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Abstract

Federated search (federated information retrieval or distributed infor-
mation retrieval) is a technique for searching multiple text collections
simultaneously. Queries are submitted to a subset of collections that
are most likely to return relevant answers. The results returned by
selected collections are integrated and merged into a single list. Fed-
erated search is preferred over centralized search alternatives in many
environments. For example, commercial search engines such as Google
cannot easily index uncrawlable hidden web collections while feder-
ated search systems can search the contents of hidden web collections
without crawling. In enterprise environments, where each organization
maintains an independent search engine, federated search techniques
can provide parallel search over multiple collections.

There are three major challenges in federated search. For each query,
a subset of collections that are most likely to return relevant docu-
ments are selected. This creates the collection selection problem. To
be able to select suitable collections, federated search systems need to
acquire some knowledge about the contents of each collection, creating



the collection representation problem. The results returned from the
selected collections are merged before the final presentation to the user.
This final step is the result merging problem.

The goal of this work, is to provide a comprehensive summary of the
previous research on the federated search challenges described above.



1
Introduction

Internet search is one of the most popular activities on the web. More
than 80% of internet searchers use search engines for finding their infor-
mation needs [251]. In September 1999, Google claimed that it received
3.5 million queries per day.1 This number increased to 100 million in
2000,2 and has grown to hundreds of millions since.3 The rapid increase
in the number of users, web documents and web queries shows the
necessity of an advanced search system that can satisfy users’ informa-
tion needs both effectively and efficiently.

Since Aliweb [150] was released as the first internet search engine
in 1994, searching methods have been an active area of research, and
search technology has attracted significant attention from industrial
and commercial organizations. Of course, the domain for search is not
limited to the internet activities. A person may utilize search systems
to find an email in a mail box, to look for an image on a local machine,
or to find a text document on a local area network.

1 http://www.google.com/press/pressrel/pressrelease4.html, accessed on 17 Aug 2010.
2 http://www.google.com/corporate/history.html, accessed on 17 Aug 2010.
3 http://www.comscore.com/Press_Events/Press_Releases/2010/8/comScore_Releases_
July_2010_U.S._Search_Engine_Rankings, accessed on 17 Aug 2010.
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4 Introduction

Commercial search engines use programs called crawlers (or spiders)
to download web documents. Any document overlooked by crawlers
may affect the users perception of what information is available on
the web. Unfortunately, search engines cannot easily crawl docu-
ments located in what is generally known as the hidden web (or deep
web) [206]. There are several factors that make documents uncrawlable.
For example, page servers may be too slow, or many pages might be
prohibited by the robot exclusion protocol and authorization settings.
Another reason might be that some documents are not linked to from
any other page on the web. Furthermore, there are many dynamic
pages — pages whose content is generated on the fly — that are
crawlable [206] but are not bounded in number, and are therefore often
ignored by crawlers.

As the size of the hidden web has been estimated to be many times
larger than the number of visible documents on the web [28], the volume
of information being ignored by search engines is significant. Hidden
web documents have diverse topics and are written in different lan-
guages. For example, PubMed4 — a service of the US national library
of medicine — contains more than 20 million records of life sciences and
biomedical articles published since the 1950s. The US census Bureau5

includes statistics about population, business owners and so on in the
USA. There are many patent offices whose portals provide access to
patent information, and there are many other websites such for yellow
pages and white pages that provide access to hidden web information.

Instead of expending effort to crawl such collections — some of
which may not be crawlable at all — federated search techniques
directly pass the query to the search interface of suitable collections and
merge their results. In federated search, queries are submitted directly
to a set of searchable collections — such as those mentioned for the
hidden web — that are usually distributed across several locations.
The final results are often comprised of answers returned from multiple
collections.

4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed, accessed on 17 Aug 2010.
5 http://www.census.gov, accessed on 17 Aug 2010.
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From the users’ perspective, queries should be executed on servers
that contain the most relevant information. For example, a government
portal may consist of several searchable collections for different organiza-
tions and agencies. For a query such as ‘Administrative Office of the US
Courts’, it might not be useful to search all collections. A better alter-
native may be to search only collections from the www.uscourts.gov

domain that are likely to contain the relevant answers.
However, federated search techniques are not limited to the web and

can be useful for many enterprise search systems. Any organization with
multiple searchable collections can apply federated search techniques.
For instance, Westlaw6 provides federated search for legal professionals
covering more than 30,000 databases [59, 60, 61]. The users can search
for case law, court documents, related newspapers and magazines, pub-
lic records, and in return, receive merged results from heterogeneous
sources. FedStats7 is an online portal of statistical information pub-
lished by many federal agencies. The crawls for the original centralized
search in FedStats could be updated only every three months. There-
fore, a federated search solution was requested and this was the main
focus of the FedLemur project [13].8 FedStats enables citizens, busi-
nesses, and government employees to find useful information without
separately visiting web sites of individual agencies.

Federated search can be also used for searching multiple catalogs
and other information sources. For example, in the Cheshire project,9

many digital libraries including the UC Berkeley Physical Sciences
Libraries, Penn State University, Duke University, Carnegie Mellon
University, UNC Chapel Hill, the Hong Kong University of Science and
Technology and a few other libraries have become searchable through a
single interface at the University of Berkeley. Similarly, The European
Library10 provides a federated search solution to access the resources
of 47 national libraries.

6 http://www.thomsonreuters.com/products_services/legal/legal_products/393832/
Westlaw, accessed on 17 Aug 2010.

7 http://search.fedstats.gov, accessed on 17 Aug 2010.
8 FedStats search is currently powered by google.com.
9 http://cheshire.berkeley.edu/, accessed on 17 Aug 2010.
10 http://search.theeuropeanlibrary.org/portal/en/index.html, accessed on 17 Aug

2010.
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1.1 Federated Search

In federated search systems,11 the task is to search a group of inde-
pendent collections, and to effectively merge the results they return for
queries.

Figure 1.1 shows the architecture of a typical federated search
system. A central section (the broker) receives queries from the users
and sends them to collections that are deemed most likely to con-
tain relevant answers. The highlighted collections in Figure 1.1 are
those selected for the query. To route queries to suitable collections,
the broker needs to store some important information (summary or
representation) about available collections. In a cooperative environ-
ment, collections inform brokers about their contents by providing
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Fig. 1.1 The architecture of a typical federated search system. The broker stores the rep-
resentation set (the summary) of each collection, and selects a subset of collections for the
query. The selected collections then run the query and return their results to the broker,
which merges all results and ranks them in a single list.

11 Also referred to as distributed information retrieval (DIR).
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information such as their term statistics. This information is often
exchanged through a set of shared protocols such as STARTS [111] and
may contain term statistics and other metadata such as collection size.
In uncooperative environments, collections do not provide any informa-
tion about their contents to brokers. A technique that can be used to
obtain information about collections in such environments is to send
sampling (probe) queries to each collection. Information gathered from
the limited number of answer documents that a collection provides in
response to such queries is used to construct a representation set ; this
representation set guides the evaluation of user queries and ranking
collections. The selected collections receive the query from the broker
and evaluate it on their own indexes. In the final step, the broker ranks
the results returned by the selected collections and presents them to
the user.

Federated search systems therefore need to address three major
issues: how to represent the collections, how to select suitable
collections for searching; and how to merge the results returned from
collections.12 Brokers typically compare each query to representation
sets — also called summaries [138] — of each collection, and estimate
the goodness of the collection accordingly. Each representation set may
contain statistics about the lexicon of the corresponding collection.
If the lexicon of the collections is provided to the central broker —
that is, if the collections are cooperative — then complete and accurate
information can be used for collection selection. However, in an uncoop-
erative environment such as the hidden web, the collections need to be
sampled to establish a summary of their topic coverage. This technique
is known as query-based sampling [42] or query probing [116].

Once the collection summaries are generated, the broker has suf-
ficient knowledge for collection selection. It is usually not feasible to
search all collections for a query due to time constraints and band-
width restrictions. Therefore, the broker selects a few collections that
are most likely to return relevant documents based on their summaries.
The selected collections receive the query and return their results to
the broker.

12 We briefly describe other common challenges such as building wrappers in Section 2.
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Result merging is the last step of a federated search session. The
results returned by multiple collections are gathered and ranked by the
broker before presentation to the user. Since documents are returned
from collections with different lexicon statistics and ranking features,
their scores or ranks are not comparable. The main goal of result merg-
ing techniques is computing comparable scores for documents returned
from different collections, and ranking them accordingly.

1.2 Federated Search on the Web

The most common forms of federated search on the web include vertical
search, peer-to-peer (P2P) networks, and metasearch engines. Vertical
search — also known as aggregated search — blends the top-ranked
answers from search verticals (e.g., images, videos, maps) into the web
search results. P2P search connects distributed peers (usually for file
sharing), where each peer can be both server and client . Metasearch
engines combine the results of different search engines in single results
lists. Depending on the query, metasearch engines can select different
engines for blending.

1.2.1 Vertical (aggregated) Search

Until recently, web search engines used to only show text answers in
their results. Users interested in other types of answers (e.g., images,
videos, and maps), had to directly submit their queries to the special-
ized verticals.

In 2000, the Korean search engine Naver13 introduced comprehen-
sive search and blended multimedia answers in their default search
results. In May 2007, Google launched aggregated search (universal
search) “to break down the walls that traditionally separated [their]
various search properties and integrate the vast amounts of informa-
tion available into one simple set of search results”.14 In aggregated
search, the top-ranked answers from other information sources (e.g.,
image vertical) are merged with the default text results. Universal

13 http://www.naver.com, accessed on 17 Aug 2010.
14 http://googleblog.blogspot.com/2007/05/universal-search-best-answer-is-still.

html, accessed on 17 Aug 2010.
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Fig. 1.2 The outputs of three major search engines for the query “dog”. The top-ranked
answers from the image vertical are blended in the final results.

search substantially increased the traffic of Google’s non-text search
verticals. For instance, the traffic of Google Maps increased by more
than 20%.15 Since then, all other major search engines such as Yahoo!16

and Bing have adopted aggregated search techniques. Figure 1.2 shows
the results returned by three major search engines for the query “dog”.
It can be seen that all search engines merge some image answers along
with their text results.

An aggregated search interaction consists of two major steps: verti-
cal selection and merging. In the first step, the verticals relevant to the
query are selected. A few examples of common verticals that are uti-
lized by current search engines are: images, videos, news, maps, blogs,
groups and books. The answers returned from the selected verticals are
integrated with the default web results in the merging step.

Aggregated search was discussed in a workshop at SIGIR 2008 [191]
as a promising area of research. Less than a year after, Diaz [77] pro-
posed a click-based classifier for integration of news answers into web
search results — as the first large-scale published study on aggregated

15 http://searchengineland.com/070608-091826.php, accessed on 17 Aug 2010.
16 Yahoo! has recently launched a new website (http://au.alpha.yahoo.com/) that applies

aggregated search on a greater number of data sources.
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search that won the best paper award at WSDM 2009.17 Arguello
et al. [9] proposed a classification-based method for vertical selection.
The authors trained a classifier with features derived from the query
string, previous query logs, and vertical content. They tested their tech-
niques on a framework of 18 verticals, for which they won the best paper
award at SIGIR 2009.18 Diaz and Arguello [78] showed that integrating
users feedback such as clicks can significantly improve the performance
of vertical selection methods.

Aggregated search is a new area of research, and has opened several
directions for future work; what search verticals shall be selected for a
query? How can the results of different verticals be merged into a single
list? Do users prefer aggregated search results? How aggregated search
changes users’ search behaviors?

1.2.2 Peer-to-peer Networks

Lu [168] showed that the search task in a peer-to-peer network is
closely related with the research topic of federated search. A peer-to-
peer network (P2P) consists of three main types of objects: informa-
tion providers, information consumers, and a search mechanism that
retrieves relevant information from providers for consumers.

The P2P network architectures can be divided into four categories:
broker-based P2P networks (e.g., the original Napster music file-sharing
system19) have a single centralized service that also contains docu-
ment lists shared from peer nodes. The centralized service responds
to queries from consumers by returning the pointers of relevant docu-
ments. In Decentralized P2P architectures such as Gnutella v0.420 each
peer node can serve as both provider and consumer. Hierarchical P2P
architectures such as, Gnutella v0.621, Gnutella222, BearShare23 and

17 http://www.wsdm2009.org, accessed on 17 Aug 2010.
18 http://sigir2009.org, accessed on 17 Aug 2010.
19 http://www.napster.com, accessed on 17 Aug 2010.
20 http://rfc-gnutella.sourceforge.net/developer/stable/index.html, accessed on 17

Aug 2010.
21 http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html, accessed on 17 Aug

2010.
22 http://g2.trillinux.org/index.php?title=Main_Page, accessed on 17 Aug 2010.
23 www.bearshare.com, accessed on 17 Aug 2010.
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Swapper.NET24 utilize local directory services that often work with
each other for routing queries and merging search results. Structured-
based P2P networks such as CAN [209] and Chord [252] often use
distributed hash tables for searching and retrieving files.

Peer-to-peer search has to address similar problems to federated
search; specifically, representing useful contents of peer nodes and local
search directories (collection representation), routing queries to rele-
vant nodes or directories (collection selection), and combining search
results (result merging). Early P2P networks focused on simple query
routing methods such as flooding and simple merging methods based
on the frequency of term matching or content-independent features.
More recent studies [168, 170, 171] explored full-text representations
with content-based query routing and relevance-based results integra-
tion. Therefore, improving collection representation, collection selection
and result merging in federated search can have a direct impact on the
quality of search in P2P networks.

1.2.3 Metasearch Engines

Metasearch engines provide a single search portal for combining the
results of multiple search engines [186]. Metasearch engines do not usu-
ally retain a document index; they send the query in parallel to multiple
search engines, and integrate the returned answers. The architecture
details of many metasearch engines such as Dogpile,25 MetaCrawler
[219, 220], AllInOneNews [164], ProFusion [103, 104], Savvysearch [81],
iXmetafind [120], Fusion [249], and Inquirus [108, 158] have been pub-
lished in recent years.

Figure 1.3 shows the answers returned by Metacrawler [220] for the
query “federated search”. It can be seen that the presented results are
merged from different search engines such as Yahoo! and Google, Ask
and Bing.

Compared to the centralized search engines, metasearch engines
have advantages such as broader coverage of the web and better search
scalability [185]. The index and coverage of commercial search engines

24 http://www.revolutionarystuff.com/swapper, accessed on 17 Aug 2010.
25 http://www.dogpile.com/dogpile/ws/about?_IceUrl=true, accessed on 17 Aug 2010.
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Fig. 1.3 The results of the query “federated search” returned from Metacrawler [220]
metasearch engine. It can be seen that the results are merged from different sources such
as Google, Yahoo! and Bing search engines.

are substantially different. Many of the pages that are indexed by one
search engine may not be indexed by another search engine. Bar-Yossef
and Gurevich [22] suggested that the amount of overlap between the
indexes of Google and Yahoo! is less than 45%.

