polymorphic: acting
as either address area or search bar. The prominence of web search
based on the fundamental efficacy of keyword search makes it difficult
to imagine what an entire monograph on search interaction may be
about. It turns out that this elegant paradigm is especially effective for
the 1-min search — find the address for Chez Panisse, get a biography
of Madame Curie, or locate the home page for a local car rental. But
many users have come to the Web for substantive research that takes
hours or weeks — find all the songs written about poverty in the 1930s,
prove that there are no patents that cover my emerging innovation, or
locate the best legal precedents for my brief.

A second motivator for new search strategies is that the next gen-
eration web will offer fresh possibilities that go well beyond finding
documents by way of keyword search. Hall and O’Hara [69] stress that
what we know as the Web today is the Document Web, and not the Web
of Linked Data that is imminently upon us. The older Document Web
is about the information, readable by us, written by us, and framed for
our use. It is this very human-readable orientation of the Web and it is
the presentation technologies in the browser that have enabled keyword
search engines to become so very good: the words in the documents are
all a search engine has to go on to find appropriate results. It is because
the search engine is searching in documents that we get a list of docu-
ments back: we may only want a sentence in the middle of a document,
but we get the whole thing (the document) back.

By contrast, in the newer Web of Linked Data, often called the
Semantic Web, the idea is to give the search engine designers more
to work with than making best guesses about what results to return
based on keyword frequency and number of pages linked to a document.
Imagine if instead of a list of results, the machine simply returned “the
answer”? Some queries have specific answers: “mc’s phone number at
work” or “British obesity rate in 2009?” There may be several sources
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for this information, but if they concur, why not just present that result,
and give the six places the result occurs? Right now, this kind of search
result is not feasible because the Web for the most part does not have
consistent tags to indicate what is a phone number or where to find
obesity rates. Search engines check if a term requested maps to the
term in a document, and does very effective ranking very fast. That
is of course an oversimplification of all the sophistication to make that
experience as fast and accurate as it appears to be.

The goal of the Web of Linked Data is to have information about
information available so that not only can designers provide better,
clearer answers to such simple queries about phone numbers and statis-
tics, but also users can resolve questions that are difficult to handle
without metadata. Some researchers are conducting intriguing research
that attempts to create this metadata automatically to derive seman-
tics from the documents themselves. In this monograph we are less
concerned with how metadata becomes available. We are concerned
with the question of what designers can do with it, once it exists.

While the power of Semantic Web of Linked Data is that it can
enhance large diverse, unorganized, and heterogeneous datasets, the
unique affordances also challenge our assumptions about how we access
information [176]. As the links between data can be numerous, endless,
and of any granularity, the assumptions about carefully structured clas-
sifications, for example, breakdown. Similarly, while web searches are
typically for web pages, it is not clear whether searching at the data
level should return any object [21], specific types of objects [146], object
relationships [21, 76], portions of RDF [47], entire ontologies [2, 63], and
so on.

Further, as the work on semantically linked data has separated the
data from presentation, designers and users are able to represent the
data however they like [21]. The flipside, however is that someone,
either the interface designer or the end user, has to decide how to
represent the data. In summary, the freedom enabled by semantically
organized data sets has in turn broadened the options and increased the
number of decisions that designers and end users have to make. Recent
work has shown, however, that increasing numbers of options can make
designers and users feel less confident in their decisions, and less happy
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with their results [130, 149], rather than making them feel empowered.
What effect, then, does this have on confidence during search interface
design, given that designers and users now have more freedom.

These issues are becoming national policy issues, especially as the
United States, United Kingdom, and other governments intend to
release increasing amounts of information onto the Web as data with
sufficient metadata to support more automatic analysis. Metadata tags
will indicate that a number represents the reported cases of obesity at a
given time and place. The number also has a source and date of creation
associated with it so users can verify accuracy and timeliness. It is not
simply a number in a document, instead it comes with well-associated
meanings.

As soon as this information is available new opportunities for rep-
resentation beyond document lists become possible. Users will be able
to see quickly for themselves: are obesity levels rising at the rates pre-
sented in the media, or, by mapping these data from several sources,
are they too conservative or aggressive? Imagine being able to look at
such sources to ask these kinds of questions with the same facility as
we use keyword search now. Now that is an interaction challenge.

Designers already offer such representations on smaller than Web
scale information sources; that is what most of the literature we will
review considers. In that sense we have some preparation for what is to
come. But there are also entirely new interaction challenges. There will
be many data sources from many places that map to given meanings,
like obesity statistics. How can these disparate sources be gathered,
inspected, and explored?

Right now, we are on the cusp of a transition from the Document
Web to the Document/Data Web. It is an incredible time to be inter-
ested in designing or researching how to engage with these immense
volumes of data. Are designers and researchers ready for this transi-
tion? The findings presented here may act as guideposts for this near
future. We may also look back in ten years at these nascent efforts to
imagine exploring data at scale and say either that was clever or that
was näıve. It will be more than intriguing to see what principles remain,
and what have yet to be imagined. In the meantime, we look back in
order to leap ahead.



1.1 A Challenge Faced by Designers of Future Search Systems 9

In the remainder of this monograph, Section 2 identifies and explains
a model of search that is used to structure the discussion in the fol-
lowing sections and forms the basis of the taxonomy of advances in
interactive search. In short, the model describes search in increasing
layers of context, from simple retrieval, to broader strategies, and to the
wider tasks that motivate them. Section 3 identifies specific advances
in interactive search, and prominent examples of their use, organized
by the different layers of the model to which they apply. Section 4
explains how advances at each layer of the model have been evaluated.
Section 5 then presents the final taxonomy, and identifies areas of rel-
atively little research as potential focal points for future research. For
search interface designers, the taxonomy provides a list of potential
features to include in designs, describing (a) how they support users,
(b) how their support has been evaluated, and (c) how prevalent they
have become on the Web.

1.1 A Challenge Faced by Designers of Future
Search Systems

Understanding how search interfaces and visualization affect searcher
success is a hard challenge, and cannot be as easily measured as
speed, document similarity, and result accuracy. In the early 1970s,
Cooper [43] suggested that instead of speed metrics, search evaluations
should be based on subjective user satisfaction with the results. Later,
Robertson and Hancock-Beaulieu [143] noted that the recent, at the
time, revolutions of IR research had begun to focus more on users and
less on systems. Even more recently, though, researchers have identified
just how inadequate the familiar keyword search paradigms, provided
by environments such as Google and Bing1 (Microsoft’s search engine),
might be for users who need to do more than just find a website that
answers a factual question.

The recent focus on these more exploratory forms of search, known
as Exploratory Search [172, 174], has identified some search scenarios
that require much more diverse searching strategies, including when the

1 http://www.bing.com
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users are (a) unfamiliar with a domain and its terminology, (b) unfa-
miliar with a system and it’s capabilities, or (c) unfamiliar with the
full detail of their task or goal. Experts may also conduct demanding
searches such as those needing to do: (a) comprehensive searches to find
every relevant record (Legal, patent, medical), (b) negation searchers
to prove the absence of relevant work (e.g., patent, pharmaceuticals),
(c) exception searches to find outlier documents (that take a different
or contradictory point of view than commonly held), or (d) bridging
searches that connect two disparate fields of study [164]. Exploratory
search scenarios are characterized by needs that are “open-ended, per-
sistent, and multifaceted, and information-seeking processes that are
opportunistic, iterative, and multitactical” [174]. In each case advances
in search need to do more than simply improve the matching of results
to terms entered into a single box. Even in the late 1980s, Motro [126]
designed the VAGUE interface based on the notion that often, when
limited to simple keyword interfaces, users submit numerous evolutions
of an original vague query in order to figure out which terms are going
to produce all, or even just part, of their desired information.

In many cases, searching involves a range of tactics and techniques,
rather than simply submitting a query and seeing a list of matching
results. As part of the special issue on Exploratory Search, Marchion-
ini [116] identified, although not exhaustively, a series of strategies that
users may often need to employ to achieve their goals, such as compar-
ing, synthesizing, and evaluating. MacKay and Watters [114] present a
diary study documenting examples of search tasks that span multiple
search sessions, where users return days later to continue on tasks
such as job seeking or house hunting. Similarly, Morris [125] has doc-
umented the breadth of occasions where users clearly collaborate with
family and colleagues on tasks such as holiday planning and team work
projects. It is plain to see that a search interface needs to provide more
than a simple keyword search form to support users in applying such
strategies.

The recognition that there is more to search than basic Informa-
tion Retrieval has led to many extensions and alternatives to the
keyword search paradigm. An example extension is to cluster the results
into groups that share attributes [190]. Alternatively, faceted browsing
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[75, 168] provides meaningful or significant attributes of web pages to
users at the beginning, so that they do not even have to think of words
to put in the keyword search box. This can be especially useful in the
occasions where people are unfamiliar with a domain and its terminol-
ogy, for example. These, and many other advances, have much in com-
mon and while they each have specific advantages, it is not clear that
including them all would provide a stronger search interface. Instead,
designers now have the challenge of deciding: (a) what types of search
strategies should be supported, if not all of them, and (b) which new
features to include in order to support them. This challenge is particu-
larly difficult, when so many advances have been proposed, each with
different benefits, and when the benefits of each advance have often
been shown independent of others.

1.2 A Taxonomy to Overcome the Challenge

The goal of this monograph is to support designers with this challenge
by building a taxonomy of advances in the field of search that can be
used as common ground when choosing which features to include within
future search interfaces. To build the taxonomy we:

(1) identify a model, produced by theory, which covers the full
breadth of search from context and tasks, down to specific
actions and results (Section 2);

(2) summarize the specific advances in interactive search (Sec-
tion 3);

(3) discuss the way that these interactive search advances have
been evaluated (Section 4), in accordance with the model of
search presented in Section 2; and

(4) present a taxonomy (in Section 5) of the search advances
(from Section 3) that takes into account the type of search
supported (from Section 2), how the advances have been eval-
uated (Section 4) and how prevalent they are on the Web.

Producing a structured and consistent taxonomy allows us to
compare advances in interactive search, with two benefits. First, the
taxonomy can be a reference for designers. The latter half of Section 5
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describes a detailed process that designers can apply to systematically
decide which features to include in their search designs. As the taxon-
omy includes advances in the field, their benefits, and how they have
been evaluated, a designer can quickly compare options and choose
appropriate features for their new interface. Second, the taxonomy can
be used by academics to identify areas that require further study and
contextualize future advances in the field.

1.3 The Scope of Our Approach

When defining a means of categorizing and communicating existing and
on-going research, it is important to define the scope of our approach,
so that it is correctly used. Here we specifically bound the content of
this monograph in two areas: what we mean by search and what we
mean by the Web.

