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ABSTRACT
In addition to the actual content Web pages consist of navi-
gational elements, templates, and advertisements. This boil-
erplate text typically is not related to the main content, may
deteriorate search precision and thus needs to be detected
properly. In this paper, we analyze a small set of shallow
text features for classifying the individual text elements in
a Web page. We compare the approach to complex, state-
of-the-art techniques and show that competitive accuracy
can be achieved, at almost no cost. Moreover, we derive
a simple and plausible stochastic model for describing the
boilerplate creation process. With the help of our model,
we also quantify the impact of boilerplate removal to re-
trieval performance and show significant improvements over
the baseline. Finally, we extend the principled approach by
straight-forward heuristics, achieving a remarkable accuracy.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms, Experimentation, Theory

Keywords
Boilerplate Removal, Template Detection, Full-text Extrac-
tion, Web Document Modeling, Text Cleaning

1. INTRODUCTION
When examining a Web page, humans can easily distin-

guish the main content from navigational text, advertise-
ments, related articles and other text portions. A number
of approaches have been introduced to automatize this dis-
tinction, using a combination of heuristic segmentation and
features. However, we are not aware of a systematic anal-
ysis of which features are the most salient for boilerplate
content. In this paper, we analyse the most popular fea-
tures used for boilerplate detection on two corpora. We show
that a combination of just two features - number of words
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and link density - leads to a simple classification model that
achieves competitive accuracy. The features have a strong
correspondence to stochastic text models introduced in the
field of Quantitative Linguistics. Moreover, we show that
removing boilerplate content based on these features signif-
icantly improves precision on the BLOGS06 benchmark, at
almost no cost.

The paper is structured as follows. After shortly reviewing
related work in Section 2 we discuss potential features for de-
tecting boilerplate content in Section 3. Section 4 describes
our content classification experiments, which we performed
in two flavors: the two-class problem for boilerplate/content
and a four-class problem specific for the news domain. In
Section 5 we give a statistical linguistic interpretation of our
observations. In Section 6 we apply the established model to
the problem of Information Retrieval and show that preci-
sion can significantly be improved. Section 7 concludes with
a discussion of further work.

2. RELATED WORK
Approaches to boilerplate detection typically exploit DOM-

level features of segments by means of handcrafted rules or
trained classifiers, or they identify common, i.e., frequently
used segments or patterns/shingles on a website [3, 8, 9, 14,
24]. Using a combination of approaches, Gibson et al. quan-
tify the amount of template content in the Web (40%-50%)
[14]. Chakrabarti et al. determine the “templateness” of
DOM nodes by a classifier based upon regularized isotonic
regression [6] using various DOM-level based features, in-
cluding shallow text features as well as site-level hyperlink
information. Yi et al. simplify the DOM structure by deriv-
ing a so-called Site Style Tree which is then used for classi-
fication [26]. Baluja [2] employs decision tree learning and
entropy reduction for template detection at DOM level.

Template detection is strongly related to the more generic
problem of web page segmentation, which has been addressed
at DOM-level [7], by exploiting term entropies [17] or by us-
ing Vision-based features [5]. Kohlschütter et al. present
a statistical model for the distribution of segment-level text
densities, and use the text density ratios of subsequent blocks
to identify page-level segments [18,19]. The CleanEval com-
petition [4] aims at establishing a representative corpus with
a gold standard in order to provide a transparent and com-
parable platform for boilerplate removal experiments. The
evaluated algorithms mainly apply machine learning tech-
niques for the classification [4]. For instance, NCleaner [10]
utilizes a trained n-gram based language model, and Vic-
tor [23] employs a multi-feature sequence-labeling approach



based on Conditional Random Fields, similar to the ap-
proach of Gibson et al. [15]. Another CleanEval contes-
tant, BTE, determines the largest contiguous text area with
the least amount of HTML tags and marks it as “full text”
[12,13]. The heuristic is based on the observations that the
tag density within boilerplate text is higher than within full-
text content and that main content usually is longer than
boilerplate text. A similar approach, which uses an n-gram
model plus several HTML-based heuristics, mainly focusing
on extracting the main content of news articles, has recently
been presented by Pasternack et al. [21] and also evaluated
against the CleanEval benchmark, apparently with high ac-
curacy. We analyse a representative set of features used by
these approaches for automatic boilerplate classification.

One driving motivation for boilerplate text detection is to
improve web search and mining, similar in spirit to simple
stop-word removal. Viera et al. [24] introduce an approach
based on detecting common subtrees in a few sample pages
similar to [26] and observe that clustering and classification
accuracy can be improved significantly by removing such
common subtrees. Fernandes et al. [11] measure the im-
portance of blocks by a combination of average inverse site
frequency of terms in a block, as a measure for block com-
monality, and the similarity of a block with other blocks on
the same page. By weighting terms by their block impor-
tance they significantly improve accuracy over the baseline
BM25. We show that densitometric features, which can be
computed e�ciently online, without resorting to global fre-
quencies, also significantly improves retrieval accuracy.

3. WEB PAGE FEATURES

3.1 Feature Levels
Many features that can be used for the classification of

Web page segments have already been described [15, 16, 23,
26]. It is generally expected that the combination of several
features can be used to identify text fragments as headline,
full text, enumeration, navigation, disclaimer notice etc.,
which can then be separated into content and boilerplate
text. The number of potential dimensions for this task is
huge: text-based strategies like n-gram models can result
in tens of thousands of relevant features, which apparently
makes the classifier susceptible to overfitting to content and
layout of a particular subset.

