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ABSTRACT
Retrieval system effectiveness can be measured in two quite differ-
ent ways: by monitoring the behavior of users and gathering data
about the ease and accuracy with which they accomplish certain
specified information-seeking tasks; or by using numeric effective-
ness metrics to score system runs in reference to a set of relevance
judgments. The former has the benefit of directly assessing the
actual goal of the system, namely the user’s ability to complete a
search task; whereas the latter approach has the benefit of being
quantitative and repeatable. Each given effectiveness metric is an
attempt to bridge the gap between these two evaluation approaches,
since the implicit belief supporting the use of any particular metric
is that user task performance should be correlated with the numeric
score provided by the metric. In this work we explore that linkage,
considering a range of effectiveness metrics, and the user search be-
havior that each of them implies. We then examine more complex
user models, as a guide to the development of new effectiveness
metrics. We conclude by summarizing an experiment that we be-
lieve will help establish the strength of the linkage between models
and metrics.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.

General Terms
Experimentation, measurement.

Keywords
Retrieval experiment, evaluation, system measurement.

1. OVERVIEW
Information retrieval (IR) systems are measured in two quite dif-

ferent ways. The efficiency of an IR system is quantified in terms
of CPU, memory and disk resources required, as functions of the
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volume of data in the system, the rate at which queries must be pro-
cessed, and the semantics of each query (and hence the query pro-
cessing modality), and is ultimately demonstrated by experimental
measurement of an instrumented implementation. The effective-
ness of an IR system – the ease with which users of the system can
carry out information-seeking tasks and satisfy information needs
– is a more subtle concept. We focus on the latter in this paper.

Two approaches to quantifying effectiveness have emerged over
the years. The first is the use of what are generically called user
studies, in which a pool of experimental subjects are given one or
more search tasks to carry out, and their actions and behaviors dur-
ing the prosecution of those tasks are monitored, analyzed, and re-
ported. Provided that the information-seeking tasks used during the
experiment are ones that the experimental subjects are able to em-
pathize with, a well-designed user study can provide rich informa-
tion about all aspects of the system being evaluated, including the
interface (“why does it do that when I do this”), robustness (“wow,
it crashed again”), and underlying system effectiveness (“it’s a bit
strange that it didn’t put that one on the first page of results”).

But user studies are expensive to plan and run, both in terms of
actual money, and in terms of time. The planning is costly because
of the need to fix all variables and then seek institutional ethics
board clearance for a particular experiment, and then recruit sub-
jects; and carrying experiments out is costly because of the need to
provide supervision while the subjects are undertaking the specified
search tasks. These costs mitigate against continuous user studies
in all but the very largest of organizations.

Instead, a second type of effectiveness investigation is common.
In a batch evaluation (or a test collection evaluation), a document
collection is compiled; a set of topics or information needs is for-
mulated that can be answered out of that collection; and some or
all of the documents in the corpus are judged against the topics,
to determine whether or not each such document is relevant to the
specified topic. Those relevance judgments can then be repeatedly
used to score the outputs of the IR system using a chosen effective-
ness metric to convert the system outputs into a numeric score. In
such an environment, experimental turnaround can be measured in
minutes rather than weeks, and a large number of program modifi-
cations or parameter settings can be evaluated in a relatively short
span of time, and at relatively low cost.

While repeatable, and hence convenient, batch mode experimen-
tal evaluation has potential drawbacks:

• Performing comprehensive – or even moderately wide – rel-
evance judgments is a significant initial cost that can only be
recouped over a period of time and through multiple uses.

• Effectiveness metrics are typically evaluated over individual
queries when used in batch evaluations, whereas a user may



pose multiple queries as part of a session of activity during
an information-seeking activity.

• The metric used might not correlate with the “user experi-
ence”, meaning that differences in metric scores do not nec-
essarily translate into measurable differences in the user’s
ability to carry out the desired search task.

Section 6 gives an overview of how previous researchers have ad-
dressed these various issues. Our purpose in this paper is explore
the relationship between effectiveness metrics and user behavior
that is alluded to in the final point, and hence shed further light on
the extent to which batch evaluation scores can be argued as having
been inspired (or even merely informed) by user behavior.

Section 2 introduces a range of established effectiveness met-
rics, and for each describes a user model that corresponds to the
metric. The common thread that links these metrics and models
is that they are static, and are based on predefined probability dis-
tributions. Some of the models are unappealing, in that they do
not intuitively resonate with anticipated user behaviors; that reac-
tion can, of course, be interpreted as a suggestion that the metric in
question is not particularly appropriate.

In Section 3 we examine adaptive models in which the relevance
of the documents being inspected comes into play as well as depth
in the ranking. Corresponding adaptive effectiveness metrics are in-
troduced for each of the adaptive user models, and their drawbacks
considered. Section 4 then asks how models can be compared, and
how the choice of an evaluation metric affects the outcomes from
comparative IR experiments. Section 5 introduces a new model that
better reflects the actions undertaken by typical users, and defines
a corresponding effectiveness metric. Section 7 then describes an
experiment that might allow confirmation of that user model.

2. STATIC USER MODELS
In this section we describe a sequence of user models. Each of

them corresponds to an evaluation metric that can be applied post-
hoc to runs and relevance judgments, to obtain numeric scores. A
run is a ranking of documents or snippets, generated by a informa-
tion retrieval system is response to a query; and a set of judgments
(sometimes called a qrels file) is a record of which documents have
been judged relevant for that query. Note that there is no require-
ment that relevance must be binary, and throughout our discussion
it is assumed that relevance is (possibly quantized values selected
from) a continuous scale 0 ≤ r ≤ 1, with r = 0 meaning “no rele-
vance at all” and r = 1 meaning “highly relevant”.

