CS630 Representing and Accessing Digital Information

Text Clustering

Thorsten Joachims Cornell University

Based on slides from Prof. Claire Cardie, Prof. Ray Mooney, Prof. Yiming Yang

Introduction to Document Clustering

Text classification

- Supervised method for partitioning documents into groups according to pre-defined categories
- Requires labeled data for training

• Document clustering

- Unsupervised method for partitioning documents into groups when no pre-defined categories/classes are available
- Discovers new categories of document in an unsupervised manner

Text Clustering

- Clustering of Text
 - Task definition
 - Application settings
- Document clustering approaches
 - Similarity measure
 - Clustering algorithm
 - · Hierarchical agglomerative clustering
 - K-means
- Evaluation

Clustering

- Partition unlabeled examples into disjoint subsets of *clusters*, such that:
 - Examples within a cluster are similar
 - Examples in different clusters are different
- Discover new categories in an *unsupervised* manner (no sample category labels provided).

Applications of Document Clustering

- Event detection from news streams
 - TDT = topic detection and tracking
 - TREC track beginning in late 1990's

TDT1 corpus: CNN & Reuters news stories, Jan-Feb 1995

- size top-ranking words per cluster
- 330 republ clinton congress hous amend
- 217 simpson o presecut trial jury
- 98 israel palestin gaza peac arafat
- 97 japan kobe earthquake quak toky
- 93 russian chhech chechny grozn yeltsin

Applications of Document Clustering

- · Cluster retrieved documents
- to present more organized and understandable results to user
- Cluster documents in collection (global analysis)
 during retrieval, add other documents in the same cluster as
- the initial retrieved documents to improve recall
- Automated (or semi-automated) creation of document taxonomies
 - e.g. Yahoo-style
- Improve document representation
 - e.g. probabilistic LSI [Hofmann SIGIR 98]

$$\cos(\vec{x}, \vec{x}') = \frac{\vec{x} \cdot \vec{x}'}{|\vec{x}| \cdot |\vec{x}'|}$$

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy from a set of unlabeled examples.

• Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

Cluster Similarity

- How to compute similarity of two clusters each possibly containing multiple instances?
 - Single link: Similarity of two most similar members.
 - Complete link: Similarity of two least similar members.
 - Group average: Average similarity between members.

Agglomerative vs. Divisive Clustering

- *Agglomerative (bottom-up)* methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- *Divisive (top-down)* separate all examples immediately into clusters.

Single-Link Agglomerative Clustering

• When computing cluster similarity, use maximum similarity of pairs:

 $sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x, y)$

• Can result in "straggly" (long and thin) clusters due to chaining effect.

Hierarchical Agglomerative Clustering (HAC)

- Assumes a *similarity function* for determining the similarity of two clusters.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.
- Basic algorithm:
 - Start with all instances in their own cluster.
 - Until there is only one cluster:
 - Among the current clusters, determine the two clusters, c_i and c_j , that are most similar.
 - Replace c_i and c_j with a single cluster $c_i \cup c_j$

Complete Link Agglomerative Clustering

• When computing cluster similarity, use minimum similarity of pairs:

 $sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x, y)$

• Makes more "tight," spherical clusters.

Computing Cluster Similarity

After merging c_i and c_j, the similarity of the resulting cluster to any other cluster, c_k, can be computed by:
 Single Link:

$$sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$$

 $sim((c_i \cup c_i), c_k) = min(sim(c_i, c_k), sim(c_i, c_k))$

– Complete Link:

Group Average Agglomerative Clustering

• Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

$$sim(c_i, c_j) = \frac{1}{\left|c_i \cup c_j\right| \left(\left|c_i \cup c_j\right| - 1\right)} \sum_{\vec{x} \in (c_i \cup c_j)} \sum_{\vec{y} \in (c_i \cup c_j); \vec{y} \neq \vec{x}} sim(\vec{x}, \vec{y})$$

• Compromise between single and complete link.

Computational Complexity of HAC

- In the first iteration, all HAC methods need to compute similarity of all pairs of *n* individual instances which is O(*n*²).
- In each of the subsequent *n*-2 merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(n²) performance, computing the similarity to any other cluster must each be done in constant time.

Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

• Compute similarity of clusters in constant time:

$$sim(c_i, c_j) = \frac{(\vec{s}(c_i) + \vec{s}(c_j)) \bullet (\vec{s}(c_i) + \vec{s}(c_j)) - (|c_i| + |c_i|)}{(|c_i| + |c_i|)(|c_i| + |c_i| - 1)}$$

Non-Hierarchical Clustering

- Single-pass clustering
- K-means clustering ("hard")
- Expectation maximization ("soft")

Centroid-Based Clustering

- Assumes instances are real-valued vectors.
- Clusters represented via *centroids* (i.e. mean of points in a cluster) *c*:

$$\vec{\mu}(\mathbf{c}) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

• Reassignment of instances to clusters is based on distance to the current cluster centroids.

Clustering Criterion

- Evaluation function that assigns a (usually realvalued) value to a clustering
 - Typically function of
 - · within-cluster similarity and
 - · between-cluster dissimilarity

• Optimization

- Find clustering that maximizes the criterion
 - Global optimization (often intractable)
 - · Greedy search
 - Approximation algorithms

K-Means Algorithm

Input: k = number of clusters, distance measure d
Select k random instances {s₁, s₂,... s_k} as seeds.
Until clustering converges or other stopping criterion:

- For each instance *x_i*:
 - Assign x_i to the cluster c_i such that $d(x_i, s_j)$ is min.
- For each cluster c_j //update the centroid of each cluster • $s_j = \mu(c_j)$

Single-Pass Clustering

- Set the initial set S of clusters to be empty.
- Pick the next document *d* at random (or following a given order)
 - Treat d as a new cluster with only one member
- Compare *d* to all clusters in *S*:
 - If the similarity between *d* and any cluster in *S* is above a (pre-defined) threshold,
 - Then merge d with the closest cluster in S;
 - Else add d to S.
- Repeat steps 2 and 3 until all documents are processed.

Complexity:

Time Complexity

- Assume computing distance between two instances is O(m) where m is the dimensionality of the vectors.
- Reassigning clusters for *n* points: O(*kn*) distance computations, or O(*knm*).
- Computing centroids: Each instance gets added once to some centroid: O(*nm*).
- Assume these two steps are each done once for *i* iterations: O(*iknm*).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than O(n²) HAC.

Text Clustering

- HAC and K-means have been applied to text in a straightforward way.
- Typically use *normalized*, TF/IDF-weighted vectors and cosine similarity.
- Optimize computations for sparse vectors.

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
- Select good seeds using a heuristic or the results of another method.

Clustering Applications in IR

- Scatter-Gather
 - Clustering top-ranked documents to remove redundancy [Cutting et al., 1992]
- Word clustering for text categorization

 Group similar words into equivalent classes
 [Baker and McCallum, 1998]
- Co-Clustering
 Simultanously cluster words and documents
 [Dhillon, 2001]

Buckshot Algorithm

- Combines HAC and K-means clustering.
- First randomly take a sample of instances of size \sqrt{n}
- Run group-average HAC on this sample, which takes only O(n) time.
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is O(n) and avoids problems of bad seed selection.

Text Clustering Applications of clustering in IR Document clustering approaches Similarity measure Clustering algorithm Hierarchical agglomerative clustering K-means Evaluation

Evaluation Methodologies

- Ask end-users whether they like the clusters
- Let the "market" (e.g. the Internet) select the winner
- Measure the "tightness" or "purity" of clusters
- Use human-identified clusters to evaluate systemgenerated ones
 - Ask humans to identify all of the clusters
 - Use the system to generate a set of clusters
 Assign one system cluster to each human cluster
 - Assign one system cruster to each numan cruster
 Compute recall/precision/F/error/etc. for each pair of system/human
 - clusters
 Average the selected score over all clusters

Task-Oriented Evaluations --- Indirect

- Clustering of retrieved documents [Hearst & Pedersen, SIGIR 1996]
- Distributional word clustering for text categorization [Baker & McCallum, SIGIR 1998]
- Query clustering for recommendation systems [Beeferman, SIGKDD 2000]
- Document clustering for novelty detection, i.e. first story detection in TDT [Yang et al. SIGIR 1998]
- Question clustering for QA [Harabagiu et al. SIGIR 2001]