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Abstract. This lecture is intended to serve as an introduction to In-
formation Retrieval (IR) effectiveness metrics and their usage in IR ex-
periments using test collections. Evaluation metrics are important be-
cause they are inexpensive tools for monitoring technological advances.
This lecture covers a wide variety of IR metrics (except for those de-
signed for XML retrieval, as there is a separature lecture dedicated to
this topic) and discusses some methods for evaluating evaluation metrics.
It also briefly covers computer-based statistical significance testing. The
takeaways for IR experimenters are: (1) It is important to understand
the properties of IR metrics and choose or design appropriate ones for
the task at hand; (2) Computer-based statistical significance tests are
simple and useful, although statistical significance does not necessarily
imply practical significance, and statistical insignificance does not nec-
essarily imply practical insignificance; and (3) Several methods exist for
discussing which metrics are “good,” although none of them is perfect.

1 Introduction

This lecture is intended to serve as an introduction to Information Retrieval (IR)
effectiveness metrics and their usage in IR experiments using test collections.
Evaluation metrics are important because they are inexpensive tools for mon-
itoring technological advances. Forty years ago, Cooper [36, 37] said: “the best
way to evaluate a retrieval system is, in principle at least, to elicit subjective
estimates of the system’s utility to its users, quantified in terms of the number
of utiles (e.g. dollars) they would have been willing to give up in exchange for
the privilege of using the system.” He also described this hypothetical evaluation
scheme as follows: “The system users in the sample are chosen at random from
among the patrons as they enter the library and are about to make use of the
retrieval system.” Now in the 21st Century, it is very difficult to find “the users
in the library,” observe them and ask them questions!

Sections 2 and 3 define and discuss “traditional” and “advanced” IR metrics,
respectively. By traditional metrics, I mean those designed for evaluating a set of
items or a ranked list of items based on relevance. By advanced metrics, I mean
those designed for handling diversity, multi-query sessions, and IR systems that
go beyond the ranked-list paradigm. (This lecture does not cover evaluation
metrics specifically designed for XML retrieval, as there is a separate lecture
dedicated to this topic.) Section 4 briefly describes computer-based statistical



significance tests that are useful for IR evaluation. Section 5 discusses tests for
“evaluating evaluation metrics”: one ultimate goal of IR researchers is to build
systems that completely and efficiently satisfy the user’s information needs, and
we often regard evaluation metrics as crude indicators of user satisfaction or
user performance. What are “good” metrics? Finally, Section 6 summarises this
lecture.

A word of warning: in this lecture, I will present my personal views on IR
effectiveness metrics and on methods for evaluating evaluation metrics. I discuss
a lot of my own work because I know a lot about it. Hence I encourage the reader
to go back to the original papers listed up in the references.

2 Traditional IR Metrics

Historically, IR was about set retrieval: should each document be retrieved or
not? Section 2.1 describes some basic evaluation metrics for set retrieval, includ-
ing the widely-used recall, precision and F-measure [68]. But with the advent of
the digital information overload era, ranked retrieval has become the norm, so
that the user can examine retrieved documents sequentially from the top and
stop at her convenience. Section 2.2 describes a wide range of evaluation met-
rics for ranked retrieval, including normalised Discounted Cumulative Gain [49]
(nDCG) which has been used widely not only in the IR research community but
also for tuning commercial web search engines. These “traditional” set retrieval
and ranked retrieval metrics require a gold standard (i.e. “right answers”): to
be more specific, for each search topic (or query), a set of relevant documents is
required. Note that “document” is a generic term that may refer to any retrieval
unit: for example, it could be a web page, a textual passage, a multimedia file, a
cluster of items and so on. Section 2.3 provides information for further reading.

2.1 Set Retrieval Metrics

D*: relevant docs D: retrieved docs 

D* ൘ D 

Fig. 1. Relevant/retrieved documents.

Recall and Precision Figure 1 is a Venn diagram that shows a set of relevant
documents for a topic (D∗), a set of retrieved documents for that topic (D), and
the intersection between the two (D∗∩D). D∗−D represents the documents that
the retrieval system missed, while D−D∗ represents the nonrelevant documents
retrieved. Recall (Rec) and Precision (Prec) directly reflect these properties,
respectively: Rec = |D∗ ∩D|/|D∗|, and Prec = |D∗ ∩D|/|D|.
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E-measure While it is clear that recall and precision have a trade-off relation-
ship, we generally want both high recall and high precision. It would be useful
to have a single, summary metric that incorporates this trade off. Let us first
start with a basic version of E-measure [68], using Figure 1:

E-measure =
|D∗ ∪D|− |D∗ ∩D|

|D∗|+ |D| . (1)

Using the aforementioned definitions of recall and precision, the above can al-
ternatively be expressed as:

E-measure = 1− 1

0.5 1
Prec + 0.5 1

Rec

. (2)

But now it is clear that this version of E-measure assumes that recall and pre-
cision are equally important; let us generalise it by introducing a parameter α
(0 ≤ α ≤ 1):

E-measure = 1− 1

α 1
Prec + (1− α) 1

Rec

. (3)

Furthermore, by letting α = 1/(β2+1), the generalised E-measure can be rewrit-
ten as:

E-measure = 1− (β2 + 1)PrecRec

β2Prec + Rec
. (4)

Here, the assumption is that the user attaches β(≥ 0) times as much importance
to recall as precision1.