In search of a domain independent, Web-scale solution,
we avoid these token-level features altogether.

Features may be extracted at four di↵erent levels: Individ-
ual text blocks (elements), the complete HTML document
(a sequence of one or more text blocks plus structural infor-
mation), the rendered document image (the visual represen-
tation as in a Web browser) and the complete Web site (i.e.,
the collection of documents which share a common layout
and wording). While the former two levels can apparently be
examined for each document locally, the latter two require
external information, such as images and CSS definitions for
the rendering process and, in order to statistically determine
site-level templates and boilerplate text, a su�ciently large
number of pages from the same website.

Using features from the two external levels may be highly
beneficial to the classification accuracy i↵ the corresponding
data is available. However, there are two major drawbacks.
First, rendering pages for classification is a computational
expensive operation. Second, template statistics need to be

learned separately for each web site, they usually cannot be
re-used for another website layout. Moreover, it is question-
able whether such models are then domain independent (or
trained for the news domain only, for instance). We there-
fore avoid these levels except for one reference feature: the
frequency of the text in the whole corpus. Using this feature
we can identify phrases commonly used in boilerplate.

3.2 Structural Features
Many approaches for Web page segmentation and intra-

document text classification utilize structural features in
Web pages, such as individual HTML tags (headline, para-
graph, anchor text link, image, etc.) or sequences/nested
subtrees of HTML tags as well as the presence of particular
CSS classes and styles. Of note, the more CSS is used, the
less important the semantics of an HTML tag becomes –
it is perfectly legal to only use DIV tags and describe the
“semantics” of a particular division using style-sheet classes.
Unfortunately, CSS classes and sequences of HTML tags are
inherently site- and document-specific. Moreover, to fully
interpret these rules one has to essentially render the page.

As we want to avoid site-specific signals (which may lead
to over-fitting to a particular data set or domain) as well as
a costly rendering of pages, we only examine the following
structural features: The presence of a particular headline
tag (H1, H2, H3, H4, H5, H6), a paragraph tag (P), a division
tag (DIV) and the anchor text tag (A) as an HTML element
that encloses a particular text block.

3.3 Shallow Text Features
Because boilerplate detection does not inspect text at the

topical level but rather at the functional level, we do not
consider the bag of words as classification features. An
evaluation at token-level may provide skewed results that
describe a particular domain only. Instead, we examine
shallow text features at a higher, domain- and language-
independent level, which have been discussed in the field of
Quantitative Linguistics: Average word length (in our defi-
nition words are white-space delimited character sequences
which at least contain one letter or digit), average sen-
tence length (the sentence boundaries are identified by a
simple pattern-based heuristic checking for the presence of
full stops, question or exclamation marks as well as semi-
colons) and the absolute number of words.

Another important source for the classification task is the
local context, i.e., the absolute and relative position of a
text block in the document. If the segmentation granularity
is high, it is likely that full-text is followed by full-text and
template is followed by template. Moreover, when there is
a significant amount of boilerplate text, the main content
usually is surrounded by boilerplate (header, footer, left-
navigation, right-navigation etc.), not vice versa (i.e., even
if the very last text block contains a sentence, if it is a copy-
right or disclaimer notice, it is regarded boilerplate).

We also examine a few heuristic features: the absolute
number of words that either start with an uppercase letter
or are completely upper-case as well as the ratio of these
words compared to the total number of words and the ra-
tio of full stops to the overall number of words, the number
of date/time-related tokens and the number of vertical bars
“|”(these characters can sometimes be found in navigational
boilerplate text). Moreover, we also compute the link den-
sity (called anchor percentage in [15]), as the number of to-



kens within an A tag divided by the total number of tokens
in the block; for this computation we do not regard the A
tag as a block separator.

3.4 Densitometric Features
Besides the link density measure, we also evaluate the text

density of each particular block. The text density measure
%(b) has been introduced in [19] and utilized for segment-
ing web pages in a merge-only strategy called Block Fusion.
There, adjacent text fragments of similar text density (in-
terpreted as “similar class”) are iteratively fused until the
blocks’ densities (and therefore the text classes) are distinc-
tive enough. Using various settings, including a rule-based
approach, it was shown that the resulting block structure
closely resembles a manual segmentation.

Text density was derived from the pixel-based text density
of Computer Vision-based approaches and transformed to
character level. Basically, it counts the number of tokens
|T (b)| in a particular text block b divided by the number of
lines |L(b)| covered after word-wrapping the text at a fixed
column width w

max

(the empirically estimated optimal value
for English text is between 80 and 90 characters; in this
paper, we use w

max

= 80). Due to the side-e↵ect of having
an incompletely filled last line after wrapping, the latter is
not taken into consideration unless it is the only line in the
segment:

T 0(b) = {t | t 2 T (l), l
first

(b)  l < l
last

(b)}

%(b) =

( |T 0
(b)|

|L(b)|�1

|L(b)| > 1

|T (b) | otherwise
(1)

4. CLASSIFICATION EXPERIMENTS

4.1 Goals and Approach
The goal of this section is to analyse the features intro-

duced in Section 3 for boilerplate detection.
The overall approach is simple: Web pages are segmented

into atomic text blocks, which are then annotated with fea-
tures and on this basis classified into content or boilerplate.
Atomic text blocks are sequences of character data which
are separated by one or more HTML tags, except for A tags
– in order to compute the link density.