1.3.1 What We Mean by Search

So far, this monograph has used the terms: search, seeking, and Infor-
mation Retrieval interchangeably. For the rest of the monograph, how-
ever, we intend to follow a specific set of terminology, which is defined
carefully in the model discussed in Section 2. Information Retrieval
is perhaps the most well studied, and so most well-defined term used
to describe searching. Typically, Information Retrieval refers to the
paradigm where users enter a keyword into a system, which responds
by returning the results that are most relevant to the keywords used.
This monograph covers a much broader view of search than simply
Information Retrieval. Information Seeking is another common term
used to describe people’s searching behavior, including activities such
as searching, browsing, and navigating. Again, however, in this mono-
graph we use the word search in a broader sense than Information
Seeking. The model described in Section 2 defines search as the set
of activities that take users from identifying a problem all the way to
achieving their goals, which will, at times, involve Information Seeking,
which in turn, may include Information Retrieval.
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1.3.2 What We Mean by the Web

The “indexable web”, that is, the portion of the web indexed by major
search engines, was estimated at 11.5-billion pages in 2005 [67], with
Google reporting that they surpassed the 1-trillion mark in July 2008.2

One major characteristic of the Web, therefore, is scale. In this mono-
graph, however, search systems are discussed that search both the whole
web, and certain domains within the Web and so scale is not always a
primary concern for design. A more indicative and remarkable charac-
teristic is the heterogeneity of the contents. The Web contains a variety
of data and documents. Documents may be in plain text, HTML, XML,
PDF, Rich Text Format (RTF), Microsoft Word (.DOC), spreadsheets,
and a multitude of specialized or proprietary formats, including micro-
formats [6]. Multiple forms of media, including still images, audio, and
video, are widely available and indexed by general purpose as well as
specialized search engines. These documents vary from highly struc-
tured databases, to semi-structured web pages, to unstructured text.
Again, however, while some web search engines focus on the entire het-
erogeneous content of the Web, others focus on specific and bounded
domains within the Web. In these known and bounded conditions, the
format of documents is often known and fixed, and so is not always a
concern for all web-based search systems.

In summary, as web search systems are discussed, some are limited
by the diversity of online material, and the design of others is motivated
by unique features of web collections. Both are important areas that
sometimes share concerns but often differ significantly in the challenges
they present during the design of search interfaces. An e-commerce site
might, for example, try to support searchers with the categorization,
price, and availability of their products. Such product-related attributes
are not a concern for general Web search, which may includes product
results, reviews, specifications, and informational documents. Finally,
it is important to remember that as users engage in search, they may
be moving between the entire web and known collections within it, in
order to achieve their goals.

2 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.



2
A Model of Search

In order to survey search interface advances, we need to establish a
framework and a vocabulary that allows us to organize, describe, and
analyze the value of their contributions. This section describes a model
of search [84] which grounds the remainder of the monograph by con-
veying both a structure that defines search and a set of relevant termi-
nology. While many models of search exist, as discussed further below,
the selected model was chosen because of its holistic perspective, con-
sidering different granularities of context determined by “a person’s
task, its phase, and situation”, while still including important finite
concepts such as topical relevance. The key benefit of this holistic view
is that it maintains an understanding of the situational nature of infor-
mation and that search activities are performed in the context of a
larger work task, and even cultural influences. Therefore, the discussion
of advances in search interaction, visualization, and Human Computer
Interaction, must be set in the broader context of a human’s task. The
model described in this section will be referenced throughout Sections 3
and 4, and will be used to classify search interfaces within the taxonomy
described in Section 5.

14
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2.1 A Context Model of Search

Figure 2.1 shows the model of searching contexts, produced by Jarvelin
and Ingersen [84], that provides the framework we will be referring to
for the remainder of this monograph. Search can be modeled as a hier-
archy of goals and tasks. Each task provides the goal and serves as
the context for its subsidiary task(s). Figure 2.1 makes multiple levels
of context explicit: socio-organizational and cultural, work task, seek-
ing, and retrieval. Information Retrieval, as the smallest granule in the
model, represents the action most often embodied by Keyword Search,
where users are trying to find an often known nugget of information,
such as the price of a particular server. Searchers may often find them-
selves performing a series of Information Retrieval actions as part of a
broader Information-seeking task, such as trying to find the best possi-
ble server given a specific budget. Any Information-seeking task, how-
ever, is set within a larger Work Task, such as being asked to procure

Fig. 2.1 Searching behavior is made up of multiple layered contexts, where simple informa-
tion retrieval is the narrowly focused; figure from Järvelin and Ingwersen [84].
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resources for a forthcoming project. The result of a Work Task will
contain the product of one or more Information-seeking tasks. Finally,
every Work Task sits within a much broader Socio-Organizational and
Cultural context. The requirements and the importance of meeting
them, for example, will be different when buying a server for a large
organization, a safety critical organization (such as a hospital) and a
small start-up business. Clearly, a home/personal context will have dif-
ferent demands than a corporate professional environment, and success
in each will be under different criteria.

2.2 Information Retrieval

Within the information retrieval (IR) context, the searcher’s goal is
focused on finding documents, document sub-elements, summaries, or
surrogates that are relevant to a query. This may be an iterative pro-
cess, with human feedback, but it usually is limited to a single session.
Typical IR tasks involve finding documents with terms that match
terms presented by the searcher, or finding relevant facts or resources
related to a query. Typically, within each IR task, the searcher for-
mulates queries, examines results, and selects individual documents
to view. As a result of examining search results and viewing docu-
ments, searchers gather information to help satisfy their immediate
information-seeking problem and eventually the higher-level informa-
tion need. The common element of all IR tasks as defined in this web-
focused monograph is the query-result-evaluation cycle conducted over
a collection with the “unit” of information being the document, a sub-
element of the document, a summary, or a document surrogate. In the
server purchasing scenario used above, the document being sought may
be the information page on an e-commerce website, but may also be a
picture, or downloadable PDF of its specification.

Web search engines like Google support one of the more common
IR tasks on the Web: searching for web pages that match a given set
of query terms. Services such as Ask.com, however, also attempt to
provide fact-oriented answers to natural language queries, while Google
will also answer specific conversions of mathematical calculations if the
queries are constructed in certain formats. Keyword search is not the
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only example of Information Retrieval on the Web, however, with tools
like Flamenco and Clusty, each discussed in more detail in Section 3,
provide hyperlinked terms that allow searchers to narrow their results
and browse relationships between documents.

Evaluation measures traditionally include precision, recall, and their
variations, which simply assess how relevant a document is to the given
query. Consequently an IR system can be tested simply by whether it
returns the most appropriate documents to a given query. Although
the concept of relevance has multiple aspects, at the IR level, topical
relevance is the typical aspect considered, that is, how relevant the
documents are to the topic expressed by the query, and most systems
focus on returning the most relevant documents rather than all of the
relevant documents.

2.3 Information Seeking

The objective of the information-seeking (IS) task is to satisfy a per-
ceived information need or problem [115, 117, 151]. Often, searchers
undertake one or more IR tasks as part of a larger information-seeking
(IS) task, although it is possible for a simple need and IS task to be
achieved with a single IR task. At the IS level, searchers make strate-
gic decisions about where, how, and even whether to find informa-
tion related to their information needs. They may adopt an analytical
strategy to decide whether to use an IR system (a specific website or
searching service). They may also adopt a browsing strategy, where, for
example, they start from a known point (perhaps the results of an IR
query) and follow successive links to locate other related documents.
The documents found while browsing or returned by an IR task will, as
part of the IS task, be examined to extract information and synthesize
it into a solution to the information need.

While the Web provides an environment for many IR tasks, and,
consequently, many IS subtasks, searchers may also consult non-IR sys-
tems as well as other resources such as printed material, colleagues or
friends, in order to achieve their goal. In fact, people do not always
choose to seek information. They may prefer to exhibit alternative
Information Behaviors and avoid information that is discomforting or
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troublesome or which is judged not worth the effort [124]. They may
also be biased in what information they seek, looking for information
that supports preconceived ideas or opinions [119].

Information-seeking tasks have previously been structured as, for
example, linear sequence of stages [101] or hierarchical decompositions
of tasks [23]. Each of these tasks requires selecting a source, and then
engaging in one or more information retrieval tasks which satisfy a por-
tion of the overall need. From the perspective of an organization, Choo
et al., [39] developed a behavioral model of organizational information
seeking on the Web by integrating Ellis’ [57] six stages of information
seeking (starting, chaining, browsing, differentiating, monitoring, and
extracting) with Aguilar’s [1] four modes of scanning (undirected view-
ing, conditioned viewing, informal search, and formal search). Each of
these tasks helps to satisfy part of an organization’s information needs.

The hyperlink capability of the Web provides support for a browsing
strategy. When browsing, each new piece of information that is gathered
can provide new ideas, suggest new directions, and change the nature
of the information need [13]. This leads to behavior that Bates refers
to as berrypicking, reflecting the incremental collection of pieces of
information that, as a whole, help to satisfy the information need. The
choices made at each step are guided by the seeker’s assessment of what
is most likely to produce useful answers as they forage for information
[134]. In an environment like the Web, this assessment is based on cues
such as hyperlink text that provide an information scent which help
users make cost/benefit trade-offs in their choices. In line with research
suggesting that search is made up of sequences that are affected by the
discovered information, Belkin et al. [18] created a set of “scripts” that
describe the typical paths taken by 16 different types of users, including
switch points between them for when discoveries change their user type.

Systems that attempt to provide support of IS tasks typically pro-
vide functionality beyond the query-result-evaluation cycle supported
by IR systems. This may include search history mechanisms to sup-
port information seeking over multiple sessions, or mechanisms such
as tagging to collect a set of documents that are each relevant to the
larger information need. They may also provide overviews of a collec-
tion using textual or graphical methods. Individually, such UI features
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may be tailored to support specific elements of the IS stages (e.g., topic
exploration when writing a paper or monitoring of web resources).

The evaluation of interfaces that support information-seeking tasks
typically involves assessing the quality of information acquired by users
relative to the information need provided. IS tasks, such as purchasing
a server, are usually assessed by the support the interface provided to
users while carrying out the task, and the judged accuracy of the final
decision, given the initial requirements. Hearst [72] provides a thorough
review of information-seeking user interfaces and their evaluation.

2.4 Work Context

The perceived information need that motivates an IS task is itself moti-
vated and initiated by a higher-level work task or context [29, 30, 84] or
personally motivated goal [92]. The process is initiated when a searcher
recognizes an information need (or is instructed to investigate one)
based on an organizational or personal need [29, 30, 115].

Work tasks are situated in the context of work organization and
reflect organizational culture and social norms, as well as organizational
resources and constraints. As such, they constrain or guide the IS tasks.
For example, the work context provides important information about
the domain of information relevant to an information need. It defines
and constrains the resources available to satisfy the need. Immediate
access to reference books, libraries, electronic resources (e.g., the gen-
eral web or specialized online databases), and human experts affect the
strategic decisions searchers make at the work-context level.

Systems that support work-context tasks may provide special-
ized functions or support strategies for the work domain. Certain
working domains, such as medicine, law, and even academia, have well-
established work-context tasks and procedures for information seeking
in support of those tasks. For example, in the medical field, studies have
examined how physicians and healthcare searchers search for infor-
mation [22, 61]. Consequently, services can provide mechanisms, for
example, that identify prior art or key documents on a certain topic
to support the work-context task of writing a paper. To support the
learning of work-context processes, search systems may provide access
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to tutorials or communities of practice related to the work task. They
may also provide domain-specific frameworks for making sense of, inte-
grating, and synthesizing information. For example, a system to sup-
port the development of teaching materials based on an oral history
collection may provide a lesson plan tool that supports organizing and
annotating retrieved information in a lesson plan format with links from
items in the lesson plan back to retrieved elements of the collection.

Evaluation of systems in a work context usually focuses on the
achievement of users in realistic scenarios, such as the grading of school
or college essays, or, in the extreme, the success of organizations at
procuring academic funding.

2.5 Summary

In the previous subsections, we have described the three key levels of
searching context: information retrieval, information seeking, and work
contexts. The last of these is also surrounded and influenced by the
environment and social context that the work task is being carried out
within. Each of these contexts provides a useful lens for understand-
ing the benefits and contributions of novel user interfaces for search.
When a new technique is designed, built, and tested, the work is usually
motivated by a problematic scenario and a hypothesis that it can be
overcome. This scenario might be carefully defined and IR focused, such
that users cannot easily express a particular query or find the correct
result. Similarly, the scenario and hypothesis may be much broader, as
to support a work task like planning a vacation or researching for a
report. In the following sections, we discuss the design and evaluation
of recent interface contributions, by considering how they have been
designed and tested to support searchers at different levels of context:
IR, IS, and WC.