1.3 Outline

This paper presents a comprehensive summary of federated search tech-
niques. This section provides a road map for the remaining sections.

In Section 2, we compare the collection representation sets (sum-
maries) in cooperative and uncooperative environments. We also dis-
cuss several approaches for improving incomplete summaries, including
the previous research on estimating the size of collections from sampled
documents. We end this section by describing wrappers, the programs
used for interacting with the interfaces of hidden-web collections, and
summarizing available techniques for evaluating the quality of collec-
tion summaries.
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In Section 3, we compare different collection selection methods by
categorizing the current techniques into two main groups; lexicon-based,
and document-surrogates. The former group mainly consists of tech-
niques that are more suitable for cooperative environments, while the
latter group includes collection selection methods based on incomplete
sampled documents. We also provide an overview of previous work on
query-classification in the context of federated search. In the last sec-
tion of this section, we discuss the common metrics for evaluating the
effectiveness of collection selection methods.

In Section 4, we discuss several federated search merging techniques.
We also provide a brief summary of commonly used blending techniques
in closely related areas of data fusion and metasearch.

In Section 5, we discuss common datasets used for evaluating the
federated search techniques. This is important because relative per-
formance of federated search methods can vary significantly between
different testbeds [86, 242].26

Finally, in Section 6 we present our conclusions and discuss
directions for future work.

26 We use the term testbed to refer to a set of collections that are used together for federated
search experiments (collection selection and result merging).



2
Collection Representation

In order to select suitable collections for a query, the broker needs to
know about the contents of each collection as well as other important
information (e.g., size). For example the query “basketball” may be
passed to sport-related collections, while for the query “Elvis” collec-
tions containing articles about music might be more appropriate.

For this purpose, the broker keeps a representation set for each col-
lection. This is illustrated in Figure 2.1. The representation set of each
collection contains information about the documents that are indexed
by that collection, and can be generated manually on the broker by
providing a short description of the indexed documents [52, 180]. How-
ever, representation sets created manually are usually brief and cannot
capture many terms that occur in a collection. In practice, collection
representation sets are therefore usually generated automatically, and
their comprehensiveness depends on the level of cooperation in the fed-
erated search environment.

In cooperative environments, representation sets may contain the
complete lexicon statistics of collections and many other useful meta-
data [85, 111, 275, 285, 290]. In such a scenario, the broker has
extensive knowledge about each collection and can effectively calculate

14
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Collection
A

Collection
B

Collection
C

Global Information
(Distributed)

Collection representation sets
(Centralized on the broker)

Representation C

Representation B

Representation A

Fig. 2.1 The representation of distributed collections on a central broker. The broker stores
a subset of the global information, available at collections, centrally.

the matching score of each collection for each user query. In uncooper-
ative federated search, collections do not publish their representation
sets. Therefore, the broker typically downloads a limited number of
documents from each collection and uses these as the representation
set [42, 43].

This section provides an overview of the previous work on collection
representation.

2.1 Representation Sets in Cooperative Environments

In cooperative environments, collections may provide the broker with
comprehensive information about their searchable documents.

In the STARTS protocol [111], the broker stores several types
of source metadata, that are used for server selection and other
purposes such as query mapping and result merging. Some of the
source metadata attributes used by the STARTS protocol are: score
range, stopword list, supported fields and sample results. In addition
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to server selection metadata, the information about the query lan-
guage of each server is also available in the representation sets. The
query language defined by the STARTS protocol consists of two
main components: filter expression, and ranking expression. The fil-
ter expression, is used to narrow down search to documents that are
more likely to be relevant on each server. Using the filter expres-
sions, the user can specify the fields that the query has to match in
each document in the final results (e.g., title ‘‘harry potter’’,

author ‘‘J.K. Rowling’’). The ranking expression provides infor-
mation about the importance of different sections of a document for
ranking (e.g., body-of-text ‘‘treasure’’). Green et al. [117] later
enhanced STARTS with XML features in a more sophisticated protocol
called SDARTS. The new protocol is suitable for federated search over
multiple XML collections.

The comprehensiveness of information stored in collection represen-
tation sets varies depending on the degree of cooperation between collec-
tions, and the complexity of the search protocol. For instance, Gravano
et al. [113, 114, 115] stored document frequency and term weight infor-
mation in the representation sets. In another work by Callan et al. [46],
the broker stores the document frequency information of the terms
for each collection. The collection representation sets used by Meng
et al. [184] contain the adjusted maximum normalized weights that are
computed according to the global inverse document frequency, and the
maximum term frequency values in each collection. Similar statistics
have been used by Wu et al. [274] and Yu et al. [281, 282].

Yuwono and Lee [285] stored the number of documents in each col-
lection, and the collection frequency1 of terms in the representation sets
of their D-WISE system. Zobel’s Lexicon Inspection system [290] also
stored the collection frequency statistics and the number of documents
in each collection in representation sets. D’Souza and Thom [83] pro-
posed n-term indexing in which they only store the statistics about a
maximum of n terms per document in representation sets. The first-
n variant that chooses the first n terms in each document was later
adopted by D’souza et al. [84].

1 The number of collections that contain each term.
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In heterogenous environments with diverse data types, collection
representation sets may contain various metadata to improve other
stages of federated search such as collection selection and result merg-
ing. For instance, Arguello et al. [8, 9] stored previous vertical-specific
query logs in their vertical representation sets. Kim and Croft [146]
stored title, content, date, sender and receiver information separately
in the representation set of the email collection they used in their desk-
top search experiments.

2.2 Representation Sets in Uncooperative Environments

In the absence of cooperation, term statistics are usually approximated
by using a number of documents sampled from collections. Next, we
discuss different methods for sampling documents from uncooperative
collections.

2.2.1 Query-based Sampling

Query-based sampling (QBS) [42, 43] was proposed for sampling unco-
operative environments where the broker does not have access to the
complete lexicon statistics of each collection. QBS has been used widely
in federated search experiments [13, 195, 197, 242, 245, 241] and can
be described as follows:

(1) An initial query is selected and submitted to the collection.
The query is usually a single term,2 selected from words that
are likely to return many results.

(2) The top n documents for the query are downloaded. Callan
and Connell [42] have empirically determined that n = 4 is
an appropriate value for TREC newswire collections.

(3) Sampling continues as long as the stopping criterion has
not been met. The stopping criterion is usually defined in
terms of the number of documents sampled or the num-
ber of sampling queries that have been issued. For exam-
ple, Callan and Connell [42] suggested that sampling can

2 Craswell et al. [64] and Shokouhi et al. [236] used multi-word queries for sampling.
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stop after downloading 300–500 unique documents. Shokouhi
et al. [229] later showed that for larger collections, sam-
pling more documents can significantly improve collection
selection.

Callan and Connell [42] reported that the initial query has mini-
mal impact on the quality of final samples. They proposed two major
sampling strategies for selecting the sampling queries: other resource
description (ord) and learned resource description (lrd). The former
selects the sampling (probe) queries from a reference dictionary, while
the latter selects them from the documents already sampled. Callan
et al. [43] evaluated four strategies for choosing the probe queries
(terms) from the sampled documents (based on their document frequen-
cies, collection frequencies, average term frequencies, or randomly).

Overall, the ord method produces more representative samples.
However, it is not particularly efficient and often chooses many out
of vocabulary (OOV) terms that do not return any document from
the collection. Among the discussed strategies, using average term fre-
quency and random selection have been suggested to have the best
trade-off between efficiency and effectiveness.

Craswell [63] and Shokouhi et al. [236] employed query-logs for sam-
pling, and showed that samples produced by log-based queries can lead
to better collection selection and search effectiveness.

Callan et al. [47] investigated the effects of query-based sampling
on different collection selection algorithms. They compared CORI [46],
GlOSS [113], and CVV [285]. It was observed that the performance of
GlOSS and CVV decreases dramatically when using incomplete rep-
resentation sets (sampled documents) while the performance of CORI
remained almost unchanged. Monroe et al. [189] studied the effective-
ness of query-based sampling for sampling web collections and showed
that QBS can produce effective representation sets.

Traditional query-based sampling has drawbacks. The sampling
queries are selected randomly and thus they may not always return
sufficient number of answers, which can make the sampling process
inefficient. Furthermore, samples of 300–500 documents may not always
be sufficiently representative of the corresponding collections. Hence,
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adaptive sampling techniques have been proposed to address these
issues.

Adaptive sampling. The idea of adaptive sampling was first applied
by Shokouhi et al. [229]. The authors adaptively chose the sample size
for each collection according to the rate of visiting new vocabulary in
sampled documents. Baillie et al. [17] suggested that sampling should
stop when the new sampled documents do not download a large number
of unvisited terms that are likely to appear in future queries. They
divided the sampling process into multiple iterations. At each iteration,
n new documents are added to the current samples. The impact of
adding new sampled documents for answering a group of queries Q is
estimated as:

φk = l(θ̂k,Q) − l(θ̂k−1,Q) ≈ log

(
P (Q|θ̂k)

P (Q|θ̂k−1)

)
(2.1)

where the likelihood l(θ̂k,Q) of generating the terms of training queries
Q by the language model [201] of a collection sample θ̂ is calculated as
below:

P (Q|θ̂k) =
n∏

i=1

m∏
j=1

P (t = qij |θ̂k) (2.2)

Here, t = qij is the jth term of the ith query in a representative query
log. P (t|θ̂k) is the probability of visiting the term t by picking a random
term from the language model (θ̂) of the sampled documents at the
kth iteration.3 The length of the longest training query and the size
of the query set are respectively specified by m and n. Sampling stops
when the value for φk becomes less than a pre-defined threshold. This
approach is reliant on a set of queries or corpus that is representative
of the future information needs of the users of the system.

Caverlee et al. [50] investigated three stopping criteria for adaptive
sampling of uncooperative collections:

• Proportional document ratio (PD): In this scenario, the
number of documents sampled from each collection varies

3 The general procedure of estimating language model from a document or a collection of
documents can be found elsewhere [154, 201].
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according to its size. In PD, the goal is to sample the same
proportion of documents from each collection.
Therefore, for a fixed sampling budged of S documents, the
total number of documents to be extracted from a collection
with |c| documents is:

|c|∑Nc
i=1 |c|i

· S (2.3)

where Nc is the total number of collections. In the absence
of actual collection size information, predicted values can be
used instead (See Section 2.3).

• Proportional vocabulary ratio (PV): In this approach, the
broker estimates the vocabulary size of each collection, and
downloads the same vocabulary proportion from each collec-
tion by sampling. According to Heaps law [15] a collection of
n terms has a vocabulary size of Knβ, where K and β are free
parameters typically between 0.4 and 0.6. Caverlee et al. [50]
set these parameters according to the rate of visiting new
vocabulary in the sampled documents.

• Vocabulary growth (VG): The vocabulary growth technique
aims to download the highest number of distinct terms across
all collection representation sets. The vocabulary size of each
collection is estimated by Heaps law [15] after adding new
sampled documents, and collections with faster growth of
new vocabulary are prioritized in sampling. When there is
a maximum limit for the number of documents that can be
downloaded by the broker, VG downloads more documents
from the collections that return more new terms.

Caverlee et al. [50] showed that PD and PV produce more rep-
resentative samples and can significantly improve the effectiveness of
collection selection. However, the authors only reported their results
for the CORI collection selection method [46]. The impact of their sug-
gested methodologies on the performance of more effective collection
selection techniques is unclear.
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2.2.2 Improving Incomplete Samples

A few approaches have been suggested for improving the quality of
collection samples. Ipeirotis and Gravano [137] proposed focused prob-
ing based on the following principle: queries related to a topical cate-
gory are likely to retrieve documents related to that category. Focused
probing applies a trained rule-based document classifier such as RIP-
PER [58] for sampling. The probe queries for sampling are extracted
from the classification rules. For example, if the classifier defines
(Basketball→Sport) — that is documents containing “basketball” are
related to sport — and then “basketball” is used as the query and the
returned documents are classified as sport-related. As sampling con-
tinues, the probe queries are selected according to more specific clas-
sification rules. This allows collections to be classified more accurately
according to the specificity and coverage of the documents they return
from each class. In addition, the generated samples are argued to be
more representative [139] as they can reflect the topicality of collections
more effectively.

There are often many terms in collections that occur in only a few
documents, and thus these terms often do not appear in the samples
downloaded by query-based sampling or focused-probing. The Shrink-
age technique [136, 138] has been proposed to solve this problem and
to improve the comprehensiveness of collection samples. The shrinkage
method is based on the assumption that topically related collections
share the same terms. Collections are first classified under a set of
hierarchical categories. The vocabulary statistics of each sample are
then extended using the samples of other collections in the same cat-
egory. That is, for a collection C that is classified under categories
G1,G2, . . . ,Gm, where Gi = Parent(Gi+1), the probability of visiting a
given word w is smoothed as:

P (w|C) = λm+1 × P (w|C) +
m∑

i=0

λi × P (w|Gi) (2.4)

where the mixture weights λ are set by Expectation Maximization [183]
to make the smoothed language models as similar as possible to that
of categories and the original sample.
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In Q-pilot [253] the description of each search engine is created by
combining the outputs of three methods: front-page, back-link, and
query-based sampling. The first method extracts the terms available on
the query interface of search engines, while the second method gener-
ates a summary from the contents of web pages that have links pointing
to the search engine front page. A similar strategy has been used by
Lin and Chen [162] to construct the representation sets of hidden web
search engines. In HARP [125], the representation set of each collection
consists of the anchor-text [66] of URLs available in a crawled reposi-
tory that are targeting that collection. Hedley et al. [127, 128, 129, 130]
suggested a two-phrase sampling technique (2PS) to produce more
representative samples from the hidden web collections. The 2PS
method is similar to traditional query-based sampling but differs in a
few aspects. In 2PS, the initial query is selected from the collection
search interface, while in query-based sampling the first query is a
frequently used term or a term extracted from a dictionary. In addition,
2PS detects the templates of web pages and does not select HTML
markup terms from the templates for sampling. Instead, it uses the
terms that are selected from the text content of web pages. Such terms
are more likely to return representative documents from collections.

The size of collection summaries can cause efficiency problems on
brokers with space constraints. Lu and Callan [169], and Shokouhi
et al. [236] proposed several pruning strategies for reducing the size
of collection summaries with minimal impact on final search effective-
ness. köing et al. [149] demonstrated that retaining only 10% of a corpus
containing news and blog articles had negligible impact on the accuracy
of click-through prediction of dedicated (aggregated) news results.

A more brief summary of the techniques described above has been
provided by Aksoy [2].