To train and test classifiers for various feature combina-
tions we start from a known text domain: news articles on
the Web. The domain is large and diverse because numerous
independent sources contribute to it, is readily available for
analysis (e.g. from a news search engine) and the structure is
well-understood: Usually one news article (consisting of one
or more headlines, the article body and supplemental infor-
mation like fact boxes, image captions etc.) is surrounded
by the standard layout of the publisher’s web site (linked
headlines and teasers to other news articles, related or not,
advertisements, copyright notices etc.). In some cases, the
publishers also allow users to comment on the article, com-
ments may then appear on the page nearby the article.

We have labeled a representative subset of news articles
from di↵erent sites with di↵erent layouts according to the
observed text types (boilerplate/content as well as other
classes like headline, user comments etc.) The labeled set is
then split into a training and a test set (using a 10-fold cross
validation) and fed into a classifier (we use decision trees and

Class # Blocks # Words # Tokens

Total 72662 520483 644021

Boilerplate 79% 35% 46%

Any Content 21% 65% 54%

Headline 1% 1% 1%

Article Full-text 12% 51% 42%

Supplemental 3% 3% 2%

User Comments 1% 1% 1%

Related Content 4% 9% 8%

Table 1: Class-Distribution in the GoogleNews set

linear support vector machines) to measure the accuracy of
the approach. To analyze domain independence, we also
evaluate the classifiers against datasets from other domains.

4.2 Datasets and Gold Standard
Our evaluation is performed on two datasets, a news col-

lection for training and testing and a cross-domain collection
for validation.

News Collection. The news collection consists of 621
manually assessed news articles from 408 di↵erent web sites.
The news articles were sampled randomly from a larger
crawl of 254,000 articles from 7,854 web sites which we ac-
quired by monitoring the Google News search engine dur-
ing the first half of 2008. We monitored the news head-
lines of six di↵erent English-speaking Google News portals
(USA, Canada, UK, South Africa, India, Australia) and
four categories (World, Technology, Sports, Entertainment)
and fetched the full text HTML of the corresponding linked
articles. The ranked distribution of articles per web site
apparently is power-law distributed (maximum number of
articles per host: 3774, averge: 32.38, median: 5). The
top-5 hosts are ap.google.com, afp.google.com, reuters.com,
iht.com, news. bbc.co.uk ; at the break-even between rank
and frequency (200) is en.rian.ru whereas sites like financea-
sia.com and photonicsonline.com appear at the bottom. In
the examined subset, the maximum number of articles per
host is 12 (news.com.au) whereas the average and median
are 1.52 and 1 respectively. In this paper, we use the term
“GoogleNews” to describe that subset. In the following sec-
tions we focus on this collection except for the frequency of
text blocks, which we compute from the complete crawl.

Using aWeb browser based text annotator, for each HTML
page in the GoogleNews set seven human assessors labeled1

sequences of text as either headline, fulltext, supplemental
(text which belongs to the article but is not fulltext, such as
image captions etc.), user comments, related content (links
to other articles etc.). Unselected text is regarded not con-
tent (boilerplate). The labels were then stored at the level
of individual text blocks (i.e., any character sequence that
is not interrupted by an HTML tag, except the A tag, as de-
scribed in Section 3.3). The distribution of classes at three
di↵erent levels is depicted in Table 1; we counted the num-
ber of text blocks, words and unfiltered tokens (including
non-words) separately. The raw data and the gold standard
are available online.2

Cross-Domain Collection. The CleanEval collection is
a benchmark corpus created particularly for the eponymous
boilerplate removal competition of the ACL Web-as-Corpus

1Every page was assessed only once, as we do not expect
significant inter-assessor disagreement in this context.
2http://www.L3S.de/~kohlschuetter/boilerplate



community [4]. The collection consists of 798 raw HTML
pages randomly sampled from Web search engines, from
which 733 pages have already been manually assessed and
split into a training set of 58 documents and a test set of 675
documents. The assessment was performed as follows. After
converting the HTML document into plain text, all boiler-
plate text has manually been removed and remaining text
has been structurally labeled as paragraph, headline or list
element. The raw data and the gold standard are available
online.3 Unfortunately, because the assessors worked with
plain text that has been derived from a Browser-rendered
representation of the documents, the gold standard cannot
directly be used for an analysis at HTML level. We will
nevertheless evaluate our approach against this benchmark
to allow a comparison to other CleanEval contestants.

4.3 Evaluation

4.3.1 Training and Testing on GoogleNews

As we see from Table 1, the class distribution is strongly
dominated by Boilerplate and Article Full Text ; the other
four classes quantitatively play a minor role. The class User
Comments was only assessed to quantify the amount of com-
ments text compared to the remaining full text; for the pur-
pose of boilerplate detection we treat comments as main
content. Because of the strongly skewed distribution of the
initial six text classes, we evaluate a two-class problem (boil-
erplate vs. content) and a four-class problem (boilerplate
vs. full-text/comments, headline, supplemental) separately.
The four-class problem generally is more di�cult to solve,
so we expect lower accuracies here.