Another way of thinking about relevance is that it is the utility
the user gains if or when they view that document in the ranking.
The goal of the user is to gain utility at the highest possible rate,
where the unit of cost expended is a document viewing. Hence,
a system that more successfully places highly relevant documents
amongst the first ones viewed by the user will be a more effective
system; and this is what an effectiveness metric should reflect.

Precision
In this simplest scenario, imagine a user who without variation in-
spects the first k proposed answers in the result listing; and, once
they have done so, makes use of the subset of them that are relevant.
That is, the user performs k units of work, and gains some utility
as a result. Taking Rel(k) = ∑

k
i=1 ri as the sum of the relevance

scores of those first k documents, where ri is the relevance score of
the document in the i th position in the ranking, gives a measure of
that utility, and hence Rel(k)/k is the rate at which utility has been
attained. If the relevance judgments are binary, then Rel(k) is the
number of relevant documents, and Rel(k)/k, is just the standard

definition of precision at depth k, or P@k. That is, the metric P@k
has as a corresponding model that the user always even-handedly
inspects exactly k documents in the result listing of each and every
query that they pose to the retrieval system.

It is also possible to interpret the previous scenario in a proba-
bilistic sense, and infer a uniform probability distribution over the
k documents and note that P@k is the expected relevance that ac-
crues from a user selecting and inspecting a single random docu-
ment according to that distribution, spending one unit of work as
they do:

WPrec(i) =
{

1/k when 1≤ i≤ k
0 otherwise .

With this definition, the effectiveness score computed for a rank-
ing can be thought of as being the inner-product of a pre-defined
weighting vector and a relevance vector r = 〈ri〉. That is,

P@k =
k

∑
i=1

ri ·WPrec(i) =
∞

∑
i=1

ri ·WPrec(i) ,

where the sum can be extended to infinity because of the zeros in
WPrec(i). With this formulation in place, any other probability dis-
tribution over the integers 1 . . .∞ can also be used as the basis for a
weighted precision effectiveness metric.

Scaled Discounted Cumulative Gain
Järvelin and Kekäläinen [8] observe that top-weightedness of eval-
uation metrics is desirable, writing “. . . the greater the ranked po-
sition of a relevant document . . . the less likely it is that the user
will ever examine it”, and describe an inner-product metric they
call discounted cumulative gain, or DCG@k. In their description,
Järvelin and Kekäläinen [8] make use of a vector of weights that in
fact is not a probability distribution, multiplying the relevance of
the i th item in the ranking by 1/max{1, logb i}; that initial formu-
lation has since evolved in use to become 1/ log2(i+1). Note that
the inverse logarithmic sequence is not bounded, and that raw DCG
effectiveness scores have no upper limit. To generate a probability
distribution, and hence ensure that effectiveness scores are in the
range [0,1], the evaluation depth k must be fixed, and a truncated
and scaled weight vector employed:

WSDCG(i) =
{

(1/S(k)) · (1/ log2(i+1)) when 1≤ i≤ k
0 otherwise .

where

S(k) =
k

∑
i=1

1
log2(i+1)

is the necessary scaling constant. We denote the resultant effective-
ness metric as scaled discounted cumulative gain,

SDCG@k =
∞

∑
i=1

ri ·WSDCG(i) .

The corresponding user model represents users as having deter-
mined in advance that they will examine exactly k items in the re-
sult listing, and within that set of k documents, will be somewhat
biased in favor of those near the top of the ranking, but also with
a non-trivial interest in all of the answers through to the k th. Fig-
ure 1a shows the distribution that arises when k = 100, with item
weight plotted a function of depth in the ranking. As can be seen,
SDCG@100 is somewhat top-weighted. But the bias is relatively
small, and the document in the first position in the ranking is only
seven times more likely to be examined than the document in po-
sition 100. Put another way, the model defined by SDCG@100
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(a) Weight WM() (b) Halting probability HM() = 1−CM() (c) Residual RM()

Figure 1: Weights, halting probabilities, and residuals as a function of rank, for weighted-precision metrics SDCG@100, RBP with p =
0.73, and INSQ. All scales are logarithmic.

suggests that around one in seven searches reaches depth 100, but
that no searches ever go to position 101 and beyond.

Rank-Biased Precision
As an alternative way of addressing the non-convergence of the
inverse logarithmic sequence, Moffat and Zobel [10] suggest the
use of the infinite geometric distribution to construct a metric they
call rank-biased precision, or RBP, specified by:

WRPB(i) = (1− p)pi−1 ,

where p is a persistence parameter. Moffat and Zobel [10] also de-
scribe the user model that accompanies this probability distribution,
supposing that the user always views the first answer in the ranking,
and, having viewed the document at rank i, views the document at
rank i+1 with a fixed conditional probability p. On average, a user
will thus examine 1/(1− p) documents in the ranking.

A benefit of the use of the geometric distribution is that it con-
verges, and hence the RBP@k metric is monotonic as the depth of
evaluation k is increased. Neither P@k nor SDCG@k have this
property. In both of them, as the depth of evaluation increases from
k to k′, scores for P@k and SDCG@k do not provide lower bounds
for scores P@k′ and SDCG@k′. The fact that the sequence of
weights used in RBP converges also means that at any given depth
of evaluation an upper bound on the eventual metric score can also
be computed, based on the sum of the tail of the distribution [10].
Hence, it is possible to drop the “@k” part of the metric and refer
to it as RBP; as a result, all of P, SDCG, and RBP are metrics
with a single parameter each.