2.3 Estimating the Collection Size

The size of a collection is used in many collection selection methods,
such as ReDDE [242], KL-Divergence [248], and UUM [245], as an
important parameter for ranking collections. In an uncooperative envi-
ronment, information regarding the size of collections is not usually
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available. Hence a broker must estimate the collection size. This sec-
tion summarizes current techniques for estimating the size of collections
in uncooperative environments.

Capture–recapture. Using estimation as a way to identify a collec-
tion’s size was initially suggested by Liu et al. [165], who introduced the
capture–recapture method for federated search. This approach is based
on the number of overlapping documents in two random samples taken
from a collection: assuming that the actual size of collection is N , if we
sample a random documents from the collection and then sample (after
replacing these documents) b documents, the size of collection can be
estimated as N̂ = ab

c , where c is the number of documents common to
both samples. However, Liu et al. [165] did not discuss how random
samples can be obtained.

Multiple capture–recapture. The capture–recapture technique
originates from ecology, where a given number of animals is captured,
marked, and released. After a suitable time has elapsed, a second set is
captured; by inspecting the intersection of the two sets, the population
size can be estimated.

This method can be extended to a larger number of samples to give
multiple capture–recapture (MCR) [235]. Using T samples of size k,
the total number of pairwise duplicate documents D should be:

D =
(

T

2

)
E(X) =

T (T − 1)
2

E(X) =
T (T − 1)k2

2N
(2.5)

Here, N is the size of population (collection). By gathering T random
samples from the collection and counting duplicates within each sample
pair, the expected size of collection is:

N̂ =
T (T − 1)k2

2D
(2.6)

Although the sample size (k) is fixed for all collections in the above
equations, Thomas [254] showed that this is not necessary, and MCR
can be generalized to use non-uniform sample size values for different
collections.
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Schumacher–Eschmeyer method (Capture-history). Capture–
recapture is one of the oldest methods used in ecology for estimat-
ing population size. An alternative, introduced by Schumacher and
Eschmeyer [218], uses T consecutive random samples with replacement,
and considers the capture history [235]. Here,

N̂ =
∑T

i=1 KiMi
2∑T

i=1 RiMi

(2.7)

where Ki is the total number of documents in sample i, Ri is the number
of documents in the sample i that were already marked, and Mi is the
number of marked documents gathered so far, prior to the most recent
sample. Capture-history has been shown to produce more accurate size
estimates compared to MCR [235, 278].

Sample–resample. An alternative to the capture–recapture meth-
ods is to use the distribution of terms in the sampled documents, as in
the sample–resample (SRS) method [242].

Assuming that QBS [42] produces good random samples, the distri-
bution of terms in the samples should be similar to that in the original
collection. For example, if the document frequency of a particular term t

in a sample of 300 documents is dt, and the document frequency of the
term in the collection is Dt, the collection size can be estimated by SRS
as N̂ = dtDt

300 .
This method involves analyzing the terms in the samples and then

using these terms as queries to the collection. The approach relies on
the assumption that the document frequency of the query terms will
be accurately reported by each search engine. Even when collections
do provide the document frequency, these statistics are not always
reliable [5].

Sample–resample and capture–recapture methods assume that
documents downloaded by query-based sampling can be regarded as
random samples. However, Shokouhi et al. [235] showed that the
assumption of randomness in QBS is questionable.

Other size estimation methods. Capture–history and other
capture–recapture methods assume that all documents have the same
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probability of being captured. Xu et al. [278] argued that the prob-
ability of capture depends on other parameters such as document
length and PageRank [37]. The authors proposed Heterogeneous capture
(HC) that uses a logistic model to calculate the probability of capture
for each document, and can produce better estimations compared to
other capture–recapture methods. A similar idea was also suggested by
Lu [167].

The work by Bharat and Broder [33] is perhaps the earliest study
published on estimating the size of text collections (web in their case)
by sampling. The authors tried to obtain random samples from search
engines by submitting random queries and selecting random URLs from
the returned results. They used the overlap in samples to estimate the
size of the web, and the rate of overlap between the indexes of web
search engines.

Bar-Yossef and Gurevich [22] proposed a Pool-based sampler that
uses rejection sampling to generate random samples from search
engines. To eliminate the search engine ranking bias, the authors reject
queries that underflow or overflow. That is, ignoring queries that return
too few or too many documents. As in Ref. [33], the authors lever-
aged a pool of queries to sample documents from search engines. How-
ever, instead of selecting the sampling queries uniformly at random,
the probe queries are selected according to their cardinality. The car-
dinality of a query is defined as the number of answers that it returns
from the search engine. Since the cardinality values may not be pub-
licly available, the authors first use uniform sampling and then apply
Monte Carlo methods to simulate sampling based on cardinality. The
pool-based sampling procedure is summarized in Algorithm 1.

Bar-Yossef and Gurevich [22] also presented a Random walk sam-
pler that performs a random walk on a document-query graph. Two
documents are connected in the graph if they both match at least one
common query. Given a document d, the next query q is selected from a
pool of documents that return d (overflowing and underflowing queries
are rejected). The next document is picked randomly from the set of
results returned for q. Both Pool-based and Random walk samplers are
shown to guarantee producing near-uniform samples, while the latter
has been found to be less efficient but more accurate [256].
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Algorithm 1: Pool-based sampling on a pool of queries (P).

while true do
Q := a query is selected from P according to its cardinality;
R := the results are returned for query Q (Underflowing and
overflowing queries are rejected);
X := a document is sampled uniformly from R;
W := The number of queries from P that match X;
toss a coin with heads probability equal to 1

W ;
if heads then

break;

return X;

Proposed by Thomas and Hawking [256], Multiple queries sampler
runs several queries with a large cutoff and then selects a random
sample from the union of all documents returned for probe queries.
The authors also compared the efficiency and accuracy of several size
estimation methods on a set of personal metasearch testbeds.

Other works for estimating the size of text collections via queries
includes Ref. [21, 38, 119, 131, 145, 174, 175].

2.4 Updating Collection Summaries

The contents of collections may change in different ways. For example,
documents can be added, deleted or updated within a collection. Out-
of-date results can have a negative impact on how the user perceives
the search engine. Therefore, search engines constantly update their
indexes by crawling fresh documents to reduce inconsistencies between
their index and web documents [55].

One of the advantages of federated search compared to centralized
information retrieval is that the problem of fresh data is minimized.
The queries are submitted directly to collections that are assumed to
contain the latest version of documents. However, collection updates
must be reflected in the representation sets, otherwise, collection may
be selected based on their old data. Ipeirotis et al. [140] showed
how the vocabulary of collection representation sets can become less
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representative over time when it is not maintained through periodic
updates. Shokouhi et al. [228] showed that large collections require
more frequent updates.

2.5 Wrappers

An important but often ignored research topic in federated search liter-
ature is generating wrappers for collections. Wrappers are essential for
collection representation, as they define the interaction methods with
individual collections. There are at least three major issues in wrapper
generation: (1) collection detection, (2) collection connection and query
mapping, and (3) extracting records from search result pages.

Most existing federated search systems are given a set of collec-
tions to search in a close domain. However, in an open domain such
as the web, collections with search engines may dynamically appear or
disappear. Therefore, it is an important task to automatically detect
collections with independent search interfaces. Cope et al. [62] showed
how search engines interfaces can be identified based on their HTML
content. In particular, a decision tree algorithm is trained with a set of
features from the HTML markup language and some human judgments,
which can be used to identify new collections with search engines. More
recently, Barbosa and Freire [23] utilized a hierarchical identification
method that partitions the feature space and chooses learning classifiers
that best fit in each partition.

Federated search systems need to establish connections with local
collections for passing user queries. Previous research mostly focuses on
full text search engines, which often utilize HTTP (HyperText Transfer
Protocol) for creating connections and receiving queries and sending
results. The search engines of different collections often use text search
boxes with different HTTP request methods such as GET or POST. It
is often not difficult to manually establish search connections with an
unstructured full text search engine (e.g., via http link) or use simple
rule-based methods.

Extracting result records from the answer page returned by a search
engine is relatively difficult due to the diversity in result presenta-
tion styles [53]. Some federated search systems such as FedLemur [13]
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generate result templates and extract search results with manually com-
piled rules. RoadRunner [68] and EXALG [7] treat webpages as indi-
vidual strings. RoadRunner generates a result template by comparing
a couple of result pages, while EXALG analyzes a set of webpages.
Omini [40] and MDR [163] treat webpages as trees of HTML tags.
They assume that result records are located in data-rich sub-trees,
where a separator (i.e., an HTML tag) is used to segment the records.
For example, the MDR approach identifies multiple similar generalized
nodes of a tag node and the generalized nodes are further checked for
extracting one or multiple data records. The extension of the MDR
and ViNTs [287] approaches utilize both HTML tag information and
visual information to improve the accuracy of identifying data records.
Furthermore, the work in [289] automatically builds a search result
template with different fields such as title, snippet and URL from iden-
tified search results. While most existing methods assume that results
are presented in a single section, Zhao et al. [288] consider multiple
sections in search results (e.g., clustered results). More recently, Liu
et al. [166] proposed a new vision-based approach for extracting data
records that is not specific to any web page programming language.

2.6 Evaluating Representation Sets

In uncooperative environments where collections do not publish their
index statistics, the knowledge of the broker about collections is usu-
ally limited to their sampled documents. Since downloaded samples
are incomplete, it is important to test whether they are sufficiently
representative of their original collections.

Collection representation sets usually consist of two types of infor-
mation: vocabulary and term-frequency statistics. Callan and Con-
nell [42] proposed two separate metrics that measure the accuracy of
collection representation sets in terms of the vocabulary correspondence
and frequency correlations, as we now describe.

Measuring the vocabulary correspondence (ctf ratio). The
terms available in sampled documents can be considered as a subset
of all terms in the original collection. Therefore, the quality of samples



2.6 Evaluating Representation Sets 29

can be measured according to their coverage of the terms inside the
original collections. Callan and Connell [42] defined the ctf ratio as the
proportion of the total terms in a collection that are covered by the
terms in its sampled documents. They used this metric for measuring
the quality of collection representation sets. For a given collection c,
and a set of sampled documents Sc, the ctf ratio can be computed as:∑

t∈Sc
ft,c∑

t∈c ft,c
(2.8)

where ft,c represents the frequency of term t in collection c. For exam-
ple, suppose that collection c includes only two documents. Now assume
that the first document only contains two occurrences of “computer”
and six occurrences of “science”; and the second document consists of
two terms: “neural” and “science” each occurring only once. In total,
there are three unique terms in collection c, and the cumulative collec-
tion frequency value is 10. If only the first document is sampled from
the collection, the proportion of the total terms that are present in the
sample is 9

10 or 90%. Therefore, the impact of downloading a frequent
term on the final ctf is greater than the impact of downloading another
term that is less frequent, although it may be more representative.

Spearman rank correlation coefficient (SRCC). Callan and
Connell [42] suggested that the downloaded terms can be ranked
according to their document frequency values in both the samples and
the original collection. The correlation of these two rankings can be
computed using a statistical method such as the Spearman rank corre-
lation coefficient [205]. The stronger the correlation is, the more similar
are the term distributions in the samples and the original collection. In
other words, samples whose terms have a strong correlation with the
original index are considered as representative.

SRCC measures the intersection in vocabulary between collection
and representation. Therefore, when new terms are added, this often
weakens the correlation, and decreases the stability of term rankings.
Baillie et al. [18, 19] showed that SRCC is not always robust and reliable
because of this drawback.
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df1. Monroe et al. [190] suggested that the proportion of terms with
document frequency of one (df = 1) can be used for measuring the
completeness of samples. They also suggested that the rate of growth
of terms with df = 1 in the documents downloaded by query-based
sampling can be used to determine the termination point of sampling.
That is, downloaded documents are representative enough once the
number of df = 1 terms in two consequent samples becomes less than
a certain threshold.

Kullback–Leibler divergence (KL). Another approach for evalu-
ating the accuracy of collection representation sets is to compare their
language models with that of the original collections [18, 19, 138, 140].
Therefore, a KL-Divergence method [153] can be used for comparing
the term distribution (language model) of a collection with that of its
sampled documents:

KL(θ̂Sc |θ̂c) =
∑
t∈c

P (t|θ̂Sc) log
P (t|θ̂Sc)

P (t|θ̂c)
(2.9)

Here, θ̂Sc and θ̂c respectively represent the language models of sampled
documents and the original collection, and P (t|θ̂) is the probability of
visiting the term t, if it is randomly picked from a language model θ̂.
The KL values can range from 0 to ∞, where KL = 0 indicates that the
two language models are identical. Compared to the metrics discussed
previously, KL has been shown to be more stable and precise [18, 19].

Topical KL. Baillie et al. [20] proposed a topic-based measure for
evaluating the quality of collection representation sets (sampled doc-
uments). For each collection c, the authors utilized latent Dirichlet
allocation (LDA) [35] techniques to estimate the set of k term distri-
butions that represent the major themes covered by the collection. For
each generated topic T , the authors compared its term distribution θ̂T

with the language model of collection θ̂c and its sampled documents θ̂Sc .
That is:

p(θ̂T |θ̂c) =
1
|c|
∑
d∈c

p(θ̂T |d) (2.10)

p(θ̂T |θ̂Sc) =
1

|Sc|
∑
d∈Sc

p(θ̂T |d) (2.11)
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where Sc is the set of sampled documents from collection c. In the final
stage, the topical KL divergence between the a collection and its sam-
pled documents is used as a measure of quality for the representation
set, and is computed as follows:

TopicalKL(θ̂c|θ̂Sc) =
∑
T∈K

p(θ̂T |θ̂c) log
p(θ̂T |θ̂c)

p(θ̂T |θ̂Sc)
(2.12)

here K denotes the set of topics (term distributions) generated by LDA
for collection c. In summary, Equation (2.12) measures the quality of
sampled documents in terms of covering the major themes (topics) in
the collection.

Predictive likelihood (PL). Baillie et al. [17] argued that the pre-
dictive likelihood [76] of user information needs can be used as a metric
for evaluating the quality of collection samples. The PL value of sam-
pled documents verifies how representative it is with respect to the
information needs of users. In contrast to the previous methods that
measure the completeness of samples compared to the original index,
PL measures the quality of samples for answering queries. Collection
representation sets are compared against a set of user queries. Rep-
resentation sets that have high coverage of query-log terms produce
large PL values, and are more likely to satisfy user information needs
by routing queries to suitable collections. For a query log described as
set of n queries Q = {qi,j :1, ...,n;1, ...,m}, where qi,j represents the jth
term in the ith query, the predictive likelihood of the language model
of a sample S can be computed as follows:

PL(Q|θ̂S) =
n∏

i=1

m∏
j=1

P (t = qi,j |θ̂S) (2.13)

where P (t = qi,j |θ̂S) is the probability of visiting the term t from the
query log Q in the language model of sample S.