Using Weka, we examine the per-feature information gain
and evaluate machine-learning classifiers based on Decision
Trees (1R and C4.8) as well as Support Vector Machines
(SMO). We measure classification accuracy by Precision,
Recall, F

1

-Score, False Positive Rate and ROC Area un-
der Curve (AuC); all scores are normalized based on the
number of words in a block, i.e., large blocks are weighted
higher than small blocks. Figure 1 shows the features in
decreasing order of their information gain. The information
gain (Kullback-Leibler-divergence) is defined as the change
in information entropy from the prior state (C) to a state
that takes some information as given (C|A): IG(C,A) =
H(C)�H(C |A) and helps identifying the most significant
features. Generally, very simple features like Relative Po-
sition, Average Word Length and Number of Words of the
current block appear to be strong indicators for class mem-
bership. For the sake of clarity, we will test the classification
accuracy of these highly ranked features separately. Inter-
estingly, the text-flow capturing variants of these features
(Number of Words Quotient, Text Density Quotient, Rela-
tive Position), which relate the value of the current block to
the previous one, provide the highest information gain, indi-
cating that the intra-document context plays an important
role; this is also substantiated by the classification results.
Table 2 presents the evaluated algorithms and the achieved
accuracies along with the number of features (dimensions)
used and the number of leaves for all decision-tree-based
algorithms.

The classification baseline is the ZeroR classifier, which in
our case always predicts Article Full-text (4-class problem)

3http://nlp.fi.muni.cz/~xpomikal/cleaneval/

and Content (2-class problem). Due to the class weights this
results in an ROC area-under-curve of less than 50%.

The 1R classifier determines the feature with the least
error rate and partitions the corresponding numeric values
to derive simple classification rules (the number of parti-
tions equal the number of leaf nodes in a decision tree).
1R over all features resulted in a simple rule with an ac-
ceptable accuracy: Any block with a text density less than
10.5 is regarded boilerplate. We analyzed the 1R partition-
ing also for the features Average Sentence Length, Average
Word Length, Link Density and Number of Words and got
similar (slightly lower) accuracies. However, Average Word
Length is fairly unsuitable for classification, as 1R generates
many partitions between average word length 4 and 5 which
alternate between Boilerplate and Article Content.

We get promising results from the C4.8-based decision-
trees, however at the cost of model complexity; in order
to avoid overfitting, the algorithm has been configured to
only consider leaves matching at least 1000 instances. By
using all the 67 available features (including features from
the previous and next blocks) we get a remarkable ROC
AuC of 98% for the 2-class problem and 96.9% for the 4-
class problem; we also achieved similar results using an SMO
support-vector machine with a linear kernel.

By applying reduced-error pruning we were able to sim-
plify the decision tree to only use 6 dimensions (2 features
each for current, previous and next block) without a sig-
nificant loss in accuracy (ROC AuC 96.9% for the 2-class
problem), see Algorithms 1 and 2.

Algorithm 1 Densitometric Classifier
curr_linkDensity <= 0.333333
| prev_linkDensity <= 0.555556
| | curr_textDensity <= 9
| | | next_textDensity <= 10
| | | | prev_textDensity <= 4: BOILERPLATE
| | | | prev_textDensity > 4: CONTENT
| | | next_textDensity > 10: CONTENT
| | curr_textDensity > 9
| | | next_textDensity = 0: BOILERPLATE
| | | next_textDensity > 0: CONTENT
| prev_linkDensity > 0.555556
| | next_textDensity <= 11: BOILERPLATE
| | next_textDensity > 11: CONTENT
curr_linkDensity > 0.333333: BOILERPLATE

Algorithm 2 Classifier based on Number of Words
curr_linkDensity <= 0.333333
| prev_linkDensity <= 0.555556
| | curr_numWords <= 16
| | | next_numWords <= 15
| | | | prev_numWords <= 4: BOILERPLATE
| | | | prev_numWords > 4: CONTENT
| | | next_numWords > 15: CONTENT
| | curr_numWords > 16: CONTENT
| prev_linkDensity > 0.555556
| | curr_numWords <= 40
| | | next_numWords <= 17: BOILERPLATE
| | | next_numWords > 17: CONTENT
| | curr_numWords > 40: CONTENT
curr_linkDensity > 0.333333: BOILERPLATE



(C) = current block, (P) = previous block, (N) = next block
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Figure 1: Per-Feature Information Gain for the GoogleNews collection.

Algorithm Dim Precision Recall F
1

-Score FP Rate ROC AuC Leaves
ZeroR (baseline; predict “Content”) 0 40.7 35.0 63.8 59.2 49.7 44.0 63.8 59.2 49.0 48.9 - -
Only Avg. Sentence Length 1 78.5 72.4 67.9 66.6 68.0 65.2 21.4 22.3 73.3 72.1 2 4

C4.8 Element Frequency (P/C/N) 3 77.7 70.9 76.2 73.2 73.8 69.8 38.3 34.7 70.9 69.8 9 4

Only Avg. Word Length 1 80.2 77.4 77.0 74.8 77.5 73.5 19.5 20.0 78.8 77.4 2 178

Only Number of Words @15 1 86.7 80.9 86.7 84.9 86.7 82.8 15.5 15.5 85.6 84.7 2 2

Only Link Density @0.33 1 88.5 81.7 87.8 83.8 87.4 81.4 19.2 22.5 84.3 80.7 16 2

1R: Text Density @10.5 1 87.8 81.4 87.9 85.4 87.9 83.4 14.3 15.3 86.8 85.0 2 2

C4.8 Link Density (P/C/N) 3 91.1 83.7 91.1 87.4 91.0 85.4 12.1 14.3 94.2 90.8 37 32

C4.8 Number of Words (P/C/N) 3 91.1 87.6 90.8 89.3 90.9 87.6 8.9 1.0 94.7 94.6 40 48

C4.8 All Local Features (C) 23 92.9 88.7 92.9 89.9 92.9 88.7 8.7 10.6 96.6 95.7 102 72