Inverse Squares
Any other infinite convergent distributions can also be employed,
suitably normalized so that the sum is 1.0. One such alternative is
given by inverse squares of ranks:

WINSQ(i) =
1
S
· 1
(i+1)2 , (1)

with

S =
π2

6
−1≈ 0.6449 ,

which is a probability distribution because of the properties of the
Riemann function, ζ (2) = ∑

∞
i=1(1/i2) = π2/6. Figure 1a includes

the infinite weighting functions WRBP(i), plotted with p = 0.73,
and WINSQ(i). Both are more heavily top-weighted than is SDCG.

Halting and continuing
In these metrics it is assumed that the user scans the items in the
result listing from top to bottom, and stops at some point and aban-
dons that query. That assumption allows another probability distri-
bution to be used to characterize each of the models [3]: the prob-
ability (according to metric M) that each item in the ranking is the
last one inspected, computed as:

LM(i) =
WM(i)−WM(i+1)

WM(1)
,

which describes a probability distribution because the sequence of
weights is decreasing, and because WM(1) is the largest weight.
For example, LPrec@100(100) is 1.0 and LPrec@100(i) = 0.0 at all
other points i. The 100 th item in the ranking is always the last one
inspected in this metric.

Another set of values can be derived from weight distribution
WM(i) associated with metric M – the conditional probability of
viewing the i+ 1 th item in the ranking, given that the i th has just
been examined:

CM(i) =
WM(i+1)

WM(i)
.

For example, in the user model associated with RBP, the condi-
tional probability of viewing the i+ 1 st item in the result listing,
given that the i th item has just been viewed, is always p. Figure 1b
plots HM(i) = 1−CM(i), the conditional probability at depth i of
halting the search at that point. Because SDCG@100 uses a trun-
cated distribution, the conditional halting probability is 1.0 at depth
100. On the other hand, the weight, last, and halting probabilities
for RBP and INSQ are smooth distributions.

Residuals
If any one of the four distribution WM(), LM(), CM(), or HM() is
provided for some metric M, the other three can be inferred. In
addition, note that, by construction,

RM(k) =
∞

∑
i=k+1

WM(i) =
k

∏
i=1

CM(i) .

That is, the residual – the sum of the weight of the non-included tail
at depths k+ 1 and beyond for metric M – is given by the product
of the first k conditional continuation probabilities. The residual
represents the score uncertainly that arises when relevance assess-
ments ri are only known for the first k elements in the ranking.
For example, RSDCG@100(100) = 0.0, by construction; whereas
RINSQ(100) ≈ 0.0151. With RBP and p = 0.73 the same level



of residual is achieved earlier, because of the steeper drop-off in
the weight distribution compared to INSQ. With larger values of
p – representing more persistent searching – that relationship al-
ters. Figure 1c plots residual functions R(i) for SDCG, RBP with
p = 0.73, and INSQ.

Are static user models realistic?
All of these four static metrics – P@k, SDCG@k, RBP, and INSQ
– can be criticized. For example, P@k is not top-weighted, and
SDCG@k only moderately so. Moreover, the truncated weight
distributions used by P and SDCG prohibit user access beyond
depth k, an aspect of their structure that is unlikely to be reflected
in user performance. Similarly, RBP can be criticized because the
conditional halting probability is constant at all depths, whereas it
seems reasonable to suppose that a user who reaches depth 42 is
less likely to stop at that point than is a user who has just examined
the 2 nd document in the ranking; and a user at depth 92 is even less
likely to not look at another document. That is, it seems natural for
halting probabilities HM(i) to decrease as a function of depth.

In addition, when values of p below 0.9 or so are used, RBP
underweights the deep part of the distribution (with p = 0.73, the
document at depth 100 has a weight of just 6× 10−15); but when
p is closer to 1, the distribution probably underweights the top part
of the distribution (at p = 0.95, WRBP(1) = 0.05).

The fixed model associated with INSQ rectifies many of these
deficiencies – it avoids truncation, the halting probability decreases
with depth, and it assigns plausible weights at both the top of the
ranking (WINSQ(1) = 0.388, WINSQ(2) = 0.172, and WINSQ(3) =
0.097) as well as further down (WINSQ(100) = 1.5× 10−4). It
could also be parameterized through the use of a different power
than 2, or a different additive constant than 1, to shift the three
curves plotted in Figure 1.

But the real failing of static metrics is that, in terms of a user
model, none of them take into account what it is that the user is
experiencing as they step down the ranking. That is, static metrics
completely ignore the fact that as the user examines documents they
either make progress towards their search goal or they do not, and
their internal assessment of the task they are working on must be
evolving. Indeed, unless the user is completely agnostic as to the
outcome of their search session, their behavior must of necessity
differ as they do, or do not, get closer to answering the question they
sought to answer. For example, they will terminate their search as
soon as (or not long after) their information need has been satisfied,
regardless of what they have done up until that point. This is a
critical failing that has been noted by a number of authors (see, for
example, Chapelle et al. [5]).

3. ADAPTIVE USER MODELS
We now consider methods in which the user model is sensitive

to the relevance of the documents being examined.

Reciprocal Rank
Using the definitions already established, reciprocal rank, or RR,
is given by:

LRR(i) =
{

1 if i = argmin j{r j | r j = 1}
0 otherwise .

The corresponding model is that the user inspects all documents
in the ranking down to, and including, the first relevant one; they
always end their search at the first relevant document encountered.
The score is again a “rate of utility gained per unit of effort spent”,
since one unit of relevance is gained, out of the argmin j{r j | r j = 1}
documents examined during a sequential search.