Precision. The evaluation techniques described so far all measure
the representation quality in isolation of the core retrieval task. Alter-
natively, the quality of collection representation sets can be measured
by their impact on collection selection [50, 139] or final downstream
performance [229, 236].
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2.7 Summary

Collection representation sets are the main information source used by
the broker for collection selection and result merging. The degree of
comprehensiveness for collection representation sets often depends on
the level of cooperation between collections and the broker.

Early work in collection representation mainly focused on cooper-
ative environments, and utilized manually-generated metadata. The
STARTS [111] protocol and its variants require each collection to
provide the query language, ranking method, and important corpus
statistics. This type of solutions work well with full cooperation from
available collections. However, they are not appropriate for uncooper-
ative environments.

Query-based sampling methods [42] have been proposed to obtain
information such as term frequency statistics in uncooperative feder-
ated search environments. These methods send probe queries to get
sample documents from individual collections in order to build approx-
imated collection representation sets. Different variants of query-based
sampling techniques use different types of probe queries and stopping
criteria for generating the representation sets.

The sizes of available collections have been used in many collection
selection algorithms as an important feature for ranking collections.
Different techniques have been proposed to automatically estimate the
collection size in uncooperative environments. The majority of these
methods analyze a small number of sampled documents from collections
to estimate their size.

It is important to keep collection representations up to date in
order to make accurate selection decisions. Therefore, updating policies
should obtain reasonably accurate collection representation given lim-
ited communication and computing resources. We provided an overview
of prior research on updating policies for collection representation sets.

An important but often ignored issue in federated search is building
wrappers to automatically send queries and extract result records from
individual collections. It is often not difficult to identify the method of
sending queries for searching full text search engines. However, the task
of extracting result records is more complicated, and several methods
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have been proposed to utilize features such as HTML tags and visual
contents to achieve this goal.

Several metrics have been proposed to evaluate the quality of collec-
tion representations. The ctf ratio [42] evaluates vocabulary coverage
by sampled documents. The SRCC metric [42] measures the consis-
tency of term rankings with respect to document frequency in sam-
pled documents and the original collection. The KL divergence metric
[20, 138, 140] treats the distributions of terms (or topics) in the sam-
pled documents and the original collection as two probabilistic language
models, and considers the distance between the language models as a
sample quality measure. The PL technique [18] takes a further step by
measuring the quality of sampled documents for answering user queries.
Collection representation sets can be also evaluated according to their
impact on collection selection and final performance [50, 139, 229, 236].

In the next section, we discuss the previous work on collection
selection.
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Collection Selection

The first step after receiving a query in federated search is to select
suitable collections. Once a query is entered, the broker ranks collec-
tions and decides which collections to select and search (Figure 3.1).
Due to resource constraints such as bandwidth limits, it is usually not
feasible to search all collections. Therefore, the broker often selects
only a subset of available collections that are likely to return relevant
documents.

This section provides an overview of previous work in the area of
collection selection.

3.1 Lexicon-based Collection Selection

Early collection selection strategies treat collections as a big bag of
words and rank them according to their lexicon similarity with the
query [24, 25, 46, 74, 83, 85, 86, 110, 111, 115, 275, 285, 290]. In these
techniques, the broker calculates the similarity of the query with the
representation sets by using the detailed lexicon statistics of collec-
tions. In uncooperative environments where collections do not share
their lexicon information, these statistics can be approximated based

34
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Fig. 3.1 The collection selection process. The broker receives the user query and selects the
subset of available collections that it considers most likely to return relevant documents.

on their sampled documents (See Section 2 for an overview of sampling
techniques).

GlOSS. The initial version of GlOSS [113] — also known as
bGlOSS — only supports Boolean queries. In bGlOSS, collections are
ranked based on their estimated number of documents that satisfy the
query. The bGlOSS method was designed for cooperative environments
and thus, the collection size values and term frequency information were
assumed to be available for the broker. Overall, bGlOSS estimates the
number of documents containing all the m query terms as:∏m

j=1 ftj ,c

|c|m−1 (3.1)

where ft,c represents the frequency of term t in collection c, and |c|
denotes the total number of terms in the collection. In the vector-space
version of GlOSS (vGlOSS) [115], collections are sorted according to
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their goodness values, defined as:

Goodness(q, l, c) =
∑

d∈Rank(q,l,c)

sim(q,d) (3.2)

where sim(q,d) is the Cosine similarity [215, 216] of the vectors for
document d and query q. In other words, the goodness value of a col-
lection for a query is calculated by summing the similarity values of
the documents in the collection. To avoid possible noise produced by
low-similarity documents, vGlOSS uses a similarity threshold l.

As with bGlOSS, the broker is provided with information about the
lexicon statistics of collections. For any given term t, the broker stores
(1) dft, the number of documents in each collection that include that
term, and (2) wt the sum of weights for t over all documents in each
collection. However, this information does not contain statistics about
the term weights in each document which are necessary for computing
the Cosine similarity values. Therefore, two versions of vGlOSS are
proposed, based on the following assumptions:

• High correlation: If query terms t1 and t2 appear in col-
lection c, respectively in dft1,c and dft2,c documents (where
dft1,c < dft2,c), then any document that contains t1, also con-
tains t2. Therefore, in a collection c, all the documents that
contain the term t have the same weight equal to wt,c

dft,c
. The

high correlation scenario is also known as the Max(l) version.
• Disjoint: If query terms t1 and t2 appear in collection c, then

none of the documents indexed by c contains both terms. The
disjoint scenario is also known as the Sum(l) version.

Max(l) increases recall by searching more collections, while Sum(l)
produces higher precision values.

CORI. The CORI collection selection algorithm [41, 46] calculates
belief scores of individual collections by utilizing a Bayesian inference
network model with an adapted Okapi term frequency normalization
formula [214]. CORI is related to the INQUERY ad-hoc retrieval algo-
rithm [262, 263]. In CORI, the belief of the ith collection associated
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with the word t, is calculated as:

T =
dft,i

dft,i + 50 + 150 × cwi/avg cw
(3.3)

I =
log
(

Nc+0.5
cft

)
log(Nc + 1.0)

(3.4)

P (t|ci) = b + (1 − b) × T × I (3.5)

where dft,i is the number of documents in the ith collection that contain
t; cft is the number of collections that contain t; Nc is the total number
of available collections; cwi is the total number of words in the ith
collection, and avg cw is the average cw of all collections. Finally, b is
the default belief, which is usually set to 0.4. The belief P (Q|ci) is used
by the CORI algorithm to rank collections. The most common way to
calculate the belief P (Q|ci) is to use the average value of the beliefs of
all query terms, while a set of more complex query operators are also
available for handling structured queries [41].

CVV. Cue-validity variance (CVV) was proposed by Yuwono and
Lee [285] for collection selection as a part of the WISE index
server [284]. The CVV broker only stores the document frequency infor-
mation of collections, and defines the goodness of a given collection c

for an m-term query q as below:

Goodness(c,q) =
m∑

j=1

CVVj × dfj,c (3.6)

where dfj,c represents the document frequency of the jth query term
in collection c and CVVj is the variance of cue-validity (CVj) [109] of
that term. CVc,j shows the degree that the jth term in the query can
distinguish collection c from other collections and is computed as:

CVci,j =

dfj,ci
|ci|

dfj,ci
|ci| +

∑Nc
k �=i dfj,ck∑Nc
k �=i |ck|

(3.7)

Here, |ck| is the number of documents in collection ck and Nc is the
number of collections. The variance of cue-validity CVVj is defined as:

CVVj =
∑Nc

i=1(CVci,j − CVj)2

Nc
(3.8)
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where CVj is the average CVci,j over all collections and is defined as:

CVj =
∑Nc

i=1 CVci,j

Nc
(3.9)

Other lexicon-based methods. Several other lexicon-based col-
lection selection strategies have been proposed; Zobel [290] tested
four lexicon-based methods for collection selection. Overall, his Inner-
product ranking function was found to produce better results than
the other functions such as the Cosine formula [14, 216]. CSams
[274, 281, 282] uses the global frequency, and maximum normalized
weights of query terms to compute the ranking scores of collections.

Si et al. [248] proposed a collection selection method that builds
language models from the representation sets of available collections
and ranks collections by calculating the Kullback–Leibler divergence
between the query model and the collection models.

D’Souza and Thom [83] proposed an n-term indexing method, in
which a subset of terms from each document is indexed by the bro-
ker. A comparative study [85] between the lexicon-based methods
of Zobel [290], CORI [46], and n-term indexing strategies on TREC
newswire data, suggested that the performance of collection selection
methods varies on different testbeds, and that no approach consistently
produces the best results.

Baumgarten [24, 25] proposed a probabilistic model [212, 213] for
ranking documents in federated search environments. Sogrine et al. [250]
combined a group of collection selection methods such as CORI and CVV
with a latent semantic indexing (LSI) strategy [75]. In their approach,
instead of the term frequency information of query terms, elements of an
LSI matrix are used in collection selection equations.

Lexicon-based collection selection techniques are analogous to
centralized IR models, but documents are now collections. In these
approaches, the document boundaries within collections are removed,
whichmaypotentially affect the overall performance of suchmodels [242].

3.2 Document-surrogate Methods

Document-surrogate methods are typically designed for uncooperative
environments where the complete lexicon information of collections
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is not available. However, these techniques could be also applied in
cooperative environments. Document-surrogate methods do not rank
collections solely based on the computed similarities of queries and rep-
resentation sets, but they also use the ranking of sampled documents
for collection selection. This is a step away from treating collections as
large single documents or vocabulary distributions (as in lexicon-based
methods), and somewhat retains document boundaries.1

ReDDE. The relevant document distribution estimation (ReDDE)
collection selection algorithm [242] was designed to select a small num-
ber of collections with the largest number of relevant documents. To
achieve this goal, ReDDE explicitly estimates the distribution of rele-
vant documents across all the collections and ranks collections accord-
ingly. In particular, the number of documents relevant to a query q in
a collection c is estimated as follows:

R(c,q) =
∑
d∈c

P (R|d)P (d|c)|c| (3.10)

where P (d|c) is the prior probability of a particular document d in this
collection, and |c| denotes the number of documents in collection c.
In uncooperative federated search environments, ReDDE can utilize
different methods described in Section 2 to obtain the size estimates.
P (R|d) is the estimated probability of relevance for document d.

In uncooperative federated search environments, it is not practical
to access all individual documents in available collections. Therefore,
ReDDE regards sampled documents as representative, in which case
Equation (3.10) can be approximated as:

R(c,q) ≈
∑
d∈Sc

P (R|d)
|c|
|Sc| (3.11)

where Sc is the set of sampled documents from collection c. The idea
behind this equation is that when one sampled document from a collec-
tion is relevant to a query, it is expected that there are about |c|/|Sc|
1 Unless specified otherwise, we assume that collections and their representation sets only
contain text documents. In vertical search environments, it is common to have collections
with different media types, and some of the described techniques may not be applicable
without modification.
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similar documents in the original collections that are also relevant.
P (R|d) represents the probability of relevance of an arbitrary sampled
document with respect to q. Calculating the probability of relevance
given a query–document pair is a fundamental problem in informa-
tion retrieval and despite various studies [201, 154], it is still an open
problem. In ReDDE, the probability of relevance of a document is
approximated according to its position in the ranked list of all sam-
pled documents. For this purpose, the broker in ReDDE creates an
index of all sampled documents from all collections (CSI). For each
query, the broker ranks all sampled documents, and assumes that this
ranking approximates the centralized ranking of all documents indexed
by all collections (CCI).

ReDDE considers a constant positive probability of relevance (α)
for the top-ranked documents in CCI. Formally, this can be represented
as below:

p(R|d) =
{

α, if rCCI(d) < β
∑

i |ci|
0, Otherwise

(3.12)

here |ci| denotes the number of documents in collection ci, and β is
a percentage threshold, which separates relevant and irrelevant doc-
uments. While the optimal value of β may vary from collection to
collection, the prior research [242] set it to 0.003 and obtained robust
performance on several datasets. rCCI(d) represents the position of doc-
ument d in the centralized ranking of all documents from all collections.
In federated search environments, the knowledge of the broker about
the documents indexed by collections is often very limited and hence,
obtaining the CCI ranking may not be practical. Therefore, the broker
approximates the CCI ranking by running the query on a centralized
index of all sampled documents (CSI), as follows:

rCCI(d) =
∑

dj :rCSI(dj)<rCSI(d)

|cj |/|Scj | (3.13)

where cj represents the collection from which dj is sampled, and |Scj |
is the number of sampled documents from that collection. Using Equa-
tions (3.12) and (3.13), the number of relevant documents in a col-
lection (R(c,q)) can be estimated. The ReDDE algorithm utilizes the
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estimated distribution of relevant documents to rank all collections, and
to select a subset containing the largest number of relevant documents.

Goodness(c,q) =
R(c,q)∑
i R(ci, q)

(3.14)

ReDDE makes collection selection decisions by analyzing the top-
ranked sampled documents and estimating the distribution of relevant
documents in collections. Different variants of ReDDE have emerged
which weight the top-ranked sampled documents and estimate the
probability of relevance in different ways. We cover four of these vari-
ants (UUM [245], RUM [241], CRCS [226] and SUSHI [259]) in more
details later in this section. Furthermore, similar algorithms have been
developed in the TREC Blog Track,2 where the task is to select a small
number of most relevant blogs for a user query. For instance, Elsas
et al. [89], and Seo and Croft [222] proposed blog selection algorithms
inspired by the same principle to select blogs that contain the largest
number of relevant postings.

CRCS. As in ReDDE [242], the broker in the centralized-rank col-
lection selection method (CRCS) [226] runs the query on a centralized
index of all sampled documents (CSI), and ranks collections accord-
ingly. However, in contrast to ReDDE, CRCS considers different impor-
tance for sampled documents according to their ranks. In CRCS, the
contribution of a sampled document d to the score of its original col-
lection c is computed according to the position of d in the CSI ranking.
In the simplest form (CRCS-LIN), this can be computed linearly as:

R(d) =
{

γ − rCSI(d), if rCSI(d) < γ

0, otherwise
(3.15)

where rCSI(d) represents the impact of document d at the jth position of
the results returned by the centralized index of all sampled documents.
Parameter γ specifies the number of top-ranked documents in CSI that
are considered as relevant, and was set to 50 by Shokouhi [226]. The

2 The Text REtrieval Conference (TREC) is an international collaboration that provides
large datasets to participants for large-scale evaluation of information retrieval systems.
More information about the TREC datasets can be found at http://trec.nist.gov/
data.html.
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impact of documents decreases linearly according to their ranks. Shok-
ouhi [226] also proposed CRCS-EXP, a variant in which the importance
of documents drops exponentially as follows:

R(d) = αexp(−β × rCSI(d)) (3.16)

Parameters α and β were suggested to be set to 1.2 and 0.28 respec-
tively [259]. The remaining is similar to ReDDE; for a given query q,
CRCS calculates the goodness (weight) of each collection as:

Goodness(c,q) =
|ci|

|cmax| × |Sc| ×
∑
d∈Sc

R(d) (3.17)

where |c| is the — estimated — size of collection c. Shokouhi [226]
normalized the collection sizes by dividing the size of each collection
by the size of the largest collection involved (|cmax|). The number of
documents sampled from collection c is represented by |Sc|. Overall, the
final score of each collection is calculated by summing up the impact
values for its sampled documents.