3
Survey of Search Systems

The aim of this section is to review many of the search visualization and
exploration techniques that have developed and studied. Further, the
aim is to demonstrate the diversity and range of available techniques,
rather than produce a complete catalog like some much larger sur-
veys [72]. The techniques described in this section, which are classified
in the taxonomy in Section 5, are presented according to the following
structure. First, techniques that have made use of the advantages of
enriched metadata are discussed in Section 3.1, which has afforded a
change in the way that searchers can interact and control the presenta-
tion of results. Second, Section 3.2 describes the varying approaches to
directly organizing and presenting results. Finally, Section 3.3 addresses
some alternative functionality that has enhanced visualizations, such
as animation and use of alternative senses. Each technique described
below is briefly discussed with the contexts of search described in
Section 2. Further, while here many techniques are listed, the tax-
onomy described in Section 5 provides the means to compare their
aims, strengths, and weaknesses, in terms of the context of information
seeking supported and the way they have been evaluated, according to
Section 4.

21
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3.1 Adding Classifications

One of the main streams of research for enhancing search environments
has been to use annotations, or classifications, to the documents or
collections. Two challenges in adding classifications are the increasing
scale of collections and the associated cost of annotating each docu-
ment. We review four common approaches to adding classification to
collections and overcoming the challenges: hierarchical classifications,
faceted classifications, automated clustering, and social classifications.

3.1.1 Hierarchical Classifications

One early research project, the SuperBook interface, showed the ben-
efits of using categories in a document collection, by organizing search
results within a book according to the text’s table of contents; here the
book is the collection and the pages of the book are the documents.
An evaluation found that it expedited simple IR tasks and improved
accuracy, both by 25% [55]. This categorization approach has been used
in many cases and has shown success in both fixed and uncontrolled
collections, however, the usual approach for the latter is to model the
first and allow document owners to assign their own documents into
the hierarchy.

An example of a fixed and managed data set may be the genre-
based classification of music in Amazon’s1 online music store, where
every CD is assigned to one or more categories of music, including Pop,
Rock, and Indie. Here there is incentive for Amazon, as the collection
owner, to annotate the collection in this way to make it easier for their
clients to find the music they want and, subsequently, encourage sales.
Allen [5] investigated two such digital library interfaces, the Dewey
Decimal System and the ACM Computer Reviews system, and showed
that both used hierarchical classification effectively for organizing the
collections.

In the same paper, Allen discusses the potential for use of
Internet-wide information samples. Examples of hierarchically classi-
fied structures for the Web, as an ever increasing and unmanaged set

1 http://www.amazon.com.
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of documents, are Google Directory2 and Yahoo Directory.3 In both of
these directories, the individuals that own or manage documents on the
Web can submit their websites for inclusion under different parts of the
directory. This approach has been popular in the past but has suffered
where document owners do not submit their websites for inclusion.

In an attempt to remove the annotation cost and limitation of clas-
sification systems, Kules et al., [102] took a simple result set of federal
agency/department reports, by mapping a set of URL prefixes to a
known finite list. This approach took a known pattern from the data
and used it to effectively categorize search results by government agency
and department. In a more advanced approach, Chen and Dumais [36]
showed that machine learning techniques can be applied to known cat-
egorized data items to automatically assign new web documents into
categories. Using the documents that already exist in the LookSmart4

directory as a training-set, the machine-learning algorithm success-
fully and automatically categorized the results of a Yahoo search. The
Support Vector Machine (SVM) algorithm [87] achieved 70% accu-
racy with the categorization provided by human participants, where
the remaining 30% included partially matching annotations. The user
study showed a strong preference for the added categorization provided
by the process. Other approaches to automation exist and are mainly
described in the automatic clustering section below.

The benefits of applying hierarchical categorizations have been
proven numerous times in research. For question answering tasks, Drori
and Alon have shown that search results augmented with category
labels produced faster performance and were preferred over results
without category labels [49]. Dumais et al. [50] also studied the effect
of grouping search results by a two-level category hierarchy and found
that grouping by a well-defined classification speeds user retrieval of
documents.

In a similar approach to the book-search mentioned above, the
Cha-Cha system organizes intranet search results by an automati-
cally generated website overview (Figure 3.1). It reflects the underlying

2 http://directory.google.com.
3 http://dir.yahoo.com.
4 http://www.looksmart.com.
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Fig. 3.1 The Cha-Cha system organized intranet search results by an automatically gener-
ated website overview.

structure of the Website, using the shortest path from the root to each
document to dynamically generate a hierarchy for search results. Pre-
liminary evaluations were mixed, but promising, particularly for what
users considered “hard-to-find information” [38]. The WebTOC system
(Figure 3.2) provides a table of contents visualization that supports
search within a website, although no evaluation of its search capability
has been reported [128]. WebTOC displays an expandable/collapsible
outliner (similar to a tree widget), with embedded colored histograms
showing quantitative variables such as size or number of documents
under the branch.
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Fig. 3.2 The WebTOC system provides a table of contents visualization that supports
search within a website.

Hierarchical classifications, as demonstrated by the examples dis-
cussed above, are largely designed to organize results into groups. While
this allows users to perform some additional browsing tactics [12], such
as going to a parent or child areas of the classification, the main ben-
efits have been studied at the IR level. The studies performed by
Allen [5] and Drori and Alon [49] show users performing faster in
basic information retrieval tasks, without loss of accuracy. Faceted clas-
sifications discussed below, however, extend the notion of hierarchi-
cal classifications to support additional information-seeking behavior.
Consequently, studies of faceted classification systems have more often
focused on information-seeking behavior.

3.1.2 Faceted Classifications

Another approach that helps users find documents based on
multiple orthogonal categorizations, such as thematic, temporal, and
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geographic, builds on the traditional library science method called
faceted classification. Restaurants, for example, can be classified by
facets such as by location, price, food type, customer ratings, and size,
with around 2–20 attribute values per facet (although some facets have
many more values). Early designs, one of which was called query pre-
views, also showed the number of documents having each attribute
value. Query previews were updated with new values so as to pre-
vent users from submitting searches that would produce zero results
[48, 135, 165]. Faceted classification allows users to apply relevant con-
straints on their search in the context of the current problem and exist-
ing knowledge. For example, if users know their own budget and a
minimum specification required for a computer, then they can apply
constraints in these facets separately, and vary them individually (to
check, for example, the effect of increasing the budget slightly). After
applying their constraints they can then see all the relevant computers
and possibly choose between them based upon the facets that remain
unused.

Many systems have applied this approach in some way, where a
single classification system has not been expressive enough for the doc-
uments in a collection. For example, before prototyping a faceted sys-
tem,5 eBay already allowed users to apply constraints such as price,
color, and size; the available constraints depended, of course, on the
type of object being sought. Whereas eBay indexes its own auctions,
websites such as shopping.com and Google Product Search6 provide a
faceted search over many shopping sites from the whole web.

Flamenco7 (Figure 3.3) is a clear example of the features provided
by faceted search using multiple hierarchical facets. Providing interfaces
to fixed collections, including art, architecture, and tobacco documents,
Flamenco presents faceted hierarchies to produce menus of choices for
navigational searching [188]. A selection made in any facet is added to
a list of constraints that make it clear to users what is forming the list
of results that are being shown.

5 http://express.ebay.com.
6 http://google.com/products.
7 http://flamenco.berkeley.edu/.
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Fig. 3.3 The Flamenco interface permits users to navigate by selecting from multiple facets.
In this example, the displayed images have been filtered by specifying values in two facets
(Materials and Structure Types). The matching images are grouped by subcategories of the
Materials facet’s selected Building Materials category.

A usability study compared the Flamenco interface to a keyword
search interface for an art and architecture collection for structured
and open-ended exploratory tasks [188]. With Flamenco, users were
more successful at finding relevant images (for the structured tasks)
and reported higher subjective measures (for both the structured and
exploratory tasks). The exploratory tasks were evaluated using subjec-
tive measures, because there was no (single) correct answer and the
goal was not necessarily to optimize a quantitative measure such as
task duration.

The success seen by Flamenco, having provided faceted classifica-
tions to assist search, has been used in many commercial and aca-
demic projects. Endeca8 is a commercial company that provides faceted

8 http://www.endeca.com.
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Fig. 3.4 epicurious is a commercial recipe website that uses Flamenco style faceted search
in conjunction with keyword search.

search, branded as Guided Navigation, to large businesses including
Wal-Mart and IBM. epicurious, shown in Figure 3.4, provides both
faceted and keyword search over food recipes in a style that is simi-
lar to Flamenco’s experience. The lead researcher of Flamenco, Marti
Hearst, refers to epicurious as a good example of faceted browsing in
commercial conditions [73].

Huynh et al. [81] has developed Exhibit9 (Figure 3.5), a faceted
search system that is similar to flamenco in many ways, but has some
significant developments. One key advance is that, where a selection in
Flamenco filters all the facets, a selection in Exhibit filters all the other
facets and leaves the facet with the selection unchanged. This provides
two benefits: first, users can easily change their selection and second,
users can make multiple selections in one facet. This allows users to
see, for example, the union of all the red and blue clothes, rather than
just red or just blue. This support for multiple selection within a single
facet has been recently added to ebay.com, but remains unavailable in
services such as Google Product Search.

9 http://simile.mit.edu/exhibit/.
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Fig. 3.5 The Exhibit faceted search interface takes a slightly different approach, only filter-
ing facets without a selection, so that previous selections can be see in the context of the
options at the time.

The Relation Browser10 [192], shown in Figure 3.6, takes another
approach to faceted search. One notable difference is that multiple
selections lead to their intersection of results being displayed. Another
feature that the Relation Browser provides is a preview of the affect of
clicking has on other facets. Graphical representations behind each item
in each facet show how many documents can be found by selecting it.
When users hover over any item in any facet, the bar in the graphi-
cal representations is shortened to indicate how many documents will
remain under each annotation should the users make the selection. This
technique revives the query preview strategy, which is a helpful alterna-
tive to the simple numeric volume indicators [181] that are included in
most classification-based systems. Aside from the graphical representa-
tion, the preview of the affect by simply hovering (or “brushing”) over
the item is a technique that is being included in many new projects. A
new version of the Relation Browser is now in development [32].

10 http://idl.ils.unc.edu/rave/.
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Fig. 3.6 The Relation Browser interface provides consistent facets, where the list of values
is not filtered by selections. Instead, users can see (and preview by simply hovering) the
reduction in files associated with each facet-value with the bar-chart style visualizations.

mSpace11 [148], shown in Figure 3.7, represents yet another type
of faceted search: a column-faceted interface. Like iTunes, mSpace
presents facets in a left-to-right set of columns. Each column is fully
populated so that users can still make a selection in any facet, but then
only the columns to the right filter. This allows the facets to represent
additional information that would otherwise be lost in faceted search.
In their classical music example, where the facets are Era, Composer,
Arrangement, and Piece (from left to right), if users select a Composer,
they see a filtered list of the arrangements (s)he used and then a list
of the pieces (s)he composed. When users make a second selection in
the arrangement, other forms of faceted search would remove all the
composers that did not use that arrangement. In mSpace, users are still

11 http://mspace.fm.
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Fig. 3.7 The mSpace faceted column browser provides facets as columns that filter from left
to right, as in iTunes. The facets, however, can be rearranged so that different parent-child
relationships can be visualized spatially.

able to see all the arrangements that the selected composer used, and
all the pieces of the selected arrangement.