F-measure F-measure [28], which is simply one minus E-measure, is much more
widely used than E-measure, probably because we want the evaluation metric
value to be large for an effective retrieval system:

F -measure =
(β2 + 1)PrecRec

β2Prec + Rec
. (5)

F-measure with β = b is often expressed as Fb; note that F1 is a harmonic mean
of precision and recall.

2.2 Ranked Retrieval Metrics

nDCG Normalised Discounted Cumulative Gain [49] (nDCG) has become one
of the most widely-used evaluation metric for traditial ranked retrieval over
the past decade. It is similar to a metric from the 1960s called the Normalised
Sliding Ratio [67] (NSR), and handles graded relevance assessments unlike many
other metrics that were used earlier in the IR community. For example, a topic
may have some judged nonrelevant documents (relevance level 0), some partially

1 dE
dRec = dE

dPrec when Prec
Rec = β [68].

0



relevant documents (relevance level 1) and highly relevant documents (relevance
level 2). We decide in advance the gain value gvx for each relevance level x: for
example, we could simply let gv1 = 1, gv2 = 2, and gv3 = 3, by assuming that
the raw value of each relevant document is proportional to its relevance level.
Also, it is common to let gv0 = 0: a nonrelevant document is of no value.

For a given ranked list of documents, let g(r) = gvx if the relevance level of
the document at rank r is x. In particular, let g∗(r) denote the gain value at
rank r of an ideal list2, obtained by sorting all relevant documents in decreasing
order of the relevance level. A few versions of nDCG exist, but the one described
here [17] is probably the most widely-used:

nDCG =

∑l
r=1 g(r)/ log(r + 1)

∑l
r=1 g

∗(r)/ log(r + 1)
(6)

where l is the measurement depth, also known as the document cutoff. Note that
the logarithm base b cancels out in the above definition: for convenience let us
use b = 2 here. The key feature of nDCG is that the gain value of each retrieved
relevant document is discounted based on its rank: for example, if we set the
gain value of each highly relevant document to be 3, then for a highly relevant
document at rank 1, its discounted gain is 3/ log(1 + 1) = 3; but for a highly
relevant document at rank 7, its discounted gain is 3/ log(1 + 7) = 1.

The use of the original nDCG, which regards the logarithm base b as a user
patience parameter [49], is not recommended. The problem is that discounting is
not applied when r ≤ b. For example, when b = 10, this version of nDCG cannot
tell the difference between a system that returns a relevant document at rank 1
and one that returns a relevant document at rank 10. To address this, Järvelin
et al. [50] have described yet another version of nDCG, which discounts the raw
gain by 1 + logb r instead of log(1 + r).

11-point Average Precision This binary-relevance metric is a single-value
summary of the recall-precision curve [108], but has been replaced in the early
1990s by (noninterpolated) Average Precision, which is described next. Although
11-point Average Precision is no longer popular, how to draw a recall-precision
curve is perhaps still worth mentioning here.

Figure 2 shows how to compute interpolated precision for 11 recall points. In
this example, the number of known relevant documents is five, and the system has
managed to retrieve four of them. The recall (Rec(r)) and the precision (Prec(r))
at each rank r are shown on the left. For each recall point i(∈ {0, 0.1, . . . , 1}),
interpolated precision is given by:

IP i = max
r,Rec(r)≥i

Prec(r) . (7)

That is, for a given recall point i, the actual recall values that satisfy this level
are first obtained, and then the highest precision value among these actual recall
points is obtained.

2 Pollock, who proposed NSR in 1968, called it the master list [67].
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Fig. 2. Computing interpolated precision for the 11 recall points.

The recall-precision curve is obtained by plotting the interpolated precision
value for each i. Moreover, 11-point average precision is simply given by:

11pt -AP =

∑
i∈{0,0.1,...,1} IP i

11
. (8)

This averaging is not desirable for many IR applications, as the precisions at low
recall points and those at high recall points are considered equally important.

Average Precision Average Precision (AP) was one of the most widely-used
evaluation metric for ranked retrieval during the 1990s, since it was introduced at
the Second Text Retrieval Conference (TREC-2) [108]. Let R denote the number
of known relevant documents for a topic. For a given ranked list of documents,
let I(r) be 0 if the document at rank r is nonrelevant, and 1 otherwise. Let
C(r) =

∑r
k=1 I(k): this is the number of relevant documents within top r. Hence

the precision at r is given by Prec(r) = C(r)/r. Then AP is defined as:

AP =
1

R

∑

r

I(r)Prec(r) =
1

R

∑

r

I(r)
C(r)

r
. (9)

One of the strengths of AP over 11-point average precision and other metrics
is that it is top heavy: that is, it is sensitive to changes near the top ranks. For
example, suppose that, through a system improvement, a relevant document has
moved up by one rank from rank 2 to 1. Before this improvement, this document
contributes a precision of 0.5 to AP; after the improvement, it contributes a
precision of 1. In contrast, suppose a relevant document has moved from rank
100 to 99 (and that there is no other relevant document in the ranked list). This
has little impact on AP, as the contributed precisions are 1/100 = 0.0100 and
1/99 = 0.0101, respectively.