The exponential version of CRCS (CRCS-EXP) has been reported
to produce slightly better results compared to the linear form (CRCS-
LIN) on TREC collections [226, 255].

SUSHI. Most of the collection selection techniques described so far
assume fixed cutoff values. That is, the number of collections that are
selected for all queries is the same. Thomas and Shokouhi [259] relaxed
this assumption in SUSHI. The authors fitted several curves to the
score distribution of sampled documents in order to verify the number
of collections that should be selected for a query. The authors showed
that SUSHI can achieve comparable performance to ReDDE and CRCS
on TREC testbeds, while selecting fewer collections.

UUM, RUM. The ReDDE algorithm follows a high-recall goal to
select a small number of collections with the largest number of relevant
documents. However, the high-recall goal may not be preferred in all
federated search applications. For example, for a federated document
retrieval application, the main goal might be high precision and max-
imizing the number of relevant documents in the top part of the final
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merged ranked lists. The unified utility maximization framework (i.e.,
UUM) was proposed by Si and Callan [245] to adjust the goal of collec-
tion selection to maximize the utility of different types of applications
(e.g., high recall or high precision).

Compared to ReDDE, the unified utility maximization framework
provides a more formal method for estimating the probabilities of rele-
vance of documents in distributed collections with the cost of requiring
training information. UUM first builds a logistic transformation model
using a small number of training queries that maps the centralized doc-
ument scores from CSI to the corresponding probabilities of relevance.
In the second stage, UUM estimates the probabilities of relevance of
all (mostly unseen) documents in collections using the sampled docu-
ment scores and deploying the trained mapping function. Finally, based
on these probabilities, collections are ranked by solving different util-
ity maximization problems according to the high-precision goal or the
high-recall goal depending on the application.

Similar to all collection selection techniques described so far, UUM
makes a strong assumption that all the collections are using effective
retrieval models. However, collections may be associated with ineffec-
tive retrieval models in many real world applications (e.g., [13]). Hence,
ignoring the search engine effectiveness factor can seriously degrade
the performance of collection selection in practice. The returned utility
maximization (i.e, RUM) method was proposed by Si and Callan [241]
to address this issue. The RUM method measures the effectiveness of
collection retrieval models by first sending a small number of sample
queries and retrieving their top-ranked documents. RUM learns rank
mapping models by investigating the consistency between the ranked
lists of individual collections, and the corresponding lists generated by
an effective centralized retrieval algorithm on the same set of docu-
ments. In the collection selection stage, collections are ranked accord-
ing to the number of relevant documents that they are expected to
return.

DTF. The decision-theoretic framework (DTF) [98, 99, 100] aims to
minimize the typical costs of collection selection such as time and cost,
while maximizing the number of relevant documents retrieved. As in
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UUM, the search effectiveness of collections can be learned by using a
set of training queries in advance.

DTF was initially suggested as a promising method for selecting
suitable collections. However the method had not been tested in feder-
ated search environments until Nottelmann and Fuhr [195] showed that
the effectiveness of DTF can be competitive with that of CORI for long
queries on TREC testbeds. However, for short queries, DTF is usually
worse than CORI. DTF and CORI were later combined in a single
framework [197]. The hybrid model still produced poorer results than
CORI for shorter queries, but competitive results for longer queries.

DTF requires a large number of training queries, but has one of
the most solid theoretical models among available collection selec-
tion techniques. It combines costs (monetary, network) along with
relevance into a decision-theoretic framework, and has been used in
a few real-world federated retrieval applications such as the MIND
project [32, 194, 196].

The document-surrogate methods discussed in this section assume
that sampled documents from available collections are comparable (e.g.,
through document retrieval scores). This assumption may be problem-
atic when collections contain information in different media (e.g., image
or video). This was a key motivation for introducing more sophisticated
supervised techniques for collection selection that we will cover in the
next section.

3.3 Classification (or clustering)-based Collection Selection

The query clustering techniques often identify a set (or a cluster)
of most similar training queries with respect to a testing query, and
model the distribution of relevant documents by analyzing the infor-
mation learned from the training queries. Voorhees et al. [266] proposed
two techniques for learning the number of documents that should be
retrieved from each collection for a query. In their first approach for
modeling relevant document distribution (MRDD), the authors learn
the topical relevance of collections by sending them a number of train-
ing queries and analyzing the number of relevant documents returned
by each collection. In the testing phase, each query is compared to all
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the queries in the training set. The set of k most similar training queries
(according to the vector space model [216]) are extracted and then used
to predict the performance of each collection for the test query.

In their second approach known as the query clustering (QC) [266],
training queries are clustered based on the number of common docu-
ments they return from collections. A centroid vector is generated for
each cluster and the testing queries are compared against all available
centroid vectors. The final weight of each collection is computed accord-
ing to its performance on the past training queries for the top-ranked
clusters.

Similarly, Cetinta et al. [51] learn from the performance of past
training queries to rank collections for unvisited queries. Each query
is compared against the set of all past queries. Collections are ranked
according to the weighted average of their performance for the most
similar past queries. The similarity value for each query pair is com-
puted with respect to a centralized index of sampled documents.
Queries that return similar ranked lists are regarded as similar. In addi-
tion, the performance of collections for past queries is approximated
according to the positions of their documents in a centralized ranking
of sampled documents. Hence, the suggested approach does not rely on
relevance judgements for training queries.

In a series of papers, Ipeirotis and Gravano [137, 138, 139] pro-
posed a classification-aware technique for collection selection. The
authors assign collections to the branches of a hierarchical classifica-
tion tree according to the terms in their sampled documents. Each
branch represents a topical category and may be related to several col-
lections. The term statistics of collection representation sets are prop-
agated to generate the category summaries. For collection selection,
the broker compares the query against the category summaries, and
sends the query to the collections of the categories with the highest
scores.

Collection selection can be regarded as a classification (or cluster-
ing) problem, in which the goal is to classify (cluster) collections that
should be selected for a query.

Formally, for a set of training queries Q, and a set of target col-
lections C, a classification-based collection selection function F can be
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defined as follows [8]:

F :Q × C → {+1,−1} (3.18)

where the query-collection label is set to +1 if the collection is relevant,
and is set to −1 if not. Several techniques have been proposed based on
this analogy recently [9, 78]. Arguello et al. [9] proposed a classification-
based approach for vertical selection trained based on three types of
features: (1) query string features, which analyze key phrases used
in requests for specific verticals; (2) corpus features, which are based
on the ranking of sampled documents in collection representation sets
using various text matching techniques such as ReDDE (3) query-log
features, which utilize evidence from past queries issued to specific ver-
ticals. They showed that their classification-based collection selection
can outperform standard federated search baselines on an aggregated
search testbed with 18 verticals. A similar approach was taken for col-
lection selection over three simulated federated search testbeds [8]. Diaz
and Aguello [78] showed how vertical selection can be tuned in the pres-
ence of user feedback. The same authors explored domain adaptation
techniques for improving classification-based vertical selection in the
presence of unlabeled data in a more recent work [79].

While most existing collection selection algorithms (e.g., CORI,
ReDDE or other classification-based methods) focus on the evidence
of individual collections to determine the relevance of available col-
lections, the work by Hong et al. [134] considers a joint probabilistic
classification model that estimates the probabilities of relevance in a
joint manner by considering the relationship among collections.

3.4 Overlap-aware Collection Selection

Management of duplication across collections can be done at either
or both of the collection selection and result merging stages. At the
collection selection stage, an overlap-aware algorithm can select a set
of collections that contain a large number of unique relevant documents.
For such an approach to be effective, the rate of overlap between the
underlying pairs of collections must be accurately estimated in advance;
small estimation errors may lead to the loss of many relevant documents
located in the ignored collections.
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Hernandez and Kambhampati [133] introduced COSCO for manage-
ment of duplicates at selection time. The system estimates the overlap
between different bibliographic collections and avoids selecting pairs
of servers that appear to have high overlap for a query. They use
CORI [46] as a benchmark and show that COSCO finds more unique
relevant documents for a given selected number of collections.

Shokouhi and Zobel [231] estimated the rate of overlap between
collections based on the intersection of their sampled documents. They
showed that the estimated values can be used to prevent ReDDE from
selecting collections with high overlap at the same time (F-ReDDE).
They also proposed Relax, an overlap-aware method that selects col-
lections that are expected to maximize the number of unique relevant
documents in the final results.

3.5 Other Collection Selection Approaches

Rasolofo et al. [207] ranked collections according to the quality
of the top-ranked documents they return. The approach suggested by
the authors does not require collection representation sets. Instead,
the query is sent to all collections and the top-ranked documents
returned by collections are indexed by the broker. In the final step,
the broker computes the similarity of these documents to the query
and ranks collections accordingly.

Abbaci et al. [1] proposed a collection selection method that can be
described in two steps. First, the query is passed to all collections, and
using the approach suggested byLawrence andGiles [158], the snippets of
the top n answers returned by each collection are downloaded. In the sec-
ond step, the broker measures the similarity of the query with the top n

downloaded documents. Collections whose corresponding downloaded
documents have the highest similarities with the query are selected.

Similar to Si and Callan [241], Craswell et al. [64] considered
the search effectiveness of collections for collection selection. In their
approach, the broker sends a number of training multi-term probe
queries to collections. The top results from each collection are down-
loaded and are gathered in a single index. The broker then applies an
effective retrieval model to rank the downloaded documents for the



48 Collection Selection

initial training queries. The search effectiveness of collections are com-
puted according to their contribution to the top n (they suggested
n = 20) results when the query is compared against the downloaded
documents. Experiments showed that adding the effectiveness factor to
CORI can significantly improve its final search precision. Estimating
the search effectiveness of online search engines has been also consid-
ered by Rasolofo et al. [208]. They have used the approach suggested
by Craswell et al. [64] to approximate the effectiveness of a set of news
search engines for their metasearch experiments.

Larson [156, 157] introduced a logistic regression approach for collec-
tion selection. The author trained a logistic regression function based
on several term statistics and collection size features to predict the
probability that a collection has at least one relevant document for the
query. The results on TREC data suggested that ranking collections
based on these probabilities can be as effective as using CORI.

Xu and Croft [276] suggested a collection selection technique based
on document clustering and language modeling. They used the k-means
clustering algorithm [141] for clustering documents based on their top-
ics, and utilized the KL-Divergence equation [154] for comparing the
queries with representation sets and ranking collections. They showed
that when collections are clustered and generated based on their top-
icality, federated search systems can outperform centralized indexes
in terms of search effectiveness. However, Larkey et al. [155] showed
that in heterogeneous environments, where collections are not clustered
based on their topicality, the performance of the suggested collection
selection algorithm decreases and becomes worse than CORI. Similar
observations have been reported by Shen and Lee [225]. The major
difference between their work and the approach reported by Xu and
Croft [276] is that Shen and Lee [225] used a form of TF-IDF for com-
puting the text similarities [216], while Xu and Croft [276] utilized the
KL-Divergence instead. In addition, Xu and Croft [276] divided the
global information into clustered collections, while Shen and Lee [225]
clustered the content of each collection.

A two-stage language modeling approach is proposed by Yang and
Zhang [279, 280] for collection selection. First, collections are clus-
tered in a hierarchical structure. The query is then compared against
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available clusters. Once the suitable clusters for a query are found, the
most relevant collections in those clusters are selected by a language
modeling technique.

King et al. [147] proposed an ontology-based method for collection
selection. In their approach, queries are initially mapped to an ontology
tree. The queries are then expanded by the associated terms in the
ontology-based classification tree. The expanded queries are found to
be more effective than the original queries for collection selection.

In a series of papers [184, 274, 281, 282] a collection selection
method has been proposed that ranks collections according to the esti-
mated global similarity of their most similar documents by using cross-
collection inverse document frequency statistics.

Hawking and Thistlewaite [124] suggested using lightweight probe
queries to rank collections. The broker sends a number of n-term
probe queries to each collection (n = 2 was suggested by the authors).
Collections return small packets of term frequency information to the
broker. The broker then ranks collections according to the term fre-
quency information provided in packets. Probe queries are picked from
the query terms according to their document frequency factors in a ref-
erence collection. Once the promising collections are recognized — by
comparing the answers returned for the probe queries — the original
query is passed to the top-ranked collections.

Wu and Crestani [270, 271] proposed a multi-objective collection
selection strategy. Similar to the approach suggested by Fuhr [99], they
used a utility function that can be optimized according to different
factors such as document relevance, query time, query cost and dupli-
cation among collections. However, Wu and Crestani [270, 271] have
not provided evaluation results for their method in terms of the final
search effectiveness.

Finally, Thomas and Hawking [258] provided a comparative empir-
ical study of collection selection techniques for personal metasearch.

3.6 Evaluating Collection Selection

Metrics for evaluating collection selection methods are usually recall-
based. That is, collection selection techniques are compared according
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to the number of relevant documents available in selected collections
[86, 85, 114, 242].

Binary precision-recall. Gravano et al. [114] assumed that any col-
lection with at least one matching document for a query q is a right
collection for that query. They defined Right(q) as the set of all col-
lections that contain at least one matching answer for the query q.
Assuming that the number of matching documents in the k selected
collections is represented by δk, the precision and recall values for col-
lection selection can be computed as in Equations (3.19) and (3.20)
[110, 114]:

Pk = Precision =
δk ∩ Right(q)

δk
if δk > 0 (3.19)

Rk = Recall =
δk ∩ Right(q)

Right(q)
if Right(q) > 0 (3.20)

Precision (Pk) is the proportion of selected collections that contain at
least one matching document, and recall (Rk) is the fraction of right
collections that are selected. These binary metrics may be suitable for
evaluating collection selection techniques in relational databases. How-
ever, for unstructured text retrieval, where Boolean matching is a poor
indicator of relevance, more sophisticated metrics are required. There-
fore, a modified version of Equation (3.20) was suggested [112, 115]. In
this version, the optimal baseline Right(q) consists of collections whose
approximated goodness values are higher than a pre-defined threshold.
Further information about how goodness values are approximated, can
be found in Section 3.1.