The functionality of mSpace means that there is a type of informa-
tion that is not conveyed by mSpace but seen in other forms of faceted
search: the Era of the selected composer. This missing information is
not a problem in mSpace, unlike other column-faceted browsers like
iTunes, because the related items in facets to the left of a selection are
highlighted. This allows users to see which era the selected composer
is in, whilst still allowing them to get the added facts provided. The
effect of this leftward highlighting, named Backward Highlighting [179]
is that users incidentally discover more facts about the structure of a
collection, which can make search easier for future searches in the same
domain [183].

Finally, given the importance placed on the direction and order
of facets in columns, mSpace allows users to reorder, remove, and
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supplement the facets shown, using any of the facets that are available
from the collection. This allows users to say that they would rather
know all the composers that used a given arrangement than all of
the arrangements used by a given composer. Another unique aspect
of mSpace is that it assumes that a selection that is different to a
previous selection in a facet is a change of selection and not a multi-
ple selection. Consequently, users can quickly compare the difference
between two items in a facet. The default assumption that users are
changing their selection supports the concept of answering subjunctive
questions about the collection [113], which means simply to compare
the outcomes of multiple actions.

A recent longitudinal study of mSpace [182] has indicated that this
more complex form of faceted search is easy to learn and is thereafter
perceived as a powerful system, receiving positive subjective views.
A log analysis showed that 50% of participants used facets in their first
visit to the site and 90% in their second visit. Over the whole month-
long period, there were more interactions with facets than individual
keyword searches. Further, given that facets allow users to produce
complicated queries than basic keyword searches, faceted searches rep-
resented two times the number of Boolean searches and three times the
number of advanced searches.

Each of the faceted classification examples so far has been on fixed
collections, but some research into faceted browsing has been looking at
unknown and un-bounded document sets like the Web. The SERVICE12

(Search Result Visualization and Interactive Categorized Exploration)
search system couples the typical ranked list of web search results list
with automatically generated facets [106] (Figure 3.8). Clicking on a
category filters (or narrows) the displayed results to just the pages
within that category. Moving the pointer over a category highlights the
visible search results in that category in yellow. Moving the pointer
over a result highlights all the categories in the overview that contain
the result.

The facets are automatically generated by applying fast-feature clas-
sifiers [105] over the top 100 results of a Google query, and organized

12 http://www.cs.umd.edu/hcil/categorizedovervew.
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Fig. 3.8 Unlike most faceted systems, which work on known collections of documents, the
SERVICE web search interface classifies un-bounded web collections in multiple facets [106].

them into known possible categories drawn from the Open Directory
Project (ODP) and a database of US Government websites13: Topic,
Geography, and US Government. A similar project: Dyna-Cat [136],
shown in Figure 3.9, also automatically produced facets for sets of
search results, showed that not only was there improvements in objec-
tive and subjective measures, that users were 50% faster in fact-finding
tasks using Dyna-cat over typical ranked list keyword search interfaces.

Northern Light,14 a commercial search service, provides a simi-
lar capability by grouping results in their Custom Search Folders.

13 http://www.lib.lsu.edu/gov/tree.
14 http://www.northernlight.com.
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Fig. 3.9 The Dyna-Cat search interface automatically classifies search results within
un-bounded document collations.

Exalead15 is another project that successfully organizes search results
according to categories drawn the Open Directory Project, and presents
them along side search results in a publicly available web search engine.
PunchStock search, shown in Figure 3.10, presents a faceted view of
personal image collections. The NCSU library, shown in Figure 3.11
also uses facets to enhance the search if their collection.

The faceted search interfaces described so far each have a space allo-
cated to the presentation of facets, such as down one of the sides, across
the top, or even along the bottom as in Google’s product search.16

A recently proposed faceted search interface, called FacetPatch, embeds
faceted options into the existing layouts of existing website [120]. Hover-
ing over an attribute of a camera, for example, converts the attribute’s
value into a drop-down list from which users can select an alternative.
Users can move, therefore, directly from result to result, by changing
the brand or altering the pixel-count that they desire.

15 http://exalead.com.
16 http://www.google.com/products/.
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Fig. 3.10 The PunchStock photo search interface provides categorized overviews of photo
search results.

While some of the studies discussed above focus on typically IR
level metrics, like speed and accuracy of simple search tasks, there are
notable exceptions. Flamenco, the Relation Browser, and mSpace have
each been studied in more exploratory contexts, where the task is often
more than to simply find a search result. The study by Yee et al. [188],
sets users exploratory tasks that were not measured by speed or accu-
racy, as depth of exploration and amount of content covered could be
considered more important than how fast and perhaps under-researched
an answer is. This type of IS level analysis was also performed by Capra
et al. [33]. Wilson et al [179] also studied the amount of incidental infor-
mation (information not part of the core task) that could be remem-
bered by participants in a study. The same team took this further by
studying, over time, users of an mSpace interface providing access to a
news footage archive [182]. Participants used mSpace, which was being
logged, for their own work-goals over a four-week period, and engaged
in periodic communication with the evaluating team. We can see from
these studies that the types of exploring and browsing facilitated by
faceted browsers have been studied for their support of IS and even
WC levels of searching behavior.
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Fig. 3.11 The NCSU library catalog provides categorized overviews of search results using
subject headings, format, and library location, provided by a commercial enterprise search
vendor: Endeca.

3.1.3 Automatic Clustering

Where collections have been large or unmanaged, faceted classifications
have been less successfully applied. The examples where it has been
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used above provide generic web-oriented facets, and often the facets
that would be important depend on the query or subject of the users’
varying goals. Another approach is to automatically identify attributes
of a collection or result set that are important, rather than explicitly
producing labeled annotations. This approach is called clustering, and
has shown success under popular information retrieval metrics such as
precision and recall [74, 118, 189, 191] or task completion time [169]

A one-level clustered overview was found helpful when the search
engine failed to place desirable web pages high in the ranked results,
possibly due to imprecise queries [89]. Clusty17 uses the cluster-
ing technique to produce an expandable overview of labeled clusters
(Figure 3.12). The benefits of clustering include domain independence,
scalability, and the potential to capture meaningful themes within a
set of documents, although results can be highly variable [71].

Generating meaningful groups and effective labels, however, is a
recognized problem [139] and where possible (usually, but not exclu-
sively in fixed or managed collections) having an information archi-
tect design optimal annotations or labels, will provide a better search
interface [162]. Stocia and Hearst extracted a category hierarchy from

Fig. 3.12 The Clusty metasearch engine uses automated clustering to produce an expand-
able overview of labeled clusters.

17 http://www.clusty.com.
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WordNet [122] using keywords from the document collection. They
propose that this can be manually adjusted by an information archi-
tect. Similarly, Efron et al. [54] investigated the use of semi-automated
methods, combining k-means clustering, and statistical classification
techniques to generate a set of categories that span the concepts of the
Bureau of Labor Statistics web pages and assign all to these categories.
They found that concept learning based on human-supplied keywords
performed better than methods using the title or full-text.

Automated classifications have, in large, been studied separated
from the three levels of search, but have often compared the accuracy
of the automatic classification with human classifiers. The studies by
Stocia and Hearst [162] and Rivadeneria and Bederson [139] are exam-
ples, however, which show that automatic classifications can still lead
to improved user performance in IR level searching activities.

3.1.4 Social Classifications

Recent developments in web technologies, such as web2.0, have led to
a rise in social classifications such as bookmarks, tagging, and collab-
orative feedback ratings. For example, the Yoople search engine allows
users to explicitly move the search results up or down to provide rel-
evance feedback into the weightings used in future searches. Allowing
users to reorder results has recently been supported for Google users
with accounts, but is designed to improve personalization of search
results. It remains unclear as to whether Google will use this rele-
vance feedback to reorder results. Little research, however, has explic-
itly proven the benefits of social classification schemes, even though the
notion has become increasingly popular on the Web. Some research,
however, is emerging: Millen et al. [121] have investigated the use of
social bookmarking in enterprise search software and an eight-week
field trial has shown positive results.

In Yoople18 (Figure 3.13) mentioned above, the classification
produced is only numeric (document ranking order) and affects the
background search algorithms. Google has recently introduced a similar

18 http://www.yoople.net/.
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Fig. 3.13 Yoople Search, where users can drag items in the results list to indicate where
they think a result should appear.

personalization scheme called Search Wiki.19 While Google’s Search
Wiki allows users to simply promote or remove results, Wikia Search20

(Figure 3.14) allows users to be more specific and rate results out of five.
Both Google’s Search Wiki and Wikia Search allow users to directly
influence search rankings in a similar way to Yoople. Further, however,
they both also allow users to make annotations on results.

The notion of social tagging has allowed communities of people
to develop flat classification schemes for collections. Flickr,21 a photo
archiving website, depends almost entirely, although photo names and
descriptions can be included, on user tagging to return images that
relate to a keyword search. A negative side to such tagging classifica-
tion schemes is that they are hard to present to users. Therefore, they
are usually only used to aid keyword search rather than to help users
interactively browse through documents, like in some of the faceted and
category-based systems listed above. A popular example of presenting
a flat set of tags to users has been to foreground popular tags in a tag
cloud (Figure 3.15). Although little research has been performed on

19 http://googleblog.blogspot.com/2008/11/searchwiki-make-search-your-own.html.
20 http://search.wikia.com/.
21 http://www.flickr.com.
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Fig. 3.14 Wikia Search allows users to explicitly rate results out of five to directly influence
search ranking.

Fig. 3.15 A tag cloud taken from Flickr website, included in [65].
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Fig. 3.16 The MrTaggy interface allows users to include or exclude tags from their search
instead of using keywords.

tag clouds, there is a growing consensus that they are more valuable
for users who are making sense of information, rather than for finding
specific information [157].

Some systems are trying to take the benefits of tagging to produce
what are known as folksonomies [80] or community-driven classifica-
tion systems. Wu et al. [186] present some design prototypes that over-
come some of the challenges in converting flat tags into a structure
classification system. One approach, used by the MrTaggy interface
shown in Figure 3.16, allows users to perform searches based entirely
on community-generated tags by including or excluding tags from a
list of related tags [90]. Searches are initiated with a pair of selections
from two tag clouds: one containing adjectives and the other containing
nouns and other objects.

3.2 Result Organization

At the opposite end to supporting users in better defining their own
search query, which has been discussed above, is the presentation of the
result sets and items that will help users to identify the specific result
item(s) that help them achieve their goals. There is ample research that
specifically looks at the best way to present a single result in a linear
set, which is perhaps best represented by the view currently provided
by Google: name, text snippet, and web address.
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In the following subsections, however, we discuss the research that
looks beyond a linear results list and visualizes a result set to help users
find the specific results they are looking for.

3.2.1 Result Lists

The most common method to show a result set, seen in most web
search engines, is to provide a simple list of results. The order that the
result items are listed is determined by some metric, usually based on
how relevant the result is to the search terms used. The importance
of constructing this algorithm well has been motivated many times
in research where users regularly enter single-term ambiguous queries
[171], and view only a few results [82] and rarely stray past the first
page of results [17]. The accuracy and efficiency of such algorithms,
however, has been research for many years in the information retrieval
space, and is not covered in the scope of this report; Becks et al. [16]
present a good discussion of result ordering, including occasions where
ranked relevance may not be the most appropriate ordering.

The representation of each result has also received much research
and is especially important when research has shown that the accep-
tance of search systems has been significantly reduced by unclear or
confusing representations.22 In Google, each search result has name
(also a link to the finished document), a sample of text from the doc-
ument, a URL for the document, and the size of the document. Addi-
tional information, such as previous visit dates and counts, can be
added if a user account is available. Work by Chen et al. [37] investi-
gated the structure of result representations and provides a framework
for considering the presentation of search results. In one of the more sig-
nificant publications in this area, White et al. [175] showed that best
objective results occurred when the text sample in a representation
included the query terms used in the original search. This allows users
to see the context of their query in each result item, so that they can
best judge its value in viewing the whole document. This was backed up
by Drori and Alon [49], who showed objective and subjective benefits

22 http://www.antarctica.net.
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for both query-relevant snippets and associated categories. Microsoft’s
Bing, however, includes an exception to this keyword-in-context rule
for text snippets, providing the first whole paragraph of a Wikipedia
page, which usually provides the best short overview for the topic being
covered. This exception to the basic search result layout has been fur-
thered by the now customizable search results provided by Yahoo’s
Search Monkey,23 which allows users to apply templates for different
popular result types, such as Wikipedia results, IMDB results, facebook
results, and so on.