C4.8 NumWords + LinkDensity, simplified 6 92.2 84.8 92.2 88.9 92.2 86.8 10.1 12.1 95.7 93.3 8 7

C4.8 Text + LinkDensity, simplified 6 92.4 84.7 92.4 88.8 92.4 86.7 8.5 11.4 96.9 93.2 8 12

C4.8 All Local Features (C) + TDQ 25 92.9 89.2 93.0 90.3 92.9 89.1 8.3 9.4 97.2 96.1 109 78

C4.8 Text+Link Density (P/C/N) 6 93.9 89.3 93.8 91.0 93.9 89.5 6.7 8.4 97.6 96.1 51 45

C4.8 All Local Features (P/C/N) 64 95.0 91.3 95.0 92.4 95.0 91.4 5.5 7.1 98.1 96.7 105 98

C4.8 All Local Features + Global Freq. 67 95.1 91.5 95.0 92.5 95.1 91.6 5.4 6.8 98.0 96.9 99 125

SMO All Local Features + Global Freq. 67 95.3 92.4 95.3 93.2 95.3 91.9 5.4 6.8 95.0 94.0 - -

Table 2: Weka Classification Accuracies for the Google News Collection (2-class/4-class problem)

4.3.2 Application to CleanEval and Re-Validation

To test the domain-independence of the determined clas-
sifiers, we applied the two simplified C4.8 classifiers to the
CleanEval collection. We evaluated the 2-class problem (boil-
erplate vs. content of any kind, called TO in CleanEval)
for the classifier that has been trained for the GoogleNews
collection and one that has been trained on the CleanEval
training set. In the latter case, the decision rule was even
simpler: accept all blocks that have a minimum text density
of 7 and a maximum link density of 0.35.

Because the CleanEval collection only provides assess-
ments and the algorithmic output at text-level, we cannot
directly reuse the setup we used for the GoogleNews evalu-
ation. The CleanEval initiative provides their own accuracy
measure which is based upon a weighted Levenshtein Edit
Distance at token-level [4]. The computation is expensive
and also not essential for this task. We confirmed that the
scores can be approximated well with the much simpler bag-
of-words token-level F

1

score (like in the GoogleNews setup,
except that class weights are not taken into account). As
our scores therefore slightly di↵er from the ones in [4], we
re-evaluated the available results of three CleanEval contes-
tants (BTE, Victor, NCleaner) and also added the heuristics

by Pasternack et al. [21] (in two flavors, the unigram model
trained on CleanEval and the trigram model trained on a
news corpus) to the set of competitors, as well as a baseline
(“Keep all text”) and a classifier solely based on the fea-
ture with the highest information gain: number of words;
we mark every block with at least 10 words as content.

The average (µ) and median (m) as well as the ranked
accuracy for each evaluated strategy are depicted in Figure
2a. We see that the two flavors of the Pasternack heuristic
drastically di↵er in terms of accuracy. We assume that the
algorithm needs proper training to succeed for a particular
corpus, and the trigram model from the news domain was
not generic enough for the CleanEval dataset.

Additionally, to understand how far heuristic additions
could further improve the classification, we extended our
two decision tree classifiers downstream with hand-crafted
rules. In one extension, we only take the content block with
the highest number of words (Largest Content Filter). In
another extension, we add rules that are specific for news
(Main Content Filter). It extends Largest Content Filter by
removing any text that is below a clearly identifiable com-
ments section (a block solely containing one out of 11 indica-
tor strings like “User comments:” etc.) and above a clearly
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Figure 2: Performance of Boilerplate Detection Strategies

identifiable title (derived from the HTML document’s TI-

TLE value). As we can see from Figure 2a, for the CleanEval
collection these modifications resulted in much worse results
than the baseline. On the other hand, the very simple strat-
egy to keep all blocks with at least 10 words (as well as our
NumWords/LinkDensity classifier) performed just as good
as the Pasternack unigram and the NCleaner setups that
have specifically been trained for CleanEval.

Ultimately, we see that basically keeping all text (i.e. not
removing anything) would be a good strategy, which only is
marginally worse than the apparently best solution (BTE)!
This leads to the question whether there were failures in
the assessment process, whether the collection is comparable
to the GoogleNews collection or at all appropriate for the
purpose of boilerplate detection.

We repeated this evaluation for the GoogleNews collec-
tion, computing accuracy scores in the same way using the
same algorithms (BTE as the alleged winner for CleanEval,
Pasternack Trigrams as a supposedly mediocre strategy and
the algorithms we introduced in this paper). For the Paster-
nack algorithm, we used the Web service provided by the au-
thors; unfortunately, there was no unigram implementation
available. Figure 2b shows the corresponding results.

We see that the baseline for GoogleNews is much lower
than for CleanEval; all tested algorithms perform di↵er-
ently and are usually better than the baseline, except for the
Pasternack strategy, which underperformed in a few cases.
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Figure 3: CleanEval Text Density Distribution

Overall its performance is lower than expected, given the
fact that it has been trained on news articles. We can only
assume a bug in their implementation or high overfitting
towards a particular subset of news sites. The strategy to
just keep everything with a minimum of 10 words did not
work very well either, although better than the Pasternack
trigrams and, on average, improves the baseline by 18.3%.
BTE is on par with our two simplified classifiers (using text
density and number of words respectively); it is a little bit
better for the median but worse on average. Our classifier
based on the number of words per block and its link density
yields improve the baseline by 33.3%.