The recall metric for collection selection was later formalized in a
more general form [94, 96, 203]:

Recall = Rk =
∑k

i=1 Ωi∑k
i=1 Oi

(3.21)

where
∑k

i=1 Ωi and
∑k

i=1 Oi are respectively the total number of rel-
evant documents available in the top k collections selected by a col-
lection selection method, and an optimal baseline. We describe current
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baselines for collection selection later in this section. Sogrine et al. [250]
combined the precision Pk and recall Rk values in a single metric called
max Fk as:

maxFk = max
k

2
1

Rk
+ 1

Pk

(3.22)

The authors compared collection selection methods according to their
maxFk values for all possible values of k. They also compared the
discounted cumulative gain [143] of collection selection rankings with
an optimal baseline.

French and Powell [94] introduced R̂k, a modified version of Rk [113],
in which only collections with non-zero weights are considered. The
modified recall metric is defined as:

R̂k =
∑k

i=1 Ωi∑k∗
i=1 Oi

(3.23)

where k∗ is the number of collections with non-zero weights, and k is
the number of collections that are selected. In a similar methodology,
Zobel [290] suggested the use of the number of relevant documents in
selected collections for comparing collection selection methods. Thomas
and Shokouhi [259] showed that R̂k does not always correlate with other
metrics such as precision.

Mean square error (MSE). Callan et al. [46] measured the mean
square error (MSE) of collection selection methods against an optimal
baseline. For a given query q, the effectiveness of a collection selection
ranking Ω can be computed as follows:

1
Nc

×
∑
i∈C

(Oi − Ωi)2 (3.24)

Here, Nc shows the total number of collections; while Ωi and Oi repre-
sent the positions of the ith collection respectively in the rankings of
a collection selection method and an optimal baseline. In the optimal
ranking — as will be discussed later in Section 3.6.1 — collections are
ranked according to the number of relevant documents they contain.
Rankings with low MSE values are considered to be effective.
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Spearman rank correlation coefficient (SRCC). The applica-
tion of SRCC for measuring the quality of collection samples was pre-
viously discussed in Section 2.6. A simplified version of the Spearman
rank correlation coefficient has been suggested for comparing the rank-
ings produced by collection selection methods with that of an optimal
baseline [94, 95, 202, 203]:

SRCC = 1 − 6
∑Nc

i=1(Oi − Ωi)2

Nc(Nc
2 − 1)

(3.25)

here Nc is the total number of collections, while Ωi and Oi are respec-
tively the positions of the ith collection in the rankings of a collection
selection technique, and a baseline method.

3.6.1 Collection Selection Baselines

Collection selection has a wide variety of baselines. French and Pow-
ell [94] suggested a random collection selection baseline for analyzing
the worst-case behavior of selection methods. The random selection
baseline has been also used by Craswell et al. [64] as a worst-case
baseline for collection selection. Count-based ranking (CBR) [94] is a
Boolean baseline that ranks collections according to their numbers of
matching answers for queries. Since containing the query terms is not
usually enough for a document to be relevant, CBR does not necessarily
rank collections according to their number of relevant documents. Gra-
vano and Garćıa-Molina [112] defined an ideal ranking baseline Ideal(l)
for collection selection. In Ideal(l), first the similarity values of a query q

with documents in all collections are computed. Collections are then
ranked according to the number of documents with similarity values
greater than l, where l is a predefined threshold. Ideal(l) has been also
used as a baseline for collection selection [94, 97, 115, 285].

Relevance-based ranking (RBR) is the most common baseline for
evaluating collection selection methods [41, 82, 85, 86, 94, 97, 115, 202,
203, 204, 242, 245, 240]. In RBR, collections are ranked according to
the number of relevant documents that they contain for queries.

Zobel [290] introduced a baseline that sorts collections according
to their number of highly ranked documents. For a given query, he
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considered highly ranked documents as the top answers returned by a
centralized monolithic index of all collections.

Another common baseline for collection selection methods is the
ranking of collections according to the number of documents they con-
tain [82, 85, 86, 95, 202, 203, 290]. Compared to other collections, larger
collections are more likely to contain relevant documents due to their
greater size. This is known as the size-based ranking (SBR). The SBR
baseline is query independent and does not explicitly take relevance
into consideration.

3.7 Summary

The goal of collection selection techniques is to select a subset of
collections that are more likely to return relevant documents. Early
collection selection methods rank collections by calculating the lexical
similarity of a query with collection representation sets. Most lexicon-
based methods such as GlOSS [113] and CORI [46] treat collection rep-
resentation sets as bags of words. These methods ignore the document
boundaries, which limits their performance particularly in uncooper-
ative environments. Document-surrogate collection selection methods
such as ReDDE [242] step away from treating each collection as a single
big document. Most of these approaches create an index of all sampled
documents from different collections. They rank collections according
to the ranking of their sampled documents for the query. More recently,
classification-based collection selection methods have been proposed to
directly estimate the probabilities of relevance of collections for a user
query based on supervised learning.

Several metrics have been proposed for evaluating the performance
of collection selection methods. Most metrics are recall-oriented. That
is, they compare the performance of any collection selection algorithm
with that of an oracle baseline that ranks collections according to their
number of relevant documents.

We provide an overview of result merging techniques in the next
section.



4
Result Merging

The last step in a typical federated search session is result merging
(Figure 4.1). In result merging, the broker receives the top-ranked
answers of selected collections and orders them in a single list for pre-
sentation to the user.

This section describes the previous work on result merging and
briefly covers some of the related areas such as data fusion and
metasearch merging.

4.1 Federated Search Merging

In a federated search environment, collections may use different
retrieval models and have different ranking features. Thus, the doc-
ument scores or ranks returned by multiple collections are not directly
comparable and are not reliable for merging. The goal of result merg-
ing algorithms is to calculate a global score for each document that is
comparable to the scores of documents returned by other collections.

4.2 Terminology

Federated search merging, metasearch merging (collection fusion), and
data fusion are similar but not identical concepts.

54
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 Broker

Collection results

Merged results

User

Collections

Fig. 4.1 The result merging process; selected collections return their top-ranked answers to
the broker. The broker then merges those documents and returns them to the user.

In federated search merging, the top-ranked results returned for the
query by different collections are blended into a single list. Most feder-
ated search merging techniques assume that the rate of overlap among
collections is either none or negligible.

In data fusion, the query is sent to a single collection but is
ranked by multiple retrieval models. The rankings generated by dif-
ferent retrieval models are then merged to produce the final result list
[11, 12, 71, 92, 159, 160, 193, 199, 264, 265, 273].

Metasearch and federated search have been often used interchange-
ably. However, we only use metasearch when referring to metasearch
engines described in Section 1.2.3.

This section summarizes the previous work on federated search
merging. We also provide a brief overview of data fusion and metasearch
techniques.

4.3 Federated Search Merging

The main task in result merging is to compute comparable scores
for documents returned by different collections. When available, the
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document scores reported by collections can be used by the broker to
compute the merging scores. In environments where document scores
are not reported by collections, merging methods assign pseudoscores to
the returned answers. For example, when 1000 documents are returned
from a collection, the scores of the first-ranked document is set to 1,
the next is set to 0.999, and so on [208, 244].

CORI merging. The CORI result merging formula [41, 46] is a lin-
ear combination of the collection selection scores and the document
scores returned by collections. CORI uses a simple heuristic formula
to normalize collection-specific document scores. First, associated with
the CORI collection selection algorithm, the collection scores are nor-
malized as:

C ′ =
C − Cmin

Cmax − Cmin
(4.1)

where C is the collection selection score of collection c, computed by the
CORI collection selection algorithm [41, 46] (more detailed information
of CORI collection selection can be found in Section 3.1). C ′ denotes
the normalized score of C ranging between [0,1]. Cmin and Cmax are
calculated by setting the T component in Equation (3.5) to 0 and 1
respectively. The collection-specific document scores are normalized in
a similar manner.

For a document returned with score D from a collection with nor-
malized collection selection score of C ′, CORI computes the final merg-
ing score as:

D′ =
D + 0.4 × D × C ′

1.4
(4.2)

CORI merging formula uses heuristic weighting schemes such as
weight 1 for normalized document score and weight 0.4 for normalized
collection selection score in Equation (4.2). The heuristic weighting
scheme strongly limits the performance of CORI merging as it may not
adapt to different types of queries and collections.

SSL. Si and Callan [243, 244] proposed a semi-supervised learning
(SSL) method for result merging. SSL trains a regression model for
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each collection that maps document scores into their global (merging)
scores. For this purpose, SSL creates a central index of all sampled
documents downloaded from collections (CSI). For a given query, some
of the documents that are returned from the collections may already be
available in the central sample index. SSL runs the query against CSI
and compares the centralized scores of such overlap sampled documents
with the scores (or pseudoscores) reported by collections to compute
the merging scores.

When collections use an identical retrieval model, SSL can use all
overlap documents to train a single model that converts the collection-
specific scores into global scores. In such a scenario for the jth over-
lap document di,j returned from a selected collection ci, SSL uses two
scores: the score reported by the original collection (Di,j) and the score
computed using CSI (Ei,j).

D1,1 C1D1,1

D1,2 C1D1,2

. . . . . . . . .

Dn,m CnDn,m

 × [a b] =


E1,1

E1,2

. . .

En,m

 (4.3)

Using the Di,j and Ei,j values of the overlap documents, SSL trains a
single regression model as:

D′
i,j = a × Ei,j + b × Ei,j × Ci (4.4)

where Ci is the selection score of collection ci that has returned docu-
ment di,j . The combining parameters a and b can be estimated using a
sufficient number of overlap documents. Si and Callan [244] suggested
that at least three overlap documents are required for training the SSL
models.

When the retrieval models used in collections are not identical, SSL
cannot train a single model that converts the outputs of all collec-
tions into global scores. The scores returned by collections may have
different ranges. For example, KL-Divergence language modeling [154]
produces negative weights (likelihood values), while INQUERY [4, 45]
produces positive weights between zero and one (probabilities of rele-
vance). Therefore, for each collection a separate model is trained that
maps the scores returned from different collections to global values.
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That is,

D′
i,j = ai × Ei,j + bi (4.5)

For a given document di,j from collection ci, D′
i,j is the estimated

global score and Ei,j is the score of di,j reported by collection ci. The
values for ai and bi can be obtained by training a regression matrix for
each collection as follows:

D1,1 1
D1,2 1
. . . 1

Dn,m 1

 × [ai bi] =


E1,1

E1,2

. . .

En,m

 (4.6)

Since a separate model is trained for each collection according to
its returned answers, the likelihood of visiting an overlap document in
the downloaded samples (training data) is lower than under the SSL
single-model. Therefore, the broker may need to receive longer result
lists from collections or download some documents on the fly [244].

SAFE. SAFE (sample-agglomerate fitting estimate) [232] is designed
to work with minimum cooperation between the broker and collections.
SAFE uses the scores of all documents in agglomeration of all the col-
lection samples, and generates a statistical fit to estimate scores. SAFE
does not rely on the presence of overlap documents and is based on the
following principle: for a given query, the results of the sampled docu-
ments is a subranking of the original collection, so curve fitting to the
subranking can be used to estimate the original scores.

Similar to SSL, SAFE also utilizes a centralized index of sampled
documents from all collections to calculate the merging scores. SAFE
merging can be summarized in three steps: first, the broker ranks the
documents available in the centralized sample index (CSI) for the query.
Second, for each collection, the sampled documents that received non-
zero scores in the first step are used to estimate the merging scores.
SAFE employs collection size estimations (see Section 2.3) to adjust
the scores of sampled documents. Each sampled document is assumed
to be representative for |c|/|Sc| documents in the collection, where |Sc|
and |c| respectively denote the number of documents in the sample, and
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collection. That is, the sampled documents are assumed to be uniformly
selected from the collection. Although previous studies suggested that
the documents downloaded by query-based sampling are not uniformly
sampled [22, 34, 101, 235, 256], Shokouhi and Zobel [232] empirically
suggested that the performance of SAFE is not significantly affected
by that assumption.

In the final step, SAFE uses the regression techniques [118] to fit
a curve to the adjusted scores, and to predict the scores of the top-
ranked — unseen — documents returned by each collection. Since the
estimated scores for all documents are computed with reference to the
same corpus (CSI), they are comparable across different collections.

In contrast to SSL, SAFE does not rely on overlap documents
between CSI and the results returned by collection. Therefore, it is
suitable for environments in which downloading documents on the fly
is restricted.

4.4 Multilingual Result Merging

Most existing federated search research methods focus on the environ-
ments where all documents in collections are in the same language.
However, in some federated search applications collections may con-
tain documents in different languages (e.g., patent databases). There-
fore, it is important to extend monolingual result merging techniques
for multilingual environments.

The majority of previous work on merging multilingual ranked lists
have been conducted in the Cross-Language Evaluation Form (CLEF).1

The problem of merging multilingual ranked lists is similar to feder-
ated search result merging. Simple score normalization methods are
not effective, and some methods download all retrieved documents and
translate the documents into a single language for ranking.

Si et al. proposed an approach similar to SSL for merging mul-
tilingual result lists [246, 247]. Their method downloads a subset of
top-ranked documents from each ranked list and utilizes a multilin-
gual centralized retrieval algorithm for calculating comparable scores

1 http://www.clef-campaign.org/, accessed on 17 Aug 2010.
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for the small set of downloaded documents. The multilingual central-
ized retrieval method in their approach performs both query translation
and document translation for computing comparable merging scores.
The query translation method converts queries into different languages
and applies monolingual retrieval methods to documents in individ-
ual languages. The document translation method is complementary to
query translation method and translates all the documents into a sin-
gle language (e.g., English). The final comparable document scores are
obtained by combining scores from the query translation and the doc-
ument translation methods.

The standard SSL method uses a linear regression model to map
scores from individual collections to global scores. The multilingual
result merging approach [246, 247] was tested with both logistic regres-
sion and linear regression models, and the logistic model was found to
produce more robust results.

4.5 Merge-time Duplicate Management for
Federated Search

Management of within-collection redundancy has been a subject of
active research, with a range of techniques having been proposed
[31, 36, 39, 90, 179]. However, management of redundancy between
collections as in the case of federated search is subject to additional
constraints. In particular, since collections are not centrally managed,
it may not be practical to use a pre-processing approach to redundancy
management; rather, it must occur at query time based on additional
document information transmitted to the broker. Thus, management
of near-duplicate documents is highly sensitive to both time (because
it must be done on the fly) and bandwidth.

ProFusion [105], MetaCrawler [221], and Grouper [286] attempt
to eliminate duplicate documents from the final results, by aggregat-
ing results that point to the same location according to their URLs.
However, the elimination of near-duplicate documents has not been
addressed by these techniques.

Bernstein et al. [30] proposed using the grainy hash vector (GHV)
for detecting duplicate and near-duplicate documents during merging.
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GHV is a derivation of the minimal-chunk sampling techniques [90],
that operate by parsing documents into strings of contiguous text,
known as chunks, and comparing the number of identical chunks shared
by a pair of documents.