Other search engines, including Ask Jeeves24 and Exalead25 (Fig-
ure 3.17), also include thumbnails of the document represented by each
result. Research into the benefits of page thumbnails [185] has shown
most advantage when users are returning to a previous search to find a
result from the previous session. With these conditional objective ben-
efits, however, subjective results have been positive. Further, Teevan
et al. [166] have shown that more abstract images, which integrate

Fig. 3.17 Exalead search provides images and categories with each search result, and facets
to help users narrow the results.

23 http://www.yahoo.com/searchmonkey.
24 http://www.ask.com.
25 http://www.exalead.com.
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color, titles, and key pictures from web pages, can support both search
and re-visitation more evenly.

The advances made in the basic style of Results Lists have had lit-
tle effect on the interaction that people have with search interfaces.
Advances such as thumbnails have changed the representation, and
have encouraged users to make better-educated judgments on results
they see. Consequently, the contribution and subsequent study has
mainly focused on IR level improvements of speed and accuracy.

3.2.2 2D Result Representations

With the aim of providing useful overview visualizations of result sets
to users, much research has aimed at taking information visualization
techniques and applying them to search results. One example is self-
organizing maps (SOMs), originally produced by Kohonen [97]. SOMs
automatically produce a two-dimensional (2D) visualization of data
items, according to the attributes that they share, using an unsuper-
vised machine-learning algorithm. Consequently, the SOM approach
applies well when visualizing automatically clustered documents.

Au et al. [10] used SOMs that have been used to support exploration
of a document space to search for patterns and gain overviews of avail-
able documents and relationships between documents. Chen et al., [37]
compared an SOM with the Yahoo! Entertainment category, for brows-
ing and searching tasks (Figure 3.18). They found that recall improved
when searchers were allowed to augment their queries with terms from
a thesaurus generated via a clustering-based algorithm. Similar work
[108, 110] has shown positive results in using SOMs to support search.

An alternative 2D organization on result sets is known as a treemap
[60]. In a treemap, the clusters of documents are grouped using a space-
filling algorithm. As shown in Figure 3.19, the 2D space is divided
into the top-level items in the hierarchy produced by the clustering
algorithm, where the number of search results found within the category
dictates the size of each part. Each of these sections is divided into
their children within the hierarchy, where the number of search results
again dictates the size of the subparts. This process is repeated as
necessary according to the hierarchy and space available. With this,



3.2 Result Organization 45

Fig. 3.18 A SOM of search results, image taken from http://vizier.u-strasbg.fr. The results
are shown as clusters of key topics relating to a query.

users can access categories at any level of the hierarchy and see the
results associated with that cluster. Color coding, or use of increasing
color density, is often used to indicate a secondary dimension over the
data, so that popularity and price, for example, are both conveyed
(Figure 3.20).

Using another information visualization alternative, Citiviz (Fig-
ure 3.21) displays the clusters in search results using a hyperbolic tree
[109] and a scatterplot [133]. The Technical Report Visualizer proto-
type [64] allows users to browse a digital library by one of two user-
selectable hierarchical classifications, also displayed as hyperbolic trees
and coordinated with a detailed document list. Chen [35] implemented
clustered and time sliced views of a research literature to display the
evolving research fronts over time. Chen’s work concludes that there
are a number of benefits in visualizing results like this, but that the
metrics used to build and display the visualizations are important to
the acceptance by users.



46 Survey of Search Systems

Fig. 3.19 The HiveGroup built a demonstration shopping application that allows users
to explore Amazon.com products. (image from http://www.cs.umd.edu/hcil/treemap-
history/hive-birdwatching.jpg).

Several web search (or metasearch) engines, including Grokker,26

Kartoo,27 and FirstStop WebSearch28 incorporate visualizations similar
to treemaps and hyperbolic trees. Kartoo (Figure 3.23) produces a map
of clusters that can be interactively explored using Flash animations.
Grokker clusters documents into a hierarchy and produces an Euler
diagram, a colored circle for each top-level cluster with sub-clusters
nested recursively (Figure 3.22). Users explore the results by “drilling
down” into clusters using a 2D zooming metaphor. It also provides
several dynamic query controls for filtering results. Unlike treemaps,
however, the circular form often leads to wasted space in the visualiza-
tion. Further, this early version of the Grokker interface has been found

26 http://www.grokker.com.
27 http://www.kartoo.com.
28 http://www.firststopwebsearch.com
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Fig. 3.20 This overview of web search results uses a treemap. Nesting is used to show top and
second-level categories simultaneously. The top 200 results for the query “urban sprawl”
have been categorized into a two-level government hierarchy, which is used to present a
categorized overview on the left. The National Park Service has been selected to filter the
results. The effect on the right side is to show just the three results from the Park Service
[106].

to compare poorly with textual alternatives [139]. The authors found
that the textual interfaces were significantly preferred. The conclusions
were that web search results lack “1). . . a natural spatial layout of the
data; and 2). . . good small representations,” which makes designing
effective visual representations of search results challenging. Grokker’s
website is no longer available. Refined visual structures making better
use of space and built around meaningful classifications and coloring
may ameliorate this problem, as illustrated by promising interfaces like
WebTOC, which uses a familiar hierarchy of classification and a coded–
coded visualization of each site’s content. Many users appreciate the
visual presentation and animated transitions, so designing them to be
more effective could lead to increased user acceptance.

In support of the conclusions about cluster map visualizations
from Rivadeneira and Bederson [139], early information visualization
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Fig. 3.21 The CitiViz search interface visualizes search results using scatterplots, hyperbolic
trees, and stacked discs. The hyperbolic tree, stacked disks, and textual list on the left are
all based on the ACM Computing Classification System. Although CitiViz is offline, its
techniques have been replicated both online and offline many times.

Fig. 3.22 Grokker clusters documents into a hierarchy and produces an Euler diagram, a
colored circle for each top-level cluster with sub-clusters nested recursively. Later versions
removed the random coloring in favor of a more muted interface.



3.2 Result Organization 49

Fig. 3.23 Kartoo generates a thematic map from the top dozen search results for a query,
laying out small icons representing results onto the map.

research by Tufte [167] states that graphical visualizations need to have
clear and meaningful axes to be effective for users. Other approaches
to 2D graphical representations have focused on representing results
in meaningful and configurable grids, in the same vein as scatterplots,
where each axis is a specific metric, such as time, location, theme, size,
or format, etc. The GRiDL prototype (Figure 3.24) displays search
result overviews in a matrix using two hierarchical categories [154]. The
users can easily identify interesting results by cross-referencing the two
dimensions. The List and Matrix Browsers provide similar function-
ality [107]. The Scatterplot browser [53], also allows the users to see
results in a visualization that is closer to a graph, where results are
plotted on two configurable axes. Without specific regions plotted in
the scatterplot visualization, it is harder for users to view subsets of
results, but easier to identify single result items. Informal evaluations
of these interfaces have been promising, although no extensive studies
of the techniques have been published.

Another stream of research has focused on attributes of documents
that can form dimensions that leverage common knowledge. For exam-
ple, GeoVIBE (Figure 3.25) tightly coupled a geographic layout with
an abstract layout of documents relative to defined points of interest
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Fig. 3.24 The GRiDL prototype displays search results within the ACM Digital Library
along two axes. In this screenshot, documents are organized by ACM classification and
publication year. Individual dots are colored by type of document.

[31]. A similar, and familiar dimension is time, and research has also
looked at visualizing documents and classifications on a timeline. An
example timeline browser, Continuum [9], is shown in Figure 3.26.

Each of the visualizations above has focused on visualizing a result
set, so that users can identify areas of results that may be relevant to
them. A different approach is to provide an overview visualization to
help direct people to relevant items in linear result sets. Query term
similarity allows searchers to explore the contribution that each query
term makes to the relevance of each result by displaying the terms and
results in a 2D or 3D space [27]. Similar work on Hotmaps (Figure 3.27),
by Hoeber and Yang [77], provides an overview of 100 search results,
displaying a grid, with query terms as the horizontal axis and the 100
results as the vertical axis. Users are able to click on parts of the
grid with high color intensity to find more relevant documents, at the
term level, that would not have been in the top 10 results returned
by Google. The approach of query and result set visualizations has
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Fig. 3.25 GeoVIBE, a search interface using geography visualization for results.

Fig. 3.26 Continuum represents documents in nested categorizations on a timeline.
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Fig. 3.27 Hotmaps, a 2D visualization of how query terms relate to search results.

shown significant search benefits for users, and augments, rather than
visualizes, result sets.

The strength of the more successful 2D visualizations has been
when the use of space is clear and meaningful to users. An alter-
native approach, to computer-generated visualizations or clusters of
documents, is to allow users to arrange documents under their own
parameters. The TopicShop interface [8], shown in Figure 3.28, per-
mits users to meaningfully arrange sites on a canvas, where the clusters
are meaningful to the individual and, when returning to a document,
spatial consistency makes it easier for users to remember where they
placed the result. More recent research in this area has explored 3D
spaces, and is described in the section below.

Similar to the ideas behind TopicShop, Furnas and Rauch [62]
present a set of design principles for information spaces and instan-
tiates them in the NaviQue workspace. In NaviQue, a single informa-
tion surface is used to display queries, results, information structures,
and ad hoc collections of documents. Users can initiate a query simply
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Fig. 3.28 The TopicShop Explorer interfaces combines a hierarchical set of topics with a
user-controlled spatial layout of sites within each topic (shown here) or a detailed list of
titles and attributes [8].

by typing onto a blank section of the workspace. Results are clustered
around the query text. Kerne et al. [95] furthered this work in software
called combinFormation by considering the spatial layout of different
multimedia types for constructing personal collections (Figure 3.29).

The contributions made in different 2D visualizations have largely
supported users in IS level activities, allowing them to see and often
manipulate clusters of documents by interacting with the two axes.
In Hotmaps [77], for example, the 2D space allows users to choose
alternative approaches to parsing the result lists, other than linearly
processing every result. The matrix browser allows users to change the
dimensions used for each axis, and alter their scale and granularity.
These have been studied at the IR and IS levels, showing improved
speed or accuracy. These methods have also been shown to help users
find results that would not necessarily come up in the top 10 of a
keyword search interface. Some work has focused on the users’ work
context, for example. the TopicShop interface [8], has given control of
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Fig. 3.29 combinFormation automatically searches the Web for multimedia relating to a
query term and displays them on a 2D plane. Users can drag and drop the items to make
arrange their own subcollections.

the 2D space to users as an open canvas, and they are able to search
and organize resources for their work tasks.

3.2.3 3D Result Representations

When presenting research into 3D visualizations, it is first important
to consider research into the benefits and weakness of 3D over 2D.
Although research has shown success for some situations, such as sim-
ulations and 3D CAD/CAM design [152], research into the visualiza-
tion of information has shown that a third dimension can inhibit users
and make interfaces more confusing [138, 163]. Aspects of 3D repre-
sentations, such as occlusion and cost of visualizing depth, must be
considered [44]. Further, research by Modjeska [123] has shown that
25% of the population struggle with 3D visualizations displayed on a
2D device, such as a computer screen. Investigation by Sebrechts et al.
[150] also showed that participants were significantly slower at using a
3D interface, unless they had significant computer skills. Considering
these challenges, however, the research described below highlights some
of the ideas that have been proposed for 3D visualizations.
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Fig. 3.30 Data mountain provides an inclined plane upon which web pages are organized
(image from PDF).