Average Precision
Reciprocal rank requires knowledge in the ranked list of the po-
sition of the first-appearing relevant document; average precision,
or AP, can be viewed as being a generalization of RR in which
knowledge is required of the positions of all of the relevant docu-
ments. Like RR, it is most conveniently expressed in terms of the
last document probability L(i),

LAP(i) =
{

ri/R if R > 0
0.0 otherwise .

where R = Rel(N) = ∑
N
i=1 ri is the total sum of the relevance for

that query over all of the N documents in the collection being ranked.
The other distributions, WAP(i) and CAP(i) can be derived from
LAP(i), as discussed in the previous section.

The corresponding user model is one in which a user selects at
random one of the relevant documents (in the case of multi-grade
relevance, with the selection biased by the degree of relevance) and
then examines every document down to and including that one in
the result listing [11]. The score assigned by the metric is again an
expected rate at which utility is gained.

Are adaptive user models realistic?
As was the case with the static models, questions are quick to arise
when the plausibility of the user models is considered. The model
for RR requires that users scan through to the first relevant docu-
ment in the ranking, regardless of how deeply it appears; the model
for AP is even more contrived, in that it suggests that a user some-
how intuits how many relevant documents there are in the ranking,
and then scans past (on average) half of them before stopping, re-
gardless of how far through the ranking that might take them, and
regardless of how many answers they are interested in finding.

In terms of calculating scores, AP has the additional drawback
that a value for the metric cannot be computed until R is known
(or somehow approximated), which requires rather more work than
(say) just judging the first k documents in the ranking, as is required
for P@k and SDCG@k; or scanning the ranking until a relevant
document is encountered, as is the case for RR. Another area for
concern is that neither RR nor AP are defined if there are no rele-
vant documents for the query. Despite these concerns, AP and RR
are widely used in retrieval experimentation. Other adaptive met-
rics (for example, the recently-proposed ERR expected reciprocal
rank metric [5]) have yet to gain traction.

4. COMPARING METRICS
Having compared the various metrics based on philosophical

grounds, it is also of interest to determine if they can be compared
empirically in some way. One desirable attribute of a metric is the
ability to differentiate systems, since we are typically interested in
determining which system is obtaining the highest scores.1 Hence,
one way of evaluating effectiveness metrics is to apply them to sys-
tem runs generated in shared-task experimental regimes, and ex-
amine their ability to differentiate between the systems that con-
tributed to the experiment in a statistically significant manner.

For example, in the TREC-10 Web Track a total of 97 system
runs were submitted for evaluation, meaning that there are 4,656
1Note, however, that this is a somewhat circular argument, since we are
only interested in separating systems if the metric is capturing some essence
of the systems that is believed to be important to usability and usefulness.
A metric shouldn’t be chosen purely because it provides consistent sys-
tem separations. The name of the system gives completely unambiguous
system separations, but is clearly not an interesting reflection of retrieval
performance and shouldn’t be taken to be an effectiveness metric.



rr insq p10 rbp73 sdcg10 p100 rbp95 sdcg100 ap
rr 55.6 53.8 51.2 52.9 52.4 49.1 51.6 51.5 50.2
insq 0.0 63.8 59.4 62.4 61.5 56.4 60.1 59.9 58.1
p10 0.0 0.0 64.5 61.1 62.7 59.1 63.3 62.2 60.4
rbp73 0.0 0.0 0.0 64.7 63.2 57.6 61.7 61.2 59.4
sdcg10 0.0 0.0 0.0 0.0 64.9 58.5 62.7 62.0 60.0
p100 0.2 0.0 0.0 0.0 0.0 68.8 63.8 66.9 64.9
rbp95 0.0 0.0 0.0 0.0 0.0 0.0 69.1 67.2 64.3
sdcg100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71.0 66.3
ap 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 72.5

rr insq p10 rbp73 sdcg10 p100 rbp95 sdcg100 ap
rr — 85.3 77.7 81.8 80.2 65.9 71.4 68.0 62.1
insq 90.0 — 86.8 94.8 92.0 70.9 81.1 77.2 68.4
p10 85.2 92.6 — 90.3 94.2 77.4 89.5 83.1 74.3
rbp73 87.9 97.1 94.7 — 95.5 72.5 84.1 79.3 70.7
sdcg10 87.0 95.6 96.8 97.5 — 74.8 86.8 81.3 72.1
p100 79.2 85.2 88.7 86.3 87.5 — 83.4 90.0 80.4
rbp95 82.8 90.4 94.8 92.2 93.5 92.5 — 90.5 77.7
sdcg100 81.4 88.9 91.9 90.2 91.2 95.7 95.9 — 81.1
ap 78.7 85.3 88.2 86.6 87.3 91.9 90.8 92.5 —

(a) Significance agreements and disagreements, p = 0.05 (b) Class agreements, p = 0.05

Table 1: TREC-8 Adhoc Track (1999): 129 systems and 8,256 system pairs, evaluated over 50 topics. Details are explained in the text.