Shokouhi et al. [233] tested GHV on three federated search testbeds
with overlapped collections, and showed that GHV can be used effec-
tively for detecting and removing duplicate documents from the merged
results. In uncooperative environments where GHV vectors may not be
provided, other duplicate management techniques may be used instead
(See Section 3.4).

4.6 Other Papers on Result Merging

In the STARTS protocol [111], collections return the term frequency,
document frequency, term weight, and document score information of
each returned answer to the broker. Kirsch [148] suggested that each
collection return the term frequencies, document frequencies, and the
total number of indexed documents to the broker. In such methods,
documents are merged according to their calculated similarities based
on the statistics received by the broker.

As in CORI result merging, Rasolofo et al. [207] calculated the final
score of a document by multiplying the document score and collection
score parameters. In their approach, document scores are reported by
collections, and collection scores are calculated according to the number
of documents that are returned by each collection for queries. This is
based on the assumption that collections returning a greater number of
results for a query are more likely to contain relevant documents. The
same approach has been used by Abbaci et al. [1] for merging.

D-WISE merging [285] calculates the merging scores according to
the goodness values of collections, and the positions of documents in
collection ranked lists. The authors assume that the difference in rel-
evance scores between two consecutive documents in the ranked list
returned by a collection is inversely proportional to the normalized
goodness value of that collection.

Craswell et al. [67] partially downloaded the top returned documents
(say the first 4 KB of each document) and used a reference index of
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term statistics for reranking and merging the downloaded documents.
They showed that the effectiveness of their approach is comparable to
that of a merging scenario where documents are downloaded completely
and the actual term statistics are used.

Xu and Croft [276] utilized a version of INQUERY [4, 45] that uses
the global inverse document frequency values to calculate the final score
of documents for merging. The basic requirement for this approach,
is that collections provide the broker with the document frequency
information of their terms.

Wang and Dewitt [268] used the PageRank [37] of returned docu-
ments for merging. In their approach, the final PageRank of a page d

returned by a selected collection c is computed according to the esti-
mated ServerRank of c and the computed LocalRank of d inside c. For
calculating the rank values for d and c, the link information of all pages
in collections is required.

Shou and Sanderson [237] proposed two result merging methods
without downloading the full-text information of returned documents.
The first method re-ranks merged results by using a centralized search
engine on text fragments (e.g., titles and snippets) returned from indi-
vidual collections. The second method examines how similar a returned
document is to other returned documents.

Voorhees et al. [266] suggested two collection fusion methods based
on previous training data, where their goal was to determine the num-
ber of documents that have to be fetched from selected collections. In
their first approach, the number of relevant documents returned by
each collection for the training queries is investigated. The similarities
of testing queries with the previous queries are measured, and the k

most similar training queries are selected to compute the average prob-
abilities of relevance for different collections. The number of documents
fetched from each collection for merging varies according to their prob-
abilities of relevance.

In their second approach, Voorhees et al. [266] clustered the training
queries based on the number of common documents they return from
collections. A centroid vector is calculated for each cluster and the
testing queries are compared with all available centroid vectors. For
a given query, the weights of collections are computed according to
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their performance for previous training queries in the same cluster. The
number of documents that are fetched from collections is proportional
to their weights.

In aggregated search environments with different data types, result
merging is relatively more challenging and less explored. The merging
score computed for a document of a given type (say video), not only
should be comparable to the scores of other documents with the same
type, but also to the scores of documents with other types (e.g., image).
Click-through rate has been suggested and used as a suitable measure
for this task [77, 149]. However, due to various sources of presentation
bias the focus has been mostly devoted on blending vertical results at
fixed positions. In a recent study, Shushmita et al. [238] have investi-
gated the impact of presenting the vertical results at different positions
on the page on the clickthrough and user perception.

4.6.1 Data Fusion and Metasearch Merging

In data fusion, documents in a single collection are ranked according to
different ranking functions or features. Therefore, metasearch engines
can be regarded as special form of data fusion systems where the col-
lection being ranked contains the entire web.2

Several algorithms have been used commonly in both areas. The
simplest merging algorithm is the round-robin strategy [217], in which
it is assumed that collections have similar search effectiveness and sim-
ilar number of relevant documents. The results returned by multiple
collections (or retrieval models) are merged according to their ranks.
That is, the top-ranked documents of all collections are merged first,
followed by the second-ranked documents and so forth.

When a document is returned by more than one collection,
several combination methods, including CombMNZ, CombSum, Comb-
Max, and CombMin, have been proposed for calculating the final
scores [92, 93]. In CombMax, the maximum score reported for a

2 Note that this is a strong assumption given that the documents indexed by one engine
might be missed by another. In addition, some metasearch engines might not be designed
to cover the entire web.
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duplicate document is used as its final score for merging. CombMin uses
the minimum score of a duplicate document for merging. CombSum
adds all the reported scores for a duplicate document, while CombMNZ
adds all the reported scores and then multiplies the total sum by the
number of collections that have returned that document. In most of
these methods, therefore, documents that are returned by multiple
collections are ranked higher than the other documents. These meth-
ods have been used widely in both data fusion and collection fusion
(metasearch merging) experiments (e.g., [186]) and thus we do not clas-
sify them specifically under any of these categories.

Data fusion. In data fusion methods, documents in a single collec-
tion are ranked with different search systems. The goal in data fusion
is to generate a single accurate ranked list from the results returned by
different retrieval models. There are no collection representation sets
and no collection selection.

Data fusion methods are based on a voting principle, where, for
a given query, a document returned by many search systems should
be ranked higher than the other documents. In addition, data fusion
strategies should take the rank of documents into account. A document
that has been returned on top of three ranking lists is intuitively more
likely to be relevant than a document that has appeared at low positions
in four ranking lists.

Aslam and Montague [11] divided data fusion methods into four
categories according to their training and scoring functions (train-
ing versus no training, and relevance scores versus ranks only). They
showed that, when training data is available, the effectiveness of data
fusion methods using only ranks can be comparable to those that use
document scores reported by the individual systems.

A comparison between score-based and rank-based methods is pro-
vided by Renda and Straccia [210, 211] suggesting that rank-based
methods are generally less effective. Lillis et al. [160] divided each rank-
ing into segments with different scores. The final score of a document
is calculated according to its rank and segment number. Shokouhi [227]
and Lillis et al. [161] suggested different ranked list segmentation strate-
gies for more effective fusion.
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Metasearch merging. In metasearch merging, the results returned
by multiple search engines — with overlapping indexes — are combined
in a single ranked list.

The D-WISE system [284] uses the ranks of retrieved documents for
merging. The Inquirus system [108, 158] computes the merging scores
after the full contents of the retrieved results are fetched. A similar
approach has been suggested by Yu et al. [282].

Rasolofo et al. [208] described a metasearch merging method for
combining the results returned from multiple news search engines. They
suggested that the title, date, and summary of the results returned by
search engines can be used effectively for merging. Snippet information
is also used by the Mearf metasearch engine [176, 199, 261] for merging
the results returned by different sources.

Glover and Lawrence [107] proposed a method for calculating the
confidence values of relevance predictions for the returned snippets.
When the returned snippets are found to be not sufficiently informa-
tive, additional information such as link statistics or the contents of
documents are used for merging. Savoy et al. [217] and Calvé and
Savoy [48] applied logistic regression [135] to convert the ranks of
documents returned by search engines into probabilities of relevance.
Documents are then merged according to their estimated probabilities
of relevance.

In shadow document methods for result merging [272], the docu-
ment scores returned by multiple search engines are normalized by a
regression function that compares the scores of overlapped documents
between the returned ranked lists. In the SavvySearch metasearch
engine [81], document scores returned by each search engine are nor-
malized into a value between zero and one. The normalized scores of
overlapped documents are summed for computing the final score.

In metasearch merging, voting plays an important role for calculat-
ing the final rank of a document. Documents that are returned by many
search engines are likely to rank highly in the final merged list. In the
absence of overlap between the results, most metasearch merging tech-
niques become ineffective. For example, methods such as CombMNZ
and CombSum [92, 93, 159] that are used in metasearch engines such
as SavvySearch [81] degrade to a simple round-robin approach [217].
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4.7 Evaluating Result Merging

Result merging techniques are usually compared according to the num-
ber of relevant documents in the final merged results [41, 46, 52, 67,
207, 208, 244].

Counting correct matches. Chakravarthy and Haase [52] used the
total number of queries that return at least one relevant answer in the
top n results for comparing result merging methods.

Precision. Precision is the most commonly used metric for evalu-
ating the effectiveness of federated search merging. It has been used
in different forms such as mean average precision [67, 207, 208], and
precision at different cutoff ranks (P@n) [41, 46, 208, 244].

The application of precision for evaluating federated search systems
is not only limited to the result merging stage. Collection selection
and representation methods can be also evaluated according to their
impact on precision. The precision-oriented methods discussed in this
section have been also used for evaluating the performance of collection
selection and collection representation methods [41, 64, 125, 195, 197,
198, 207, 240, 241, 242, 245, 275, 276].

Result merging (search effectiveness) baselines. Federated
search techniques, particularly in uncooperative environments, cannot
access the complete term statistics of collections. Therefore, an effec-
tive centralized search engine that has indexed all available documents
in collections (using complete term statistics) is often used as an oracle
baseline for federated search systems [63, 64, 169, 172, 198, 260, 266,
267, 275, 276]. Hawking and Thistlewaite [124] referred to the rankings
of documents returned by the oracle index as correct merging. They
also defined perfect merging as an unrealistic ranked list that contains
all relevant documents before all irrelevant documents.

In the majority of published related work, the effectiveness of the
oracle centralized baseline has been reported to be higher than that of
federated search alternatives. However, there are some exceptional cases
in which federated search systems have been reported to outperform
centralized baselines. For example, Xu and Croft [276] suggested that,
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if documents are partitioned into homogeneous collections by clus-
tering and individual collections use the same retrieval models with
identical lexicon statistics, then federated search methods can produce
better precision values compared to the centralized baselines. Similarly,
Craswell et al. [64] suggested that merging the results from a few col-
lections that contain the highest number of relevant documents for a
query, can be more effective than running the query on the oracle cen-
tralized index. However, finding collections with the highest number of
relevant documents is still an open question.

4.8 Summary

The goal of result merging in federated search is to combine the rank-
ing lists from multiple collections into a single list. This is a challenging
task due to differences in retrieval models and lexicon statistics of indi-
vidual collections that make the document scores reported by different
collections less comparable. Result merging algorithms try to map the
scores/pseudoscores from collections into comparable scores for merging.

Result merging algorithms can rely on the document scores and
other important information reported by collections to merge the
results. For example, the CORI algorithm [41, 46] calculates the nor-
malized document scores with the cooperation of individual collections.
SSL [243, 244] utilizes regression techniques to build models that trans-
form scores from individual collections to comparable scores. The SAFE
merging method [232] goes a step further by relaxing the requirements
of overlapped documents in the SSL algorithm.

Result merging in federated search is closely related to the areas of
data fusion and metasearch merging. The majority of data fusion and
metasearch merging techniques favor documents that are returned by
multiple retrieval models or collections.

Federated search merging methods have been often evaluated by
precision-oriented techniques. Furthermore, the centralized retrieval
results of all available documents in collections have been commonly
considered as an oracle baseline for merging algorithms.

In the next section, we describe the commonly used federated search
testbeds.
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Federated Search Testbeds

The relative effectiveness of federated search methods tends to vary
between different testbeds [86, 242]. Therefore, it is important to
describe detailed information of experimental testbeds for reliable anal-
ysis of current federated search techniques. This section is devoted to
the discussion of testbeds that have been proposed for federated search
experiments.

In typical federated search testbeds, collections are disjoint and do
not overlap. The descriptions of a few commonly used testbeds are
provided below.

SYM236 & UDC236. SYM236 [95, 97, 202, 203] includes 236 col-
lections of varying sizes, and is generated from documents on TREC
disks 1–4 [121, 122]. UDC236 [95, 203], also contains 236 collections,
and is generated from the same set of documents (i.e., TREC disks
1–4). The difference is only in the methodology used for assigning doc-
uments to collections. In UDC236, each collection contains almost the
same number of documents; in SYM236, documents are distributed
between collections according to their publication date, generating
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collections with different sizes.1 SYM236 and UDC236 are both created
from 691,058 documents — an average of 2,928 documents per col-
lection — which is significantly smaller than many federated search
testbeds developed more recently. Therefore, they are no longer suitable
for simulating large-scale federated search environments with today’s
standards. More details about the attributes of SYM236 and UDC236
can be found elsewhere [82, 202, 203].

trec123-100col-bysource (uniform). Documents on TREC
disks 1, 2, and 3 [121] are assigned to 100 collections by publication
source and date [41, 203, 242, 244]. The TREC topics 51–150 and their
corresponding relevance judgements are available for this testbed. The
<title> fields of TREC queries have been more commonly used for
federated search experiments on this testbed, although description and
narrative fields are also available.

trec4-kmeans. A k-means clustering algorithm [141] has been
applied on the TREC4 data [122] to partition the documents into 100
homogeneous collections [276].2 The TREC topics 201–250 and their
corresponding relevance judgements are available for the testbed. These
queries do not contain the <title> fields, and the <description> fields
have been mainly used instead.

trec123-AP-WSJ-60col (relevant). This and the next two
testbeds have been generated from the trec123-100col-bysource (uni-
form) collections. Documents in the 24 Associated Press and 16 Wall
Street Journal collections in the uniform testbed are collapsed into
two separate large collections. The other collections in the uniform
testbed are as before. The two largest collections in the testbed have
a higher density of relevant documents for the corresponding TREC
queries compared to the other collections.

1 SYM236 and UDC236 testbeds can be downloaded from: http://www.cs.virginia.edu/
˜cyberia/testbed.html, accessed on 17 Aug 2010.

2 The definitions of uniform and trec4 testbeds are available at: http://boston.lti.cs.
cmu.edu/callan/Data/, accessed on 17 Aug 2010.
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trec123-2ldb-60col (representative). Collections in the uniform
testbed are sorted by their names. Every fifth collection starting with
the first collection is merged into a large collection. Every fifth collection
starting from the second collection is merged into another large collec-
tion. The other 60 collections in the uniform testbed are unchanged.

trec123-FR-DOE-81col (nonrelevant). Documents in the 13
Federal Register and 6 Department of Energy collections from the
uniform testbed are merged into two separate large collections. The
remaining collections remain unchanged. The two largest collections in
the testbed have lower density of relevant documents for the TREC
topics compared to the other collections.

The effectiveness of federated search methods may vary when the
distribution of collection sizes is skewed or when the density of rele-
vant documents varies across different collections [242]. The latter three
testbeds can be used to evaluate the effectiveness of federated search
methods for such scenarios. More details about the trec4-kmeans, uni-
form, and the last three testbeds can be found in previous publications
[202, 203, 239, 242, 244, 276].