The Data Mountain browser (Figure 3.30), like the TopicShop
explorer described above, allows users to arrange documents on a plane,
creating a 2 1/2 dimension view with perspective, reduced size for dis-
tant items, and occlusion. In the Data Mountain, however, users have
a 3D plane to arrange the documents [140]. Subsequent studies of the
Data Mountain have shown to be unproductive [42]. Another approach
that has been expanded to 3D environments is the hyperbolic tree [127].

As part of a discussion on applying 3D visualizations to web search
results, Benford et al. [20] describe the VR-VIBE system (Figure 3.31).
Each query is manually or automatically positioned in a 3D space. Doc-
uments are positioned near the queries for which they are relevant. If a
document is relevant to multiple queries, it is positioned between them.
Each document’s overall relevance is shown by the size and shade of its
representative icon.



56 Survey of Search Systems

Fig. 3.31 VR-VIBE represents search results in a 3D environment, where results are dis-
played in relative proximity to the keywords they match.

Cone Trees [142] were designed to display a hierarchy in a 3D view,
using depth to increase the amount of the tree that is visible. Users are
then able to rotate the tree using a smooth animation, although this
was found confusing by a number of participants in an evaluation and
user studies have not shown advantages [41]; supporting the concerns
noted by Modjeska.

Finally, to fully embrace 3D environments Börner [27] used Latent
Semantic Analysis and clustering to organize and display a set of doc-
uments extracted from a digital library in a 3D space. A multi-modal,
virtual reality interface, called the CAVE (Figure 3.32) enables users to
explore the document collection; users control their movement through
the CAVE with a special input device called a Wand. This require-
ment for a special input device, however, makes it an unrealistic option
for web environments where most users will have typical mouse and
keyboard input.

The effect of adding a third dimension has not made any specific
advances in the three levels of search compared to the 2D advances.
The majority of the interfaces discussed above are, in fact, a 3D version
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Fig. 3.32 Search results being visualized using the CAVE explorer (image from PDF).

of a 2D visualization, including the hyperbolic tree and Data Moun-
tain interfaces. The implementation and evaluation of 3D visualizations
have been scarce due to the limited capability of most web browsers,
and when tested at the three levels of search (IR, IS, and WC), 3D
visualizations have often hindered, rather than supported, participants
in their searching activities.

3.3 Additional Functions

The previous two subsections have focused on: (1) coupling results with
additional metadata and classifications, and (2) on providing alter-
native or complementary representations of results. This sub-section,
however, focuses on specific individual features that can work together
with both classifications and alternative visualizations to enhance the
usability of search interfaces.

3.3.1 Previews

One of the challenges users face with classification systems is deciding
which categories to select in order to find the documents they require.
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This heavily depends on the label chosen to represent a category, where
designers have to find a careful balance between clarity and simplicity;
where Nielsen’s heuristics [129] recommend clear layman language, it
may not always be possible in some domains, at least with single terms
or short phrases. If users do not recognize or understand an option, then
they may not know how to proceed in their search, except through trial
and error. Some users, however, simply abandon their search, at least
with the search interface in question [147].

The Relation Browser previews the affect that a selection will have
on the remaining items and facets, by temporarily reducing individual
bar graph representations; selecting the item will make this change per-
manent. This notion has been used in research into the mSpace browser
[147] to help users choose between the terms presented in a facet. When
users hover over an item in an mSpace column facet, they are presented
with a multimedia preview cue, which provides an example of the docu-
ments included within the category. A user evaluation showed that this
preview cue significantly supported users in finding documents. Further
research by Endeca [100] is investigating the ability to automatically
summarize the result items and present users with a text description
that is typical of the cluster.

For the three levels of search, presented in Section 2, previews
contribute mainly toward IR and IS, by supporting users in making
informed browsing and exploring decisions. This supports a number of
additional search tactics [12], including the ability to weigh up a set of
options, and tracing the metadata of the multimedia examples being
previewed. schraefel et al. [147], however, evaluated mSpace’s multime-
dia cues in a work-context scenario of purchasing music within a given
budget.

3.3.2 More Like This

Search engines typically provide users with a link by each result to see
more results that are similar according to the server’s metrics. Although
no specific research has been published, Endeca’s search interface (Fig-
ure 3.33) allows users to express a similar desire to see related docu-
ments, but allows them to express the dimension by which they want
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Fig. 3.33 Basic Endeca search interface, a commercial enterprise search vendor, studied by
Capra et al. [33].

to see similarity. For example, they can choose to see more documents
of a similar category, or size, or creation date.

By allowing users to follow un-anticipated paths during search, the
simple notion of choosing to see more similar results to a particular
result also supports a number of information tactics that are not sup-
ported by standard keyword search interfaces [12], and so contributes
mainly to the information-seeking level of Jarvelin and Ingwersen’s
model of search. A study by Capra et al. [33] included the basic Endeca
interface and, although this feature was not explicitly tested, the study
involved both exploratory IS level and quick IR level tasks.

3.3.3 Connections

Networks have been used for knowledge discovery tasks, displaying con-
nections between related documents and between related literatures.
Stepping Stones (Figure 3.34) visualizes search results for a pair of
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Fig. 3.34 The Stepping Stones interface visualizes the results of a pair of queries (1) as
a graph (2) of topic nodes connected to the queries. Individual documents, shown in (3),
cover portions of the path between the queries; image from [46].

queries, using a graph to show relationships between the two sets of
results [46].

Similarly, Beale et al. [15] visualizes sequences of queries using a
force-directed layout of node-link diagrams. Queries and their resulting
documents are represented as nodes, with links between a query and
its results. When a document is in the result set for multiple queries,
it is linked to each query.

In some representations, single documents can appear in multiple
collections or subcollections. When these different groups are arranged
into regions that correspond to document attributes, often lines or col-
ors are used to highlight related items. Such regions could be parts of
a geographic map or, as in Figure 3.35 separates groups in a hierarchy
of courts [91, 153]. Figure 3.35 shows a visualization where arcs that
jump between the regions represent single items in different groups.
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Fig. 3.35 This visualization arranges 287 court cases into three regions (Supreme Court,
Circuit Court, and District Court). Within each region, cases are arranged chronologically.
Of the 2032 citations, the selection box in the District region limits the display to just the
citations from the three District court cases in 2001. This shows the greater importance of
older Supreme Court opinions [153].

One challenge of representing links across multiple sets or dimen-
sions is the limited number of methods to make connections. In Fig-
ure 3.35, the arcs are in various colors. Such use of colors and arrows can
be limited. For example, it may be hard to display how a single item in
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three different groups may be connected, or how an item relates to two
parent levels of a hierarchy; such challenges become more important
when hierarchical and faceted classification schemes are involved. In
Continuum, relationships across multiple levels of hierarchy are shown
by clustering and nesting results rather than keeping them in separate
panes, see Figure 3.26.

Expressing and exploring connections provides much higher-level
search interaction than simple IR activities, as the users are going
beyond parsing results to assess how results fit into the domain of
information, and thus the other results around them.

3.3.4 Animation

Animation on the Web is a debated area of research. Although lots of
research has aimed at developing animation tools for the Web [59, 68],
other research has investigated the limitations of technologies such as
Flash [79]. Research by Robertson, Cameron, Czerwinski and Robbins,
however, has shown that there are advantages of using animation to
support users through transitions in an interface [141]. Further, recent
research by Baudisch et al. [14] has presented a tool called Phosphor
that highlights, with a fading period, any changes that occur in an
interface. We can see examples of this sort of animated support on
the Web through technologies such as AJAX [132]. Facebook, for
example, allows users to post comments with AJAX, where the page
does not refresh and both color and smooth spatial changes indicate
to users that the interface is changing to accommodate their actions.
Research into mSpace, which uses a lot of AJAX technology, also
identified a similar emphasis on smooth transitions during discussions
with participants [182].

The main emphasis on animation in web search visualization is on
supporting users in comprehending changes that occur as a result of
their actions. The Polyarchy browser [141], for example, helps users
explore by animating the transition to alternative dimensions as the
users browse across different attributes in the data set. Consequently,
the advance provided by animation is mainly in the Information-seeking
level of search, and has been mostly evaluated in kind.
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3.3.5 Semantic Zooming

Semantic zooming is characterized by the progressive inclusion of addi-
tional information, as opposed to simply enlarging information. In the
design of NaviQue [62], users can zoom into clusters and into informa-
tion structures. The semantic zooming replaces items with representa-
tive icons as users zoom out, and replaces icons with the specific items
when zooming in to show more detail. A history of all ad hoc collections
is automatically maintained in one corner of the display. Users can drag
and drop collections into a “pocket” in another corner so that they are
immediately accessible, without need to pan or zoom the workspace.

As a form of animation, effective zooming on the Web is challenging
and must be done to enhance a website and not affect its usability. In
maintaining a typical search result list style, another option presented
by research is a technique called WaveLens, which allows users to zoom
in more on a single result, such that the information snippet expands
to reveal more lines of text from the source document [131].

The contribution of semantic zooming supports users at IR and IS
levels of search in that the technique allows users to investigate deeper
into a topic as they “zoom” into it. The semantic zoom is considered a
request for more detailed information on the item of focus, and is thus
connected to more exploratory methods. Semantic zooming, however,
can also simply reveal the answer to a quick keyword query, in which
case it is related to selecting a web search result (as in the study of
WaveLens) but without leaving the search engine.

3.3.6 Alternative Inputs

Multimedia can often be hard to describe with words, and querying over
such collections requires that the documents be annotated. While some
research is aimed at automatically increasing the amount of annotation
of multimedia [25, 86], other approaches have examined the querying
medium. Query-by-example [93, 144] is a strand of research, where
users can submit audio to find related audio, images to find similar
images, video to find similar video, etc. For example, Shazam29 is a

29 http://www.shazam.com.
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mobile phone service that users can ring while music is playing and
responds by sending an SMS message with the name and artist of a
song. Similarly, Retrievr30 is a service that allows users to construct
a simple image with paint tools, and finds images from Flickr31 that
match the approximate shapes and colors. Although some research has
discussed practical applications for systems such as query-by-humming,
to search for music [99], the challenge for the Web is providing a means
of input for users. Where Google provides a keyword box and Retrievr
provides a sketch box with paint tools, it can become difficult to allow
audio input, without requiring users to make recordings and upload
them. Similar problems arise for video-querying for video.

3.4 Summary

In this Section, a range of diverse strategies to visualizing search
results has been presented. Covering the use of enriched metadata
(Section 3.1), multi-dimensional representations (Section 3.2) and
visualization-enhancing techniques (e.g., animation in Section 3.3), a
diverse range of approaches have been presented that try to support
different contexts within the model of information-seeking described
in Section 2. In the next section, we discuss the range of evaluation
techniques that have been applied to these visualizations, in order
to demonstrate their benefits for the different contexts of information
seeking.

30 http://labs.systemone.at/retrievr/.
31 http://www.flickr.com.
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Evaluations of Search Systems

This section examines evaluation methods that have been used to assess
different parts of information systems. Extensive reviews of information
retrieval evaluations are provided by Hearst [72], which includes a dis-
cussion of formative evaluation and usability testing, and Yang [187].
In this section, we provide a synthesized view of techniques as appropri-
ate to the three-level model. We break this evaluation discussion down
into the three levels included in the framework from Section 2. The
different levels of information-seeking context each require multiple,
different, and complementary modes of evaluation. A single study may
incorporate multiple levels of evaluation. In Section 5, as we classify
the search interfaces described above by visualization approach and
context of information seeking support, we also include the styles of
evaluation within the taxonomy.