rr insq p10 rbp73 sdcg10 p100 rbp95 sdcg100 ap
rr 49.9 46.6 43.2 45.9 45.3 35.7 42.2 40.6 40.1
insq 0.0 55.5 50.7 54.2 53.2 41.3 49.8 47.4 46.3
p10 0.0 0.0 58.8 53.5 55.6 44.5 54.3 50.8 49.3
rbp73 0.0 0.0 0.0 58.0 56.2 42.8 52.1 49.2 47.9
sdcg10 0.0 0.0 0.0 0.0 58.6 44.1 53.4 50.5 48.8
p100 0.5 0.2 0.2 0.2 0.2 54.1 49.8 52.3 49.3
rbp95 0.1 0.0 0.0 0.1 0.1 0.0 62.7 56.6 55.1
sdcg100 0.2 0.1 0.1 0.1 0.1 0.0 0.0 60.0 53.2
ap 0.5 0.1 0.1 0.1 0.1 0.0 0.0 0.0 62.5

rr insq p10 rbp73 sdcg10 p100 rbp95 sdcg100 ap
rr — 87.1 75.6 82.7 80.4 67.1 68.2 68.6 64.4
insq 88.4 — 84.9 94.1 91.0 70.6 77.5 75.8 69.3
p10 79.5 88.7 — 88.5 92.6 73.0 83.8 79.1 71.4
rbp73 85.2 95.5 91.8 — 95.0 70.5 79.4 76.4 69.3
sdcg10 83.5 93.3 94.8 96.4 — 72.4 81.6 78.8 70.2
p100 69.3 75.6 79.1 76.8 78.5 — 79.3 88.9 78.4
rbp95 75.2 84.4 89.5 86.5 88.0 85.3 — 87.7 79.8
sdcg100 74.2 82.2 85.7 83.5 85.4 91.7 92.3 — 79.3
ap 72.0 78.6 81.4 79.7 80.6 84.6 87.9 86.9 —

(a) Significance agreements and disagreements, p = 0.05 (b) Class agreements, p = 0.05

Table 2: TREC-10 Web Track (2001): 97 systems, and 4,656 system pairs, evaluated over 50 topics. Details are explained in the text.

“system S1 versus system S2” pairwise system comparisons that
can be considered. In addition, if metric A and metric B are both
used to score systems S1 and S2, then a total of five different out-
comes are possible in terms of confidence indicators from a test for
statistical significance, categorized as follows:

SSA Active agreements, where metric M1 and M2 both provide
evidence that system S1 is significantly superior to S2, or
vice versa on systems;

SSD Active disagreements, where metric M1 says that S1 is sig-
nificantly better than S2, but metric M2 says that S2 is sig-
nificantly better than S1, or vice versa on systems;

SN Passive disagreements, where metric M1 provides evidence
that system S1 is significantly better than S2 (or vice versa
on systems), but metric M2 does not provide evidence in sup-
port of the same claim;

NS Passive disagreements, where metric M2 provides evidence
that system S1 is significantly better than S2 (or vice versa
on systems), but metric M1 does not provide evidence in sup-
port of the same claim;

NN Passive agreements, where metric M1 fails to provide suffi-
cient evidence that system S1 is significantly better than S2,
and so does metric M2;

Tables 1 and 2 shows the result of such a comparison using
the documents, runs, and judgments associated with the TREC-
8 Adhoc Track (newspaper articles) and the TREC-10 Web Track
(web documents). Similar results were obtained on TREC-9 Adhoc
Track and TREC-9 Web Track data; those outcomes are omitted.

In part (a) of each table, the diagonal numbers (in bold) show
the discriminative power of the metric in question, calculated as
the proportion of all system pairs that are deemed to be signifi-
cantly different, for that metric. As has been noted by other authors,
there is a clear trend whereby metrics that take longer sections of
the ranked search results lists into account are able to identify a
larger fraction of statistically significant differences between sys-
tems. This holds for both collection types. The numbers above

the diagonal in part (a) of the tables show the percentage of system
pairs for which both metrics agree that one system is significantly
superior to another, and both agree which is the better system (cat-
egory SSA). The numbers below the diagonal show the number
of systems for which both metrics show a significant difference be-
tween systems, but disagree as to which of the two systems is better
(category SSD). Fortunately, this number is generally very small
for the web collection, and zero for most pairs of metrics when
evaluating the newswire collection.

Part (b) of each table shows two types of class agreement, again
as percentages: 2SSA/(2SSA+SN+NS) above the diagonal, and
2NN/(2NN+SN+NS) below the diagonal. Numbers above the
diagonal show the percentage agreement when both metrics report
significant differences, while numbers below the diagonal show the
percentage agreement where no significant difference between runs
is reported.

These agreement scores represent the outcomes of “real” batch-
mode IR experiments. In particular, the numbers on class agree-
ment for significance (above the diagonal in part (b) of each table)
show cases where a researcher would have concluded that the per-
formance of one algorithm is substantially better than another, with
a real effect that was highly unlikely to have been due to chance
variation (at the 95% confidence level). For example, consider
the column for AP, perhaps the most widely reported effectiveness
metric in IR studies. The agreement between AP and other metrics
ranges from 62% to 81% across the two collections. Hence, a re-
searcher who conducted the same IR experiment, but measured the
outcomes using a metric other than AP, would have rejected the re-
sults as being not significant (and hence uninteresting) around 19%
to 38% of the time.

The gap between metric behaviors is problematic because, as dis-
cussed, there is currently no principled way in which to choose one
evaluation metric over another. While there may be broad agree-
ment in the community that certain metrics are more appropriate
for certain task types (for example, RR is considered more appro-
priate for navigational searches than AP), the real differences be-
tween metrics are not well understood. The choice between AP,
RBP (with a high p value), and SDCG (with a high k value) for



Initial expectation Answer occurrence observed after query issued
No answers Some answers Many answers

Few answers (navigational) Quickly dissatisfied, early
reformulation

Possibly satisfied without
needing reformulation

Satisfied quickly, no
reformulation

Many answers (informational) Dissatisfied, but will have
looked down ranking before

reformulating

Partially satisfied, will
reformulate after looking down

ranking

May be satisfied after first
query, if not, will reformulate

Table 3: Hypothesized user search behavior, as influenced by two factors: the anticipated number of answers required, and the extent to
which relevant documents are identified while searching. If the query is reformulated, the user’s expectation in the followup query will be
adjusted to account for relevance carried forward.

evaluating informational searches is largely arbitrary, and yet can
lead to different experimental conclusions. It is therefore vital that
a better understanding of metrics be developed, and one particular
aspect that can help to determine the suitability of a metric is how
closely they match real searcher behavior.