Among the disjoint data collections described so far, the uniform
testbed (and its derivatives: relevant, nonrelevant, representative), and
the trec4-kmeans testbed are the most commonly used [41, 169, 198,
203, 226, 229, 230, 232, 241, 242, 244, 245, 248, 259].

GOV2 testbeds. In recent years, larger datasets have become
publicly available to account for the growth in the size of real-life col-
lections. The GOV2 dataset [57] is a crawl of about 25 million “.gov”
webpages. Several federated search testbeds have been produced based
on the GOV2 data. Shokouhi [226] split the documents from the largest
100 crawled hosts — in terms of the number of crawled documents —
into 100 separate collections. Similarly, Arguello et al. [8] generated
their gov2.1000 testbed based on the largest 1000 hosts in GOV2.
Arguello et al. [8] created gov2.250 and gov2.30 by sampling docu-
ments from the hosts in GOV2 and clustering the hosts accordingly in
respectively 250 and 30 collections.
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Overall, the GOV2 testbeds are many times larger than the
previously discussed alternatives, and are more realistic for simulat-
ing large-scale federated search experiments.

Other testbeds. Several other federated search testbeds with dis-
joint collections have been generated based on the TREC newswire
documents [46, 85, 124, 188, 275, 276, 290]. In most of these datasets,
the partitioned collections are either similar in size or the document
publication source/date.

The first federated search testbed generated from the crawled web
documents was proposed by French et al. [95]. They divided the TREC6
VLC dataset [123] into 921 collections according to the document
domain addresses. Similarly, Craswell et al. [64] divided the TREC
WT2G dataset [126] into 956 collections according to the domain
addresses of documents. Rasolofo et al. [207] proposed two testbeds cre-
ated from the TREC8 and TREC9 (WT10G) [16] datasets, respectively
containing four and nine collections. In a similar study [1], documents
available in the WT10G dataset were divided into eight collections for
evaluating collection selection experiments.

Hawking and Thomas [125] created a hybrid testbed based on doc-
uments available in the TREC GOV dataset [65]. Using a document
classifier, the authors managed to find the Homepages of 6294 servers
in the TREC GOV dataset, from which 1971 (31%) had a search inter-
face. The authors allocated the documents from each of these servers
into separate collections. They gathered all non-searchable servers into
a large crawled collection. Therefore, in total, their hybrid testbed is
comprised of 1972 collections.

Thomas and Hawking [258] created an artificial testbed for personal
metasearch. Their testbed included collections generated from a pub-
lic mailing list, a personal mailbox and calendar, plus text collections
generated from the TREC data. More details about their testbed can
be found elsewhere [255].

In standard federated search testbeds, there is often no overlap
among collections [203, 244]. However, in practice, a significant pro-
portion of documents may overlap between collections. Shokouhi et al.
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[231, 234] created five new testbeds with overlapping collections based
on documents available in the TREC GOV dataset.

5.1 Summary

It is important to investigate the effectiveness of different federated
search methods on a variety of testbeds. Most existing testbeds contain
disjoint collections, while some recent testbeds share overlapped docu-
ments among their collections. A common strategy to create federated
search testbeds is to partition different TREC corpora into many col-
lections. This approach has several advantages: many queries and corre-
sponding relevant judgements have been provided for these testbeds; it
is possible to create testbeds with many collections of various sizes, the
experimental results are reproducible by other researchers. The main
disadvantage of such testbeds is that they may not represent real-life
federated search environments.

Realistic testbeds such as those used in the FedLemur project [13]
are more suitable for investigating the performance of federated tech-
niques in practice. However, access to such testbeds is often restricted
to a small number of groups or organizations.

The next section concludes the paper and suggests directions for
future research.



6
Conclusion and Future Research Challenges

Web search has significantly evolved in recent years. For many years,
web search engines such as Google and Yahoo! were only providing
search service over text documents. Aggregated search was one of the
first steps to go beyond text search, and was the beginning of a new era
for information seeking and retrieval. These days, web search engines
support aggregated search over a number of verticals, and blend dif-
ferent types of documents (e.g., images, videos) in their search results.
Moreover, web search engines have started to crawl and search the
hidden web [178].

Federated search (a.k.a federated information retrieval), has played
a key role in providing the technology for aggregated search and crawl-
ing the hidden web.

The application of federated search is not limited to the web search
engines. There are many scenarios such as digital libraries in which
information is distributed across different sources/servers. Peer-to-peer
networks and personalized search are two examples in which federated
search has been successfully used for searching multiple independent
collections (e.g., [168, 255]).
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In this work, we provided a review of previous research on federated
search. This section summarizes the materials we covered, and points
out a few directions for future research.

6.1 The State-of-the-art in Federated Search

Research on federated search can be dated back to the 1980s [182]. Since
then, substantial progress has been made in different sub-problems of
federates search.

Collection representation. The representation set of each collec-
tion, may contain information regarding its size, contents, query lan-
guage as well as other key features that can be used by the broker
during collection selection and result merging.

Early research demanded human-generated metadata for collection
representation sets. More robust approaches rely on statistical meta-
data. In cooperative environments, collections are required to provide
their vocabularies and corpus statistics upon request. In the absence
of cooperation between collections and the broker, query-based sam-
pling [42] is used to generate collection representation sets. In query-
based sampling, several probe queries are submitted to the collection
and the returned results are collected to generate the collection repre-
sentation set.

Different variants of query-based sampling methods have been pro-
posed to acquire accurate collection content representation efficiently.
Adaptive sampling techniques [17, 50, 229] choose sample size for each
collection with respect to vocabulary growth in sampled documents, or
the predicted ratio of collection documents that are sampled. In focused
probing [137], the sampling queries are selected from the categories
of a hierarchical classification tree, and collections can be classified
according to the number of results they return for each category. The
shrinkage technique [138] improves the comprehensiveness of collec-
tion representation by assuming that topically related collections share
many terms. Since out-of-date representation sets may no longer be rep-
resentative of their corresponding collections, Ipeirotis et al. [140] and
Shokouhi et al. [228] proposed several techniques for modeling content
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changes and updating collection representation sets in federated search
environments.

The collection size statistics have been used in many collection selec-
tion algorithms as important parameters (e.g., ReDDE [242]). In the
sample–resample method [242], the collection size is estimated by com-
paring the term frequencies of the sampled documents with the entire
collection. Capture–recapture methods such as CH and MCR [235] esti-
mate the size of collections by sampling. Alternatives such as pool-based
sampling [22], and multiple-queries sampling [256] can provide better
estimations at the cost of running more sampling queries.

Collection selection. For each query, the broker often selects a sub-
set of collections that are more likely to return relevant documents.
Selecting more collections not only causes extra efficiency costs, but also
may not even improve the performance [259]. Early collection selection
methods treated each collection as a big document or a lexicon distri-
bution, and used different variations of traditional document ranking
algorithms to rank them with respect to the query (e.g., [46, 285]).
However, recent research has demonstrated that ignoring the document
boundaries in the big document approach may lead to low effectiveness,
particularly in environments that have skewed distribution of collection
size [242]. Motivated by this observation, a new family of document-
surrogate collection selection methods have been proposed that explic-
itly estimate the goodness/usefulness of individual documents in col-
lections [226, 242]. These methods have been shown to obtain more
robust results on a wide range of testbeds.

The utility-based collection selection techniques are another group of
selection methods that can be used in the presence of training data [241,
245]. Such techniques can model the collection search effectiveness, and
can be optimized for high precision or recall.

Result merging. Once the selected collections return their top-
ranked results, the broker compares them and ranks them in a sin-
gle list for presentation to the user. Result merging is a difficult task;
different collections may use different retrieval algorithms and have
different lexicon statistics. Therefore, the document scores reported
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by different collections are often not directly comparable. Early result
merging methods [41] either used simple heuristics to rank returned
documents, or downloaded the returned documents for calculating com-
parable scores [67]. Recent methods tried to approximate comparable
document scores in more accurate and efficient way. For example, SSL
[244] uses the overlap between the top-ranked results returned by col-
lections and their sample documents to compute comparable scores for
merging. The SAFE algorithm [232] assumes that the ranking of sam-
pled documents is a sub-ranking of the original collection and applies
curve fitting to the subranking to estimate the merging scores.

Federated search testbeds. Construction of valuable testbeds is
one of the most important contributions of previous research on fed-
erated search. These testbeds serve the purpose for evaluating the rel-
ative effectiveness of different federated search algorithms. The trend
is to construct testbeds with more collections, larger amount of data
and more heterogeneous collection statistics, that better simulate large-
scale real world federated search environments.

Most of the current testbeds have been constructed by split-
ting TREC newswire or TREC web collections based on different
criteria. Many early testbeds are constructed with uniform or moder-
ately skewed collection statistics (e.g., similar number of documents or
similar amount of relevant documents in each collection), while recent
testbeds are more diverse.

6.2 Future Research Challenges

Despite recent advancements in all aspects of federated search, there
are many opportunities for further improvements.

Beyond bag of words. The majority of previous work on federated
search use only basic bag of words features. Utilizing the power of
clicks, anchor-text and link-graph features is a promising next step for
federated search. Early attempts have shown encouraging results for
integrating these signals.

Hawking and Thomas [125] showed that the anchor-text can be
a useful feature for ranking distributed collections. Arguello et al. [8]
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used clicks as a features in their classification-based collection selection
method. Yu et al. [283] combined text similarity and linkage infor-
mation for collection selection. Wang and Dewitt [268] described how
PageRank can be computed over distributed collections.

Query expansion for federated search. Query expansion tech-
niques have been widely used to improve the retrieval effective-
ness of ad-hoc information retrieval with centralized search engines
[80, 187, 277]. In the context of federated search however, query
expansion techniques have made little success [198, 230]. Global query
expansion techniques send the same expanded query to all collections.
Alternatively, the expansion terms can be generated specifically to a
collection (or a cluster of collections). Collection-specific expansion
terms can be less vulnerable to topic drift, but are generated based
on smaller feedback collections that may affect their quality.

Classifying the queries for local/global expansion, or expansion/not-
expansion are potential directions for future work.

Classification-based collection selection. The problem of select-
ing suitable collections for a query can be regarded as a classification
task. Given the query, the output of the classifier indicates the selection
decisions for individual collections.

Classification-based collection/vertical selection techniques are the
latest generation of collection selection methods. The best paper awards
at WSDM091 and SIGIR092 conferences were given to papers on
classification-based vertical selection [9, 77]. Arguello et al. [8] have
recently proposed and tested the first classification-based collection
selection framework on three typical federated search testbeds gener-
ated from the TREC GOV2 documents. The authors showed that the
classification-based selection techniques can outperform the state-of-
the-art methods such as ReDDE [242].

Classification-based federated search is still a new area of research
and can be extended and explored in many ways. For example, it may

1 http://wsdm2009.org, accessed on 17 Aug 2010.
2 http://sigir2009.org, accessed on 17 Aug 2010.
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be worthwhile to investigate the application of such frameworks for
result merging. In addition, it would be interesting to combine the ear-
lier work of Ipeirotis and Gravano [139] on topically classifying collec-
tions with existing classification-based collection selection techniques
in a hybrid framework.

Optimized merging. The common goal between existing federated
search merging techniques is to compute comparable scores for the
documents returned for selected collections. Early techniques [41] were
using the normalized document and collection scores to compute the
final score of a document. More recent techniques such as SSL [244]
and SAFE [232] use linear regression and curve fitting over the score
distribution of sampled documents to compute the merging scores. The
common neglected fact is that accurate comparable scores do not neces-
sarily optimize precision or any other metric that is used for evaluating
the final retrieval. Developing merging techniques that can be opti-
mized for different evaluation metrics can be considered as a direction
for future investigation.

Merging becomes more challenging in scenarios such as aggregated
search in which different types of results are blended into a single list.
Although vertical selection has been recently discussed in the literature
[9, 77, 78], studies such as the recent work by Shushmita et al. [238] on
merging results from different verticals are fairly rare.

Evaluating federated search. Different stages of federated search
such as collection selection and collection representation are generally
evaluated by different metrics. Collection representation techniques are
often evaluated according to the comprehensiveness of their represen-
tations sets, and collection selection and result merging methods can
be evaluated based on the quality of their final merged results. How-
ever, the effectiveness of each stage also depends on the performance
of previous stages. For example, it is not possible to compare the effec-
tiveness of different merging methods, when the selected collections do
not contain relevant documents. Therefore, modeling the relationship
between different stages of federated search for evaluation is an impor-
tant direction for future research.
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Very large scale federated search. Most existing federated search
systems deal with a relative small number of collections that ranges
from a few dozen to a few thousand. However, in 2007 it was estimated
that there were about 25 millions of text data collections on the web
[177]. To design federated search systems in such environments, it is
important to design extremely scalable solutions for collection selection
and result merging. Furthermore, it is also important to build fully
automatic collection detection and result extraction solutions that can
deal with dynamic environments, where independent collections are
often subject to change.

Federated search in other contexts. Federated search techniques
have been successfully utilized in different areas.

Lu and Callan [170, 173] applied federated search collection repre-
sentation and collection selection techniques in peer-to-peer full text
search applications.

Thomas and Hawking [257, 258] pioneered the application of
federated search techniques in personal metasearch. Carman and
Crestani [49] proposed some preliminary ideas for personalized fed-
erated search. For example, a personalized QBS approach can sample
more documents from the specific areas that a user is interested in. In
a similar project,3 individual users may have personal bias for informa-
tion from different collections. This type of information can be useful
for both collection selection and result merging.

Elsas et al. [89] and Seo and Croft [222] used federated search col-
lection selection techniques for blog site search. In federated search the
goal is to select collections with relevant documents, while in blog site
search the goal is to identify blogs with relevant posts.

While most federated search techniques focus on textual similarity
functions and features, there are more and more recent web collections
that contain multimedia data (e.g., image and video) and demand new
types of features and ranking functions. The work by Berretti et al. [32]
selects image databases with abstract data that reflects the representa-
tive visual features of each visual database. The authors merge retrieved

3 http://www.cs.purdue.edu/homes/lsi/Federated_Search_Career_Award.html, accessed
on 17 Aug 2010.
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images from distributed image collections with a learning approach that
maps image retrieval scores assigned by different collections into nor-
malized scores for merging. The learning approach is similar to the
SSL result merging for text data except that Berretti et al. [32] use a
set of sample queries for creating training data in learning the score
mappings.

In summary, improvements in federated search solutions will
directly impact the above and many other applications.
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[112] L. Gravano and H. Garćıa-Molina, “Generalizing GlOSS to vector-space
databases and broker hierarchies,” in Proceedings of the 21st International
Conference on Very Large Data Bases, (U. Dayal, P. Gray, and S. Nishio, eds.),
pp. 78–89, Zurich, Switzerland: Morgan Kaufmann, 1995. ISBN 1-55860-379-4.
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