In the end, the use of the two heuristic filters (Largest/-
Main Content Filter) can further improve the detection ac-
curacy for the GoogleNews dataset to an almost perfect av-
erage F

1

score of 95.93% (this is a 40% relative improvement
over the baseline). Even though we see that these algorithms
failed for CleanEval, we expect them to work generically for
the news domain. On the other hand, we see that both, BTE
and our two simplified classifiers work quite well for both
collections. Of note, our classifier is far more e�cient than
BTE. It runs in linear time, whereas BTE has a quadratic
upper bound. Furthermore, it can return more than a sin-
gle piece of text. BTE’s assumption that only one block
(the largest having the least tag density) completely covers
the main content seems not to hold for all cases: compared
to the densitometric classifier, BTE only achieves a subop-
timal accuracy in our news experiment. This discrepancy
may be due to the fact that the CleanEval collection actu-
ally contains less boilerplate text than all other collections
we examined (only very little words are in blocks with a text
density lower than 11, see Figure 3).

5. QUANTITATIVE LINGUISTIC ANALYSIS

5.1 Text Density vs. Number of Words
In all cases but one, the classifier using Number of Words

per Block performed slightly better than the classifier using
Text Density. Also it seems su�cient for a good classifi-
cation. To get a better understanding why this strategy
performs so well, we need to analyze the created decision
tree rules (see Algorithms 1 and 2). We see that the two
classifiers do not di↵er for the link density-specific rules; if
the text block consists of more than 33% linked words, it
is most likely boilerplate, unless the block is surrounded by
long/dense text blocks.
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Actually it is likely that both measures, text density as
well as number of words describe the same fundamental prin-
ciple of text, which however is more visible through text den-
sity than through the plain number of words. As the abso-
lute number of words theoretically is unbounded (the longest
block in the GoogleNews collection consisted of 1122 words),
yet dominated by boilerplate (79% of all blocks, see table 1),
a straight visual distinction between boilerplate and content
is hard to spot (Figure 4; we magnified the“content”part for
clarity). Also, the rules generated for the number-of-words
classifier are di�cult to interpret. It is unclear, for instance,
why everything exactly above 40 words is regarded full text
and not already at 30 etc. However, if we look at the very
same data using the text density metric (rounding the den-
sity to the nearest integer [%(b)]), we can clearly identify
three modes of a mixed distribution (see Figure 5).

In [18], Kohlschütter showed for a representative Web cor-
pus (Webspam-UK 2007, ham-part) that the distribution
of words in blocks with a particular text density can e↵ec-
tively be modeled as a combination of two beta distribu-
tions and a normal distribution. Each beta distribution was
assumed to represent one class of text, “full-text” content
(complete sentences) and “template text” (incomplete sen-
tences); the normal distribution acts as a fuzzy transition
between them. In fact, we were able to apply the same
model to the GoogleNews collection data, with a very high
goodness of fit (R2 = 0.997, RMSE = 0.0213). As opposed
to Kohlschütter’s initial results on an unlabeled corpus, we
now have manually labeled annotations, so we can finally
examine his hypothesis at a higher level of confidence.

Indeed, the main article’s full text, as well as the user com-
ments and, to some degree, supplemental text, can basically
be described as blocks with a text density = 10 (in fact, the
1R algorithm suggested this split, achieving a ROC AuC
of 86.8%). The remaining blocks with a lower density al-
most completely describe boilerplate text (headlines appear
at text density 4 and higher; some “supplemental text”may
expose an even lower text density). Moreover, the fuzzy class
seems to be strongly dominated by linked text (hypertext),
which might explain why the addition of the link density
feature significantly improves the classification accuracy.

Obviously, the text density measure helps us to visualize
the mixed distribution in a compact way (much better than
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the absolute number of words, see Figure 4), even though
it appears that for the actual purpose to separate and to
classify the two types of text (template and fulltext) the
number of words per block are su�cient.

Actually we can approximate the density distribution for
visualization purposes solely using the number of words as
follows. From the definition of text density (Equation 1)
we see that two cases are di↵erentiated: wrapped text (i.e.
covering more than one line) and unwrapped text (i.e. only
one line). If the line is wide enough (we used 80 characters),
all densities below a certain number of words � describe one-
line blocks (except for the unusual case where blocks contain
very long words), or combinations thereof. In order to reach
a line wrap boundary, a certain number of words need to
be written, and thus a large text density score indicates a
larger number of words. In fact, the di↵erence of the number
of words contained in blocks with at least � = 11 words
(345.175) to the number of words contained in blocks with a
text density of at least 11 (358.428) is insignificant (3.8%).

5.2 Stochastical Text Model
The fairly clear separation between short boilerplate and

longer content blocks with respect to text density suggests
a simple generative process:

First, let us find a su�ciently good model for the overall
process of generating words. We can see the creation process
of text blocks as a Shannon random writer [22].

Imagine the author decides with some probability to write
a word or to finish the current block and proceed to the next
one. This essentially is a first-order Markov process with two
states, T (add another word to the text) and N (skip to the
next block); see Figure 6a. The probability of staying in
the same state is always the complementary probability of
moving to the other state. As we can regard subsequent
newlines as a single operation, we have P

N

(N) = 0 and thus
P
N

(T ) = 1 (after skipping to a new block, always at least
one word is written).

The state transitions from T can be modeled as a simple
Bernoulli trial. Consider the transition to N as success (p)
and the emission of another word as failure (1 � p). The
probability that there are k failures (for k = 0, 1, 2, 3, ...)
before the first success is Pr(Y = k) = (1� p)kp.