5. USER-INSPIRED ADAPTATION
Having argued that existing static and adaptive metrics are flawed

in various ways, an obvious question is whether any metric exists
that meets all of the design goals that were advocated in Sections 2
and 3. Such a metric should:

1. Be computable based on properties of a ranking, without re-
quiring properties of the whole collection to be established.

2. Be top-weighted, but retain non-negligible weight WM(i) at
ranks of i ≥ 100 and beyond, and be, as far as possible, a
smoothly varying function of i, without being truncated.

3. Have a conditional halting probability HM(i) that decreases
with depth.

4. Adapt to relevant documents in the answer ranking.

5. Be parameterized in accordance with the user’s initial ratio-
nale for undertaking the search.

To motivate the fifth of these goals, note that it is now accepted
that there are different types of information-seeking tasks, includ-
ing navigational interactions, where the purpose is to identify a
single answer; and informational interactions, in which the user
may be seeking to synthesize a new document by drawing on a
range of a dozen or more existing ones. Legal and medical search
are extreme examples of the latter; and in those disciplines a user
commencing an information-seeking task might anticipate spend-
ing many hours carrying out a sequence of searches, with a view to
identifying scores or even hundreds of relevant documents. That is,
we believe that users commence different types of task with differ-
ent expectations as to how many answers they anticipate finding,
and that this expectation affects their search behavior.

To develop a user model we suggest that the conditional proba-
bility of a user continuing their search having reached some depth
i in the ranking is a combination of three factors: the depth in the
ranking that has been reached; the anticipated number of answers;
and the number of answers that have been identified so far through
to that depth. That is, we hypothesize that the conditional con-
tinuation function CM(i) is positively related to T , the anticipated
number of answers, and inversely correlated with Rel(i) = ∑

i
j=1 ri,

the amount of relevance identified down to depth i in the ranking.
For example, consider a user undertaking an informational query,

with an initial (unvoiced and unexpressed) anticipation of finding
perhaps 10 documents. If the first few documents in the ranking are

not relevant, the user remains likely to continue looking down the
ranking – after all, they were never going to stop after just one
document. Alternatively, if relevant documents are encountered
early, the user’s mental state changes, and they are now (still un-
voiced and unexpressed) anticipating finding further answers rela-
tively quickly, after the early wins already attained.

A user that issues a navigational query has quite different be-
havior. They commence with the expectation that one answer will
suffice, and are likely to stop as soon as a relevant document is
found. Moreover, they are relatively impatient for that to happen.
If the first and second documents are not relevant, they might re-
formulate even before looking at the third. Table 3 outlines the
hypothesized mixture of behaviors.

To formalize these ideas, suppose that at the moment a user is-
sues a query they anticipate needing T relevant documents. To cap-
ture their subsequent behavior, we envisage an effectiveness metric
that has two components – a depth-based background conditional
continuation probability CM(i) that models (as a function of depth)
the user’s actions in the absence of any relevant documents appear-
ing in the ranking; and a discounting modification that is used to
adjust that probability as Rel(i) increases relative to T . Together
they yield an adjusted continuation probability C′M(T, i) that incor-
porates the required influences.

There are, of course, many options that suit these requirements.
We now propose one arrangement that meets the hurdle of being
“reasonable”, even though we are not in a position to provide any
evidence that it is “right”.2 As an underlying background model
for user activity in the absence of any relevant documents, we pa-
rameterize the INSQ metric by adjusting it for T , the anticipated
number of documents:

WINSQ(T, i) =
1

S2T−1
· 1
(i+2T −1)2 , (2)

where Sk = (π2/6)−(∑k
i=1 1/i2) is the normalization constant, and

hence that

CINSQ(T, i) =
(i+2T −1)2

(i+2T )2 .

When T > 1, this has the effect of “flattening” the WINSQ(i) curves,
decreasing the weights when i is small, and increasing them when
i is large. This effect is shown in Figure 2a, for three values of
T ; the T = 1 curve is the same as the INSQ curve plotted in Fig-
ure 1. Figure 2b shows the three corresponding conditional halting
probability functions, HINSQ(i).

In support of this choice for the background user behavior, note
that it satisfies requirements 1–3, listed above. In terms of require-
ment 5, the expected search length for a weight distribution WM(i)
2That is, we exercise artistic licence at this point, and trust that the reader
will accept that our intention is to be illustrative rather than prescriptive.
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Figure 2: Adding parameters to the INSQ metric: (a) the background weight function WINSQ(T, i) for three values of T ; (b) the corre-
sponding conditional halting probabilities HINSQ(T, i); and (c) an example showing the background and adjusted weights when T = 5 and
ri = 〈1,3,4,6,8,12,14,34,37,43,64,82,86,95〉. All scales are logarithmic.

is given by

E =
∞

∑
i=1

i ·LM(i) .