4.1 Information Retrieval Evaluations

The main concerns for much of the information retrieval community
has been to assess the quality of indexing methods and the algorithms
that match documents to the queries provided by users. The TREC
conferences [70] have been arranged to evaluate document retrieval
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systems for domains like the Web, spam, video, legal documents, and
genomics; for collections with interesting or important characteristics
such as very large collections; and for specialized tasks such as cross-
language IR, filtering, finding novel documents, fact finding, and ques-
tion answering.1 Important concepts for evaluations at this level include
document relevance, precision/recall and related measures, and batch
versus interactive evaluation.

To support the TREC evaluations, predefined collections of doc-
uments, relevant queries and human relevance assessments, were pro-
duced and used as benchmark standards across any studies. The shared
platform of evaluation provided the opportunity to not only evalu-
ate, but also compete for most improved retrieval times or retrieval
accuracy within the community. The most commonly used measure-
ments in TREC were precision and recall. Precision is concerned with
returning only relevant results, whereas recall measures the number
of relevant documents being returned. Typically returning more docu-
ments means potentially sacrificing precision, and guaranteeing preci-
sion means reducing recall. Common approaches examine precision at
certain levels (precision @ N), average precision, or by using precision–
recall (P–R) curves [85]. Yang [187] and Kobayashi and Takeda [96]
provide extensive reviews of evaluations focusing on the techniques and
evaluations used for information retrieval.

When not testing the accuracy of results returned against a pre-
defined corpus of documents, most IR studies, including many of the
systems evaluated in the sections above, focus on simple measures of
task performance such as speed for defining how well an interface sup-
ports users in finding information. A simple task, of finding a specific
document, or a fact within a document, is provided to users along
with a basic scenario for context. If users are able to find that answer
quickly with one system than another, then the novel system has pro-
vided better support for search. This is a fairly accurate test for many
basic search contexts. A basic fact-finding task represents many of the
Web searches performed on search engines [156, 173], and so many
studies are either based on this model or includes tasks of this nature.

1 http://trec.nist.gov/tracks.html.
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Table 4.1. A sample of measures used at the IR eval-
uation level.

Measure Reference

Precision, recall [24, 34, 40]
Precision @ N [3]
Mean average precision (MAP) [3]
Expected search length [52]
Average search length (ASL) [112]
Cumulated gain, discounted

cumulated gain
[85]

Relative Relevance, Ranked Half-Life [26]
Query length [83, 156]
Number of query refinements [78, 83, 156]
Number of unique queries [156, 173]
Number of operators in query [156]
Number of results viewed [78, 83, 156]
Search time [173]

A summary of commonly used IR-level measures, along with references
to example evaluations that have used them, is shown in Table 4.1.

It is clear from the model presented in Section 2, however, that
information retrieval tasks are part of a much larger view of search-
ing behavior. While research, such as that provided by White and
Drucker indicate that many web searches are simple fact-finding tasks,
the natural conclusion is that there are some search sessions that are
not simple lookup tasks [28, 173]. The TREC conferences have incor-
porated the Interactive Track [51], the High Accuracy Retrieval of
Documents (HARD) Track [3], and the Video Retrieval Evaluation
(TRECVid) Track [158], which move beyond the batch-oriented evalua-
tion of retrieval tasks by directly involving users conducting interactive
searches in the evaluation process. However, the information needs in
these tracks are still narrowly expressed in terms of documents to be
retrieved, without reference to a higher-level information need. It is
for this reason the methods of performing broader information-seeking
evaluations is discussed in the next subsection.

4.2 Information-Seeking Evaluations

The evaluations of information retrieval typically have different aims
than the evaluations of information seeking [94]. Information retrieval
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evaluations have focused on system-oriented metrics, or the speed of
simple, out of context, fact-finding tasks. Consequently, information
retrieval studies have been criticized for a narrow conceptualization
of the information need, relevance, and interaction [26]. Information-
seeking research, therefore, focuses on evaluating systems for how they
meet the needs of users. Important concepts at this level are the
information need, the information-seeking context, information-seeking
actions, tactics and strategies, and longitudinal changes, as are quan-
titative and qualitative measures.

To understand how search interfaces support a wide range of
information-seeking tactics, recent work by Wilson and schraefel [183]
and Wilson et al. [180, 184] has proposed an evaluation framework to
systematically assess support for a range of known search tactics and
types of users, called the Search Interface Inspector.2 The framework
first measures the functionality of the search system by the way it sup-
ports known tactics and moves employed with information [11, 12].
The framework then uses a novel mapping to summarize the mea-
sured support for the different user types [19], whose conditions vary
on dimensions such as previous knowledge and intended use. This eval-
uation framework was later refined and validated to show that it could
accurately predict the results of user studies [178]. With the confidence
provided by the validation, the framework can be used to identify weak-
nesses in a system design or new function, so that it can be improved
before user studies are carried out. Further, it can be used to inform the
design of user studies, so that they accurately test the desire features.

One of the exploratory studies used to validate the framework
produced by Wilson et al. was an information-seeking evaluation of
faceted browsers [33]. The study used three types of tasks to evaluate
the system, and performed a within participants study and a between
participants study to get qualitative and quantitative results, respec-
tively. The first type of task was a simple lookup task, which could be
answered by using only one facet of the annotation. The second task
type was a complex lookup, which involved multiple facets. The final
task was exploratory, where users were asked to learn and produced a

2 http://mspace.fm/sii/
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summarized report about a certain topic. This third type of task is a
good example of something that has not been included in Information
Retrieval research, which, as mentioned above, has focused on match-
ing documents to queries. Instead, by asking users to carry out learning
tasks, we can assess the system for other types of information-seeking
activities, such as comparison, synthesis, and summarization. As part of
their discussion of higher-level problems encountered by users of infor-
mation visualization systems, Amar and Stasko [7] discuss tasks that
may be part of or require exploratory search.

Another contribution to information-seeking evaluations is on the
discussion of time as a measurement by Capra et al. Although their
tasks were timed, they suggest that time may not be a useful metric
for exploratory tasks, as extended system use could mean that users
have discovered increasing amounts of relevant information. In contrast
to the information retrieval view that finding the answer quicker is
more important, finishing an exploratory task early may indicate that
a search system does not provide effective support for browsing. With
this notion in mind, Kammerer et al. [90] conclude that the participants
who used the MrTaggy interface (a) spent longer with their system,
(b) had a higher cognitive load during search, and (c) produced better
reports at the end of the tasks. In studies that aim to reduce cognitive
load and reduce search time, however, there is usually only one correct
answer. Conversely, during the MrTaggy experiment, the incentive was
to produce a better report, and so a positive measure for the system
was that it allows users to work harder.

The suitability of relevance in exploratory search conditions may
also be in question for some information-seeking evaluations. In sys-
tems that use faceted classifications, for example, each document with
a particular annotation has an equal weighting and thus every docu-
ment suggested as a result of selecting a particular part of the classi-
fication will be equally relevant. Instead, Spink et al. [160, 161] have
been designing a metric that tries to measure the progress of users
in achieving their goal. Although designed for feedback to users, the
rate of progress for similar tasks on different systems could be used to
assess their support. Further, controlling for the amount of progress
made by users in exploratory tasks would allow evaluators to once
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again consider reduced time and cognitive load as positive measures.
For example, evaluators could measure the time spent, and cognitive
load as they make a pre-determined amount of progress.

Koshman [98] evaluated the VIBE (Visual Information Browsing
Environment) prototype system, which graphically represents search
results as geometric icons within one screen display. As part of under-
standing approaches to information seeking, the researchers sought
to differentiate expert and novice performance through the use of
a quasi-experimental within-participants design (see Borlund [26] or
Shneiderman and Plaisant [155] for discussions of information-seeking
evaluation).

Having discussed search tasks and measurements that may be
unique to or important for information seeking, carefully controlled
user studies can still be performed to evaluate systems in terms of
information seeking. Käki [89] provides a good example of a study that
employs a within-subjects design, balanced task sets, time limitations,
pre-formulated queries, cached result pages and limiting access to result
documents.

Eye-tracking techniques have been used to study information-
seeking behaviors within web search interfaces and library catalogs
[45, 66, 104, 111]. These studies examined specific elements that
searchers look at, how often they looked at them, for how long, and
in what order. They provide insight into the cognitive activities that
searchers undertake and tactics used when examining search results.
For example, Kules et al. [104] studied gaze behavior in a faceted library
catalog and determined that for exploratory search tasks, participants
spent about half as much time looking at facets as they spent looking
at the individual search results. The study also suggested that partici-
pants used the facets differently between the beginning and later stages
of their searches. They conclude that the facets played an important
role in the search process.

Finally, the study approach that investigates user interaction with
software over a long period of time, such as longitudinal studies or
studies that are repeated periodically with the same participants, pro-
vides a unique type of insight into realistic human behavior. One of the
main arguments against the short task-oriented studies is the lack of



4.3 Work-Context Evaluations 71

Table 4.2. A sample of measures used at the IS evaluation level. Some
measures may be similar to IR level measures, but are used here to
evaluate the process of IS tasks.

Measure Reference

Number of moves/actions to support a
search tactic

[177, 184]

Subjective measures (e.g., confidence,
usefulness, usability, satisfaction)

[33, 98, 104, 106, 161]

Time on task [33, 90, 98]
Time to select document [66, 89]
Accuracy (correctness) and/or errors in task

results
[33, 98, 111]

Number of results collected by user [89, 90, 111]
Number of search terms [89, 159, 170]
Number of queries [106, 111, 160]
Number of results viewed [160, 66, 111]
Time to learn [98]
System feature retention [98]
Rank of selected document in results [89, 111, 106, 66]
Usage counts of selected interface features [89, 170]
Gaze-related measures, e.g., number of

fixations, location of fixations, rank of
results fixated on, fixation duration;
scanpaths, scanpath length

[45, 111, 104]

Number of search result pages viewed [111]

realism. Further, the results of such user studies are often based on the
participants’ first or early responses to new designs, compared to their
familiarity with existing software. By studying interaction over time,
we can begin to evaluate changes in search tactics and subjective views
as users adopt and adapt to new interfaces [102, 170, 182]. A summary
of commonly used IS-level measures, along with references to example
evaluations that have used them, is shown in Table 4.2.

4.3 Work-Context Evaluations

Evaluating search systems and the work task level requires measuring
the success of work-context style problems. For example, Allen [4] inves-
tigated the interaction of spatial abilities with 2-D data representations.
The work-context task given to participants was to read an article and
then use the system to find a few good articles. At this level, many
different information-seeking activities can be used, but ultimately the
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system is assessed on its support for achieving the overall goal. As
with evaluations at the information-seeking level, important concepts
at this level include the information need, the information-seeking con-
text, information-seeking actions, tactics, and strategies. At this level
there is a stronger emphasis on domain-specific concepts. The quality
of the work product also may be evaluated.

One of the challenges of evaluation, especially at the information
seeking and work-context level, is that human participants interpret
the tasks based on their own experiences and knowledge. There is a
tension between the need to make results reliable and replicable and
the need to make the task realistic for the participants. Borlund [26]
advocated addressing this by incorporating participant-provided infor-
mation needs into the experimental session along with a researcher-
provided need. If the results for both tasks are consistent, the researcher
can conclude that the researcher-provided task is realistic and thus reap
the benefit of a realistic but tightly controlled task. Other research
has used the previous actions of users to inform the realism of search
tasks in system evaluations [56, 58]. Kules and Capra [103] propose
a procedure for creating and validating tasks that exhibit exploratory
characteristics, such as indicating uncertainty of the information need,
the need for discovery, or being an unfamiliar domain for the searcher.
The goal is to develop work tasks that are appropriate for the domain
and system being evaluated and which are also comparable within and
across studies.