Coming from state N means we already have emitted one
word, so the actual probability for emitting x words (k � 1
failures) in the simple scenario then is

Pr(Y = x) = (1� p)x�1 · p = P
T

(T )x�1 · P
T

(N) (2)

which is the 1-displaced geometric distribution; it has ex-
tensively been discussed in the field of Quantitative Linguis-
tics [1]. While there are more sophisticated, better matching
models for describing this process, the geometric distribu-
tion is a good starting point, particularly at corpus level
where the individual variations of certain authors become
indistinct. Applied to the GoogleNews corpus, for P

T

(N) =
0.3145 we achieve a goodness of fit of R2

adj

= 96.7% with a
root mean square error (RMSE) of 0.0046.

Let us now add the two di↵erent types of text that we
have discovered in our evaluation, short and long text. We
extend the simple random writer by transforming the state
T into two separate states S (print a word of short text) and
L (print a word of long text), see Figure 6b. As L and S
replace T , the probabilities to arrive at L or S coming from
N must sum up to P

N

(T ) = 1. Once in the state L or S,
we again have a Bernoulli trial: either continue producing
words (all of long or short text respectively, no intra-block
mixtures) or terminate and go back to stateN . As we expect
from short text to terminate quickly after a few words and
from long text to terminate after a higher number of words,
we require that P

S

(N) � P
L

(N).
In this mixed scenario, the probability density distribution

therefore is:

Pr(Y = x) = P
N

(S) ·
⇥
P
S

(S)x�1 · P
S

(N)
⇤
+

+P
N

(L) ·
⇥
P
L

(L)x�1 · P
L

(N)
⇤

(3)

Applying this model to the GoogleNews data results in
a higher goodness of fit of R2

adj

= 98.81% with RMSE =
0.0027 for P

N

(S) = 1 � P
N

(L) = 0.7586, P
S

(N) = 0.3968
and P

L

(N) = 0.04369, which supports our assumption of
the mixture, even if the geometric distribution only is a
rough approximation. As the geometric distribution’s ex-
pected value is defined as E(x) = p�1 (short text has its
mean at 1/0.3968 = 2.52, long text at 1/0.04369 = 22.89)
and the determined probability P

N

(S) = 76% is close to the
assessed 79% (amount of blocks classified as boilerplate, see
Table 1), we may attribute a large extent of short text to
the Boilerplate class and most long text to the Content class
(see Figure 4).

5.3 Linguistic Interpretation
The observed compound distribution can be regarded not

of arbitrary nature but of a stochastical, quantitative linguis-
tic one, implying that actually two di↵erent classes (strata)
of text are embedded in the Web content. In the field of
Quantitative Linguistics it is generally assumed that text
creation process can be modeled as urn trials at the level
of various linguistic units such as phoneme, word, sentence,
text segment etc. and for several shallow features such as fre-
quency, length, repeat rate, polysemy and polytextuality [25].
Even though it is still unclear by which exact parameters
this process is driven, we can model it as a Bernoulli pro-
cess. Through empirical experiments and simple stochastical
concepts, we have shown that this model can be applied to
describe the process of content creation on a Web page.

Nstart T
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Figure 6: Random Writer Models

While we cannot explain the reasons for chosing short or
long text at some particular point in a document, we can in-
terpret the statistically observed behaviour at corpus level.
When composing a Web page, an author chooses with some
probability whether she wants to write a sequence of actual
full sentences or navigational elements. The choice surely
depends on the context (hence we observe an improvement
when the features from the previous and next block are
taken into account, and this is why the geometric distribu-
tion does not fit perfectly). The use of full sentences usually
means the author wants to make a more or less complex
statement which needs grammatical constructs, long expla-
nations etc. Extensive coding is required because the author
(sender) does not expect that the audience (receivers) un-
derstand the information without explanation. This kind
of text (long text) therefore can be regarded of descriptive
nature (i.e., supplying the reader with the subject matter’s
details at the cost of higher syntactic complexity, just like
the full text of this paper). The second kind of text (short
text), grammatically incomplete or simple sentences, consist-
ing of only a few words, is used whenever a quick, economic
coding is possible, i.e. when the audience is expected to
perceive und understand the encoded information without
large e↵ort (e.g., “Contact us”, “Read more”). Such text is
often used for headlines and navigational text (one kind of
boilerplate). We can therefore regard the latter form of text
of functional nature. While there are noticeable exceptions,
it appears that, at least for the Web, there is a strong cor-
relation between short text and boilerplate text as well as
between long text and content text, which explains why the
simple classification works so well.

These two strata of text can be visualized in a compact
form through the text density measure because it is mostly
irrelevant how many words an author spends within an in-
dividual text. As soon as she writes complete, non-trivial
sentences (i.e., more than ca. 10 words in English) the pro-
duced text most likely falls into the descriptive class. Text
density exactly provides this value-limiting boundary. By
word-wrapping text at a predetermined line width (which is
dependent upon the average sentence length in characters)
and dividing the number of words by the number of lines, we
literally “construct” this two-fold distribution and thus can
better visualize what was already present in the raw number
of words. An incomplete sentence will never wrap to more
than one line (in this case text density equals to the number
of words), whereas text consisting of complete sentences will
always wrap, be averaged to the “typical” number of words
in a sentence and encoded as a density value of a rather lim-
ited range. This limited range can then be better visualized
histographically, as demonstrated.