The properties of the inverse square relationship, specifically that∫ 2k

k

1
x2 dx =

1
2

∫
∞

k

1
x2 dx ,

mean that the expected search depth E reached in the parameterized
INSQ metric described by Equation 2 is approximately 2T + 0.5.
That is, a user seeking T answers is modeled as looking, on aver-
age, at around 2T +0.5 documents before concluding their search.
For example, the expected numbers of documents examined by the
parameterized INSQ metric described by Equation 2 and plotted
in Figure 2a are 2.58, 10.52, and 50.50 for T = 1, T = 5, and
T = 25 respectively. We believe that this relationship between T
and expected search length E ≈ 2T +0.5 for the adaptive variant of
INSQ helps get us to first (or even second) base in terms of “intu-
itive plausibility”.

The default “no relevant documents encountered” behavior em-
bodied in CINSQ(T, i) is then modified (requirement 4) by a dis-
counting factor that, as the user gets closer to their goal of finding
T relevant documents, increases the probability of the search termi-
nating at any particular depth. One way this can be done is to note
that once the i th document has been inspected, the user is now an-
ticipating finding T −Rel(i) relevant documents where, as before,
Rel(i) = ∑

i
j=1 ri is the total relevance achieved through to depth

i. A possible formulation for an adjusted conditional continuation
probability is to then use

Ti = max{0,T −Rel(i)} ,

as an estimate of the volume of relevance still anticipated, and take

C′INSQ(Ti, i) =
(i+2Ti−1)2

(i+2Ti)2 . (3)

Figure 2c shows the effect of these changes on an example rank-
ing processed when T = 5 answers are anticipated. The particular
ranking used is rich in relevant documents near the top, and so,
compared to the model established by the background probabili-
ties, the user is more likely to halt early. That propensity translates
into an adaptive weighting function W′INSQ(T, i) that can only be
computed once the ranking is given. In the case of the example, the
computed effectiveness score rises from 0.350 to 0.502 as a result
of the adaptation.

insq5 insq10 rr insq p10 rbp95 sdcg100 ap
insq5 67.5 65.9 52.4 61.9 63.3 64.9 64.2 62.1
insq10 — 69.0 51.8 60.8 63.9 67.6 66.6 64.2

(a) Percentage in SSA category

insq5 insq10 rr insq p10 rbp95 sdcg100 ap
insq5 — 96.6 85.1 94.3 96.0 95.0 92.7 88.7
insq10 — — 83.1 91.6 95.7 97.9 95.3 90.9

(b) Class agreement for SSA category

Table 4: TREC-8 data: (a) percentages of system pair comparisons
in the SSA categories for selected metric combinations; and (b)
class agreements. These values correspond to the numbers on and
above the diagonals in Tables 1a and 1b respectively.

insq5 insq10 rr insq p10 rbp95 sdcg100 ap
insq5 60.8 58.0 44.5 52.6 54.9 55.9 52.0 50.9
insq10 — 61.6 42.7 50.7 54.5 58.6 54.4 53.1

(a) Percentage in SSA category

insq5 insq10 rr insq p10 rbp95 sdcg100 ap
insq5 — 94.8 80.4 90.5 91.8 90.6 86.1 82.4
insq10 — — 76.6 86.7 90.5 94.4 89.5 85.5

(b) Class agreement for SSA category

Table 5: TREC-10 data, other details as for Table 4, and can be
compared with the values on and above the diagonals in Table 2.

Tables 4 and 5 extend Tables 1 and 2 respectively, concentrating
on the “above the diagonal” values. Two versions of the adaptive
INSQ metric defined by Equation 3 are included, with parameter
values T = 5 and T = 10, denoted by “insq5” and “insq10” respec-
tively. The column headed “insq” is the static INSQ metric defined
by Equation 1, already compared to other static and adaptive met-
rics in Tables 1 and 2. As can be seen from the corresponding part
(a) segments, in terms of their ability to determine significance,
INSQ5 behaves somewhat like the shallow metrics RR and P@10,
and INSQ10 is somewhat like the deeper ones. This relationship is
as expected. In the corresponding part (b) in each table it is notable
that the adaptive INSQ-based metrics have higher class agreements
with both deep metrics (AP) and shallow ones than do any of the
other metrics considered. This is a very encouraging outcome.

6. RELATED WORK
There has been a great deal of thought given to effectiveness

evaluation over the last decade. Järvelin and Kekäläinen [8] in-



troduced the idea of inner-product top-weighted measures and de-
scribed both DCG and a normalized variant of it called NDCG that
we have not considered here; Moffat and Zobel [10] followed up by
describing the RBP metric and formalizing the corresponding user
model. Zhang et al. [16] considered a range of static weighted-
precision metrics, and showed that RBP with p = 0.73 was a good
fit with the click densities observed in a commercial search engine
click log; Carterette et al. [4] also examine the choice of p in RBP,
reiterating that it might vary across both users and queries. Robert-
son [11] provided a user model for AP; Thomas et al. [13] examine
the numeric stability of static metrics when applied to perturbed
or degraded rankings; they also note that page boundaries can also
be handled by altering the continuation probabilities at appropriate
intervals. Zhang et al. [16] also consider page boundaries.

Chapelle et al. [5] examine weighted-precision effectiveness met-
rics, and argue that the history of what the user experiences as they
process the answer list affects the way they address the remain-
der of the list, and discuss ways in which these adaptive cascade
models can be structured; we include that critical requirement in
the approach described in this paper. Yilmaz et al. [15] also ex-
plore metrics in which the probability of continuing the inspection
of documents is conditional on the relevance level of the last docu-
ment inspected.

Carterette [3] analyzes and categorizes a range of effectiveness
metrics, grouping them into four classes; and considers the rela-
tionships between weights, halting probabilities, and last viewed
probabilities that we have also employed in this work. He then ex-
plores the implications of the classification using a range of click
and TREC data, concluding that DCG has a range of merits.