Aside from the individuality of work task understanding, work-
context tasks vary dramatically depending on the domain. Järvelin
and Ingwersen [84] argue that the main challenge ahead for evaluat-
ing systems at the work-context level is that research needs to explic-
itly integrate context in terms of the high-level work task, the specific
information-seeking task and the systems context. In particular, they
note that the Web “is not a single coherent unit but appears quite
different for different actors, tasks, and domains.” Some research has
addressed domain-specific work-context evaluations. One comparative
study attempted to rigorously evaluate work tasks by defining domain-
specific measures of work product quality (assessing motivation, com-
pleteness, correctness, coherence, redundancy, and argument structure)
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in addition to measuring efficiency, effectiveness, and precision of the
search [88]. Subjects used three information retrieval systems to develop
lesson materials about gorillas using a biological database. The goal was
highly structured to create a lesson using the provided lesson template
that prescribed topics to cover. Results showed significant system dif-
ferences in efficiency and effectiveness but results for quality measures
were mixed. They were not significant overall; however, significant dif-
ferences were noted between individual sections of the lesson. Kules and
Shneiderman [106] similarly evaluated the quality of the work product
(ideas for newspaper articles) but found no significant differences. These
two studies highlight the challenges of evaluating the contribution of a
system to a high-level work task. Evaluators face the dilemma of trying
to assess a system under conditions that are more realistic than at the
IR or even IS level, while still effectively understanding the contribu-
tion that the system makes when it is only one of many factors. The
use of longitudinal studies may help to overcome this challenge.

Qu and Furnas [137] used two variations of a sensemaking work task
to motivate information seeking and topic organization tasks to study
how people structure developing knowledge during an exploratory
search. Study participants were given 50 minutes to collect and orga-
nize information about an unfamiliar topic and produce an outline of
an oral presentation. The researchers examined sequences of actions
that participants took, including issuing queries, bookmarking pages,
and creating folders. They interpreted different sequences as indications

Table 4.3. A sample of measures used in stud-
ies focused work-context evaluation level. Some
measures may also be used in the IS but provide
insight into the process of achieving work-con-
text tasks.

Measure Reference

Number of records printed [4]
Number of items viewed or printed [4]
Number of items selected [88]
Number of relevant items selected [88]
Quality of results [88, 106]
Rank of relevant documents [56]
Participant assessed relevance [56]
Sequences of actions [137]
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of different aspects of the sensemaking task. A summary of commonly
used WC-level measures, along with references to example evaluations
that have used them, is shown in Table 4.3.

4.4 Summary

Evaluations are most mature and rigorous at the IR level. At the IS
level, evaluations are developing, with several good examples of stud-
ies that balance rigor and realism. The work level is where the biggest
challenges remain. It is also where improvements in evaluation can con-
tribute the most. Certainly, evaluations at this level need to reflect the
nature of the domain and the tasks and information needs characteristic
of that domain. Methodologies that enhance rigor and comparability
without sacrificing validity are necessary. Longitudinal methods are
likely to be useful. More generally, studies are likely to benefit from
an emphasis on fewer, but deeper, tasks, reflecting the more complex
nature of work tasks.



5
Taxonomy of Search Visualizations

So far in the monograph, we have discussed (1) a model of search that
captures multiple levels of context, (2) many novel advances in search
result visualization, and (3) the way in which such advances have been
evaluated. Below we present and discuss a taxonomy of these search
advances, according to their support for search, amount of evaluation,
and prevalence on the Web.

5.1 The Taxonomy

We present a taxonomy of the search visualization advances dis-
cussed in this monograph (Table 5.1). The purpose of the taxonomy
is to capture (1) how these advances are designed to support search,
(2) to what extent they have been evaluated, and (3) how preva-
lent they are on the Web. The next subsection discusses the value
of this information to academics and designers of future web search
interfaces.

The first facet, shown in the first set of three columns, is the level of
search context, as according to the model used throughout the mono-
graph, that is being supported by the interface feature. Although each
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interface technique may support, to some extent, each of the three
levels, they have been allocated to the level at which they are pri-
marily designed to support. In fact, a lengthier alternative analysis of
these interface advances could discuss the way in which the advances
all contribute to each level of search context.

The second facet, shown in the second set of three columns, rep-
resents the amount of study that the techniques have received. While
these could be categorized into groups such as formative studies, empir-
ical user studies, longitudinal log analyses, etc. we are more interested,
here, to learn the diversity of evidence that has been produced. They
could have also been categorized by whether they have been studied
in the same dimensions as they have been designed to support. Many
studies, however, include information retrieval and information-seeking
tasks, and so they may have received relatively little study, but in both
contexts. Some techniques have received little published study and eval-
uation, like allowing users to view similar results to any one result
returned [#33 in taxonomy], and so our understanding of their benefits
is through experience and intuition. Other techniques, such as treemaps
and SOMs [#18, #19], have received much evaluation and optimiza-
tion since they were first proposed, including initial testing, carefully
constructed lab studies, and analyses of working online deployments.

The third facet, contained in the final set of three columns, cap-
tures how prevalent visualizations have become on the Web. The items
familiar in most search engines, such as “similar results” and “keyword-
in-context result snippets”, are dominant, regardless of how well they
have been studied, or to what level of context they support searchers.
Other techniques, however, have been well studied but are not yet in
widespread use, such as faceted browsing on general Web search engines
[#8, #9]. It might be noted that the most common model of faceted
browsing, represented by Flamenco [#4], is more prevalent on the Web
than some of the alternatives. Google product search,1 for example,
provides this kind of typical faceted interaction to filter the results by
price ranges and even specific vendors.

1 http://www.google.com/products.
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These three facets, in combination, provide insights into the
advances that have been made in web search visualizations. The
diagram shows, for example, advances that are highly prevalent on the
Web, but have received little published evaluation, and only support
a low information retrieval context of search, such as web directories
[#1]. Similarly, and perhaps more important for some readers, we can
see heavily studied advances that are not yet prevalent on the Web,
such as the faceted model of search provided by mSpace [#5].

5.2 Using the Taxonomy

There are two main audiences for the taxonomy above: (1) search inter-
face designers and (2) academics working on future advances in this
area. Similarly, the content of the taxonomy and the gaps in the dia-
gram provide useful information to designers and academics. These uses
are discussed below.

One challenge in building web search interfaces is in choosing the
best combination of tools and features that will best support the tar-
get audience, if known. Clearly, there are many advances that can be
used, but using lots, or even all of them, would provide a cluttered and
perhaps unusable interface. For designers working with such a chal-
lenge, the taxonomy acts as a guide to identifying potential appropriate
options. Further, the gaps in the diagram highlight areas where new
and novel ideas might make a distinct interface and provide a business
edge.

For academics, the taxonomy provides two types of information.
First, much prior art is discussed in this article and included in the
diagram, which can be used to help identify related work. Second, and
more importantly, however, the diagram quite clearly marks under-
researched ideas and research gaps. One conclusion that can be drawn
from the diagram is that there has been a lot of work on information-
seeking level advances, but comparatively little work that has focused
on work-contexts. Section 4.3 discusses some studies that have focused
on work context scenarios, and some recent work has focused on tasks
such as booking holidays, writing papers, and even collaborating with
other people [125]. For the many existing advances that are captured by
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the taxonomy, however, seeing how different techniques relate to each
other across the captured dimensions raises some un-answered research
questions. Academics may want to compare well studied, but less pop-
ular advances, with those that are popular despite having received little
published evaluation.



6
Conclusions

This monograph presented four steps in discussing the advances in
visualizing web search results. First, we presented previous and related
work, which was followed by a model of search that has been used
throughout the document. This model of search includes multiple levels
of context from basic Information Retrieval needs, to more exploratory
information-seeking behavior, and finally the context of the tasks being
completed by users, known as the work context. Second, we offered a
wide range of innovations in web search interfaces, while discussing how
each makes contributions to the three levels of search context. Third,
Section 4 discussed the techniques that have been used to evaluate these
advances at the three different levels of search context. We discussed
the increasing difficulty that evaluators experience while studying the
contributions of new designs at higher-level work contexts, as regular
simple measures such as time and accuracy of specific low-level tasks
do not necessarily apply. Finally, we presented a taxonomy in Section 5
that captures the interface advances. The taxonomy captures (1) which
level of search context the advance primarily support, (2) how much
study the advances have received, and (3) how prevalent the advances
are on the Web.

81



82 Conclusions

As well as supporting readers in finding much of the prior art that
exists in web search result visualization, this monograph and taxon-
omy helps the designers of future search systems to make informed
choices about which advances may be appropriate for their system and
audience. Further, the taxonomy helps identify under-researched ideas
and research gaps in web search result visualization. Notably, there
have been far fewer advances that consider the higher-level work con-
texts of searchers. Consequently we advocate that, in order to better
understand novel ideas, future evaluations focus on the work contexts
of users, and in supporting them to achieve their higher-level goals.

We began this monograph by celebrating the success of keyword
search, while clarifying when alternative modes of search are needed.
First, as users’ demands continue to grow and their needs evolve, oppor-
tunities are emerging for exploratory search strategies. Often users want
to get answers to their questions, not just web pages. Second, their
questions are increasingly complex and may takes hours or weeks to
resolve. A third change is the move toward new Semantic Web tech-
nologies and related strategies, which offer improved possibilities for
machine-assisted resolution for complex queries, especially with key-
words which have multiple meanings. We have shown that there are
emerging innovative user interfaces and visual presentations that may
help users achieve their goals more rapidly and with greater confidence
in the validity of the results. Through empirical studies and log anal-
ysis, researchers are coming to better understand the ways in which
people search, the tasks they have, and how they collaborate with their
colleagues. This survey monograph provides a resource to the design-
ers and researchers who are developing search systems so that they can
more make more informed and confident design decisions as they create
novel and effective interfaces.



Acknowledgments

The authors thank Marti Hearst, those who provided images, and sev-
eral others for providing feedback and comments.

83



References

[1] F. J. Aguilar, General Managers in Action. New York, NY: Oxford University
Press, 1988.

[2] H. Alani and C. Brewster, “Ontology ranking based on the analysis of concept
structures,” in Proceedings of the 3rd International Conference on Knowledge
Capture, pp. 51–58, New York, NY, USA: ACM Press, 2005.

[3] J. Allan, “Hard track overview in trec 2003 high accuracy retrieval from doc-
uments,” in Proceedings of the Text Retrieval Conference, pp. 24–37, 2003.

[4] B. Allen, “Information space representation in interactive systems: Relation-
ship to spatial abilities,” in Proceedings of the Third ACM Conference on
Digital Libraries, pp. 1–10, Pittsburgh, Pennsylvania, United States: ACM
Press, 1998.

[5] R. Allen, “Two digital library interfaces that exploit hierarchical structure,”
in Proceedings of Electronic Publishing and the Information Superhighway,
pp. 134–141, Boston, MA, USA, 1995.

[6] J. Allsop, Microformats: Empowering Your Markup for Web 2.0. friends of
ED, 2007.

[7] R. Amar and J. Stasko, “A knowledge task-based framework for design and
evaluation of information visualizations,” in Proceedings of the IEEE Sympo-
sium on Information Visualization, pp. 143–150, Austin, Texas, USA: IEEE
Computer Society, 2004.

[8] B. Amento, W. Hill, L. Terveen, D. Hix, and P. Ju, “An empirical evaluation
of user interfaces for topic management of web sites,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 552–559,
Pittsburgh, Pennsylvania, United States: ACM Press, 1999.

84



References 85
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