To our best knowledge, the distinction between short and
long text has not been discussed in the quantitative linguis-
tics context so far. This is probably because the amount of



short text in the previously analyzed “o✏ine works” is al-
most negligible (this also holds for the present paper). On
the other hand, we expect to find higher amounts of short
text in brochures, tabloids etc. An in-depth analysis of such
content needs to be conducted as future work.

6. RETRIEVAL EXPERIMENTS

6.1 Setup
In this section we quantify the impact of boilerplate de-

tection to search. The obvious assumption here is that boil-
erplate not only is another sort of text, it may also deterio-
rate search precision, particularly in those cases where key-
words match “related articles” text or other keywords that
are non-relevant to the actual main content. To evaluate
our hypothesis for a representative scenario, we examine yet
another domain of Web documents: Blogs.

Blogs are particularly relevant for this task because we
may expect many links from one blog page to other blog en-
tries, being topically or temporally related, and those links
often include headlines and teaser texts of the referenced
item. In addition to that, a TREC reference collection al-
ready exists, containing 3 million permalink documents re-
trieved from 100.000 di↵erent feeds, along with test queries
(consisting of one to five words) and document assessments
at (TREC’06 Blog Track, [20]) which were mainly used for
measuring opinion retrieval performance. They used graded
relevance scores (not relevant, topically relevant and three
levels indicating positive, negative and mixed opinions). We
will use this collection for our evaluation. We indexed the
BLOGS06 collection using the Lucene IR library. Separate
parallel indexes were created for document blocks with a
particular number of words or a particular text density; this
allows a selection of permitted ranges at runtime without
reindexing. If our assumption holds, one can expect an im-
provement of the search precision when only words of the
descriptive text class (long text) are considered for search.

6.2 Evaluation
We perform 50 top-k searches (with k = 10) for the queries

defined in the TREC’06 Blog Track and evaluate precision
at rank 10 (P@10; true/false relevance as in the TREC’06
benchmark results) as well as the normalized discounted cu-
mulative gain (NDCG

10

, graded relevance scores as present
in the TREC’06 assessments). Using the standard Lucene
ranking formula we perform 50 searches from queries pre-
defined in the TREC’06 Blog Track and count the number
of documents in the top-10 results which have been marked
relevant by the TREC assessors. We repeatedly issue the
queries for a sliding minimum text density between 1 and
20 and a sliding minimum number of words from 1 to 100
respectively (a minimum of 1 word equals to the baseline).
As we only remove short text, there is no need for amaximum
bound. We benchmark the performance of the BTE algo-
rithm for this task and compare P@10 as well as NDCG

10

to our solution. Finally we compare the results to the P@10
scores reported from TREC’06.

Using the sliding minimum Text Density we are able to
significantly improve precision (the baseline results in P@10=
0.18; NDCG

10

= 0.0985); at the minimum threshold of 14
(with slightly lower values for the surrounding densities be-
tween 11 and 20) we get P@10 = 0.32 and NDCG

10

=
0.1823, which is almost equal to the scores of the BTE al-
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gorithm (P@10 = 0.33 and NDCG
10

= 0.1627). For the
simple sliding minimum Number of Words, we achieved a re-
markable accuracy of P@10 = 0.44 and NDCG

10

= 0.2476
for any minimum threshold between 11 and 100 words (an
improvement by 144%/151% over the baseline and 33%/52%
over BTE). We did not examine higher thresholds for prac-
tical reasons; at some point, of course, the precision would
drop again because of lacking input. Figure 7 depicts the
results for P@10; the NDCG

10

curves expose identical be-
haviour. In a direct comparison with the BLOGS06 com-
petition, our results are of course somewhat lower since our
strategy does not do opinion mining at all. However boil-
erplate removal seems to be strongly beneficial for this pur-
pose: we can still compete with the lower 4 of the 16 con-
testants. One can therefore expect that the addition of our
strategy to the opinion mining pipeline would further in-
crease accuracy.

7. CONCLUSIONS AND FURTHER WORK
Conclusions. In this paper, we presented a simple, yet

e↵ective approach for boilerplate detection using shallow
text features, which is theoretically grounded by stochastic
text generation processes from Quantitative Linguistics.

We have shown that textual content on the Web can ap-
parently be grouped into two classes, long text (most likely
the actual content) and short text (most likely navigational
boilerplate text) respectively. Through our systematical anal-
ysis we found that removing the words from the short text
class alone already is a good strategy for cleaning boiler-
plate and that using a combination of multiple shallow text
features achieves an almost perfect accuracy. To a large ex-
tent the detection of boilerplate text does not require any
inter-document knowledge (frequency of text blocks, com-
mon page layout etc.) nor any training at token level.

We analyzed our boilerplate detection strategies on four
representative multi-domain corpora (news, blogs and cross-
domain) and also evaluated the impact of boilerplate re-
moval for document retrieval. In all cases we achieve sig-
nificant improvements over the baseline and accuracies that
withstand and even outperform more complex competitive
strategies, which incorporate inter-document information, n-
grams or other heuristics.

The costs for detecting boilerplates are negligible, as it
comes down simply to counting words.

Further Work. The presented results raise research is-
sues in many di↵erent directions. Obviously, for boilerplate



detection we need to remove the “last 5%” of classification
error. Even though the generality of our approach might
suggest that it is universally applicable, we need to test our
approach on other content domains and languages. Finally,
we need to deeper investigate and extend our textual model
from a Quantitative Linguistic perspective. To open up fur-
ther possibilities, the algorithms used in this paper are avail-
able freely from the authors’ website.4
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