Most recently Smucker and Clarke [12] have measured the time
taken by users to inspect documents, and argued that a more pre-
cise unit of “investment” against which utility is assessed should
be search time, rather than documents examined. In a user study of
search behavior, Smucker and Clarke [12] demonstrate that short
documents require less inspection time than do long ones, and that
repeated documents can be evaluated very quickly. Based on these,
and other factors, they propose time-biased gain as an effectiveness
metric, and argue that it better reflects user search behavior.

In other user-focused work, Al-Maskari et al. [1] question the
usefulness of deep evaluation metrics, and find that shallow met-
rics such as P@10 provide better correlation with the experience
reported by users. Doubts have also been expressed about the use-
fulness of AP as a metric by Turpin and Scholer [14], who mea-
sured user task completion using degraded rankings; Huffman and
Hochster [7] go further, and compare user satisfaction with a sim-
ple depth-three effectiveness metric, and find a strong correlation
between them.

There has also been investigation into how best to address the
complication of diversity, the fact that a query may have multiple
interpretations. We do not consider that literature here; the reader
is referred to Kanoulas et al. [6] and Ashkan and Clarke [2].

7. NEXT STEPS
Our key claim is that effectiveness metrics mirror user models,

and hence for the scores assigned by a metric to be convincing,
the user model must be a plausible one – in particular, that the
“cascade” approach to evaluating a ranking must be informed by
the user’s intention in issuing the query. With that in mind, we
have recently commenced a user study to measure search behavior
on a variety of task types, ranging from pure navigational to rich
information-seeking ones. We have constructed an instrumented
browser, and will monitor explicit user action in terms of queries,
click-throughs, and document assessments, in the style also de-

scribed by Smucker and Clarke [12]; and will be correlating those
actions against gaze-tracking behavior captured for each user. In
each task users will be presented with answer listings generated
via the API of a de-identified commercial search service, with half
of the result pages “diluted” by the insertion of attractive but not-
relevant documents.

Subjects will also be shown a set of similarly-categorized in-
formation needs, and asked (without performing any searching) to
estimate the number of documents they think they would need to
locate in order to satisfy those information needs.

We believe that this experimental structure will allow testing of
our key hypothesis, namely, that as relevant documents are identi-
fied, users become more inclined to end their perusal of the answer
list, but do so more slowly if they initially sought a high number
of answers. We expect to have results early in 2013, including ex-
tending the notion of “anticipated relevance remaining” through to
multi-query sessions [9], as is hinted at by Table 3.

Acknowledgment
This work was supported by the Australian Research Council.

8. REFERENCES
[1] A. Al-Maskari, M. Sanderson, and P. Clough. The relationship

between IR effectiveness measures and user satisfaction. In Proc.
SIGIR, pages 773–774, Amsterdam, July 2007.

[2] A. Ashkan and C. L. A. Clarke. On the informativeness of cascade
and intent-aware effectiveness measures. In Proc. WWW, pages
407–416, Hyderabad, India, Apr. 2011.

[3] B. Carterette. System effectiveness, user models, and user utility: A
conceptual framework for investigation. In Proc. SIGIR, pages
903–912, Beijing, China, 2011.

[4] B. Carterette, E. Kanoulas, , and E. Yilmaz. Simulating simple user
behavior for system effectiveness evaluation. In Proc. CIKM, pages
611–620, Glasgow, Scotland, 2011.

[5] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected
reciprocal rank for graded relevance. In Proc. CIKM, pages 621–630,
Hong Kong, China, 2009.

[6] C. L. A. Clarke, N. Craswell, I. Soboroff, and A. Ashkan. A
comparative analysis of cascade measures for novelty and diversity.
In Proc. WSDM 2011, pages 75–84, Hong Kong, China, 2011.

[7] S. B. Huffman and M. Hochster. How well does result relevance
predict session satisfaction? In Proc. SIGIR, pages 567–574,
Amsterdam, July 2007.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Information Systems, 20(4):422–446, 2002.

[9] E. Kanoulas, B. Carterette, P. D. Clough, and M. Sanderson.
Evaluating multi-query sessions. In Proc. SIGIR, pages 1053–1062,
Beijing, China, July 2011.

[10] A. Moffat and J. Zobel. Rank-biased precision for measurement of
retrieval effectiveness. ACM Trans. Information Systems,
27(1):2:1–2:27, Dec. 2008.

[11] S. Robertson. A new interpretation of average precision. In Proc.
SIGIR, pages 689–690, Singapore, July 2008.

[12] M. D. Smucker and C. L. A. Clarke. Time-based calibration of
effectiveness measures. In Proc. SIGIR, pages 95–104, Portland,
Oregon, Aug. 2012.

[13] P. Thomas, T. Jones, and D. Hawking. What deliberately degrading
search quality tells us about discount functions. In Proc. SIGIR,
pages 1107–1108, Beijing, July 2011.

[14] A. Turpin and F. Scholer. User performance versus precision
measures for simple search tasks. In Proc. SIGIR, pages 11–18,
Seattle, Washington, Aug. 2006.

[15] E. Yilmaz, M. Shokouhi, N. Craswell, and S. Robertson. Expected
browsing utility for web search evaluation. In Proc. CIKM, pages
1561–1564, Toronto, Canada, 2010.

[16] Y. Zhang, L. A. F. Park, and A. Moffat. Click-based evidence for
decaying weight distributions in search effectiveness metrics.
Information Retrieval, 13(1), Feb. 2010.