Robertson [71] provided a user model for AP. There is a user population,
and all users scan the ranked list from top to bottom, but different users stop
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scanning the list at different relevant documents (probably due to satisfaction).
In AP, this probability distribution is assumed to be uniform across all relevant
documents: that is, the probability that the user stops at each relevant document
is 1/R. Moreover, for each stopping point r, AP measures the utility of the top
r documents in terms of precision Prec(r). Hence, AP can be regarded as the
expected utility for the user population.

The above formulation of AP and its user model assume that the document
ranking is infinite, which may seem unrealistic. For those who want to use a
small measurement depth l, the following variant of AP may be used:

AP =
1

min(l, R)

∑

r

I(r)Prec(r) . (10)

This ensures that the maximum possible AP is 1 even if l < R. Moreover, the
user’s stopping probability distribution can now be interpreted as either uniform
over all relevant documents (if l ≥ R) or uniform over the first l retrieved relevant
documents (if l < R).

Unlike nDCG, AP cannot handle graded relevance. While the use of binary-
relevance metrics such as AP is still common in the IR community, it should be
noted that, with such metrics, it is impossible to design retrieval systems that can
retrieve, say, highly relevant documents before marginally relevant ones. In light
of this, several graded-relevance versions of AP have been proposed. One of them
is called Q-measure [75, 74] (or simply “Q”), which is discussed below. Graded
Average Precision (GAP) [73] is a more recently-proposed alternative, which we
shall omit in this paper as it is a little more complex than others. In contrast
to Q which combines the ideas of nDCG and AP, GAP is based on a novel
interpretation of graded relevance: more specifically, it assumes that the user has
a binary notion of relevance, but that different users have different thresholds
over the relevance levels. Sakai and Song [94] have compared Q and GAP in
terms of discriminative power [77] (discussed in Section 5.1) and reported that
Q outperformed GAP in some cases. In an earlier study, Sakai [80] compared Q
with nDCG and Kishida’s generalised Average Precision [57] (gAP), yet another
graded-relevance version of AP, and demonstrated the advantage of Q’s user
persistence parameter, which gAP lacks.

Q-measure Q-measure [75, 74], a graded-relevance version of AP, replaces the
precision Prec(r) with the blended ratio BR(r) which can handle graded rele-
vance. Let cg(r) =

∑r
k=1 g(k) and cg∗(r) =

∑r
k=1 g

∗(k): these are the (nondis-
counted) cumulative gains [49] for the ranked list to be evaluated and for the
ideal list, respectively. Then, for a given value of the user persistence parameter
β(≥ 0):

BR(r) =
C(r) + βcg(r)

r + βcg∗(r)
. (11)

BR(r) inherits the properties of Prec(r) = C(r)/r and the normalised Cu-
mulative Gain [49] nCG(r) = cg(r)/cg∗(r). Moreover, in a binary-relevance eval-
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uation environment (regardless of β), it is easy to prove that BR(r) = Prec(r)
holds if and only if r ≤ R, while BR(r) > Prec(r) holds if and only if r > R.
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Fig. 3. Effect of β on BR(r1) in a binary relevance environment (R = 5).

Figure 3 illustrates the role of β for a topic with R = 5 relevant documents
in a binary relevance environment. Here, the x axis represents r1, the rank of the
first relevant document found in the ranked list; the y axis represents the value
of BR(r1). In a binary relevance environment, since BR(r) = Prec(r) holds for
r ≤ R, note that BR(r1) = 1/r1 holds for r1 ≤ R. On the other hand, in a binary
relevance environment, it is easy to show that BR(r1) = (1 + β)/(r1 + βR) for
r1 > R. It can be observed from the figure that a large β represents a user who
is very tolerant to relevant documents retrieved at low ranks; In practice, β is
often set to 1, although this is an arbitrary choice.

Q can be defined as follows:

Q-measure =
1

R

∑

r

I(r)BR(r) =
1

R

∑

r

I(r)
C(r) + βcg(r)

r + βcg∗(r)
(12)

or, for a given measurement depth l,

Q-measure =
1

min(l, R)

∑

r

I(r)BR(r) . (13)

Following Robertson’s interpretation of AP [71], Q can be regarded as an
evaluation metric which (a) assumes, just like AP, that the user’s stopping prob-
ability distribution is uniform over all (or l) relevant documents; and (b) mea-
sures the utility at a given stopping rank in terms of the blended ratio [92]. Also,
it is clear that Q reduces to AP when β = 0.

While Q is not as widely-used as nDCG, it has been used as one of the official
metrics in the NTCIR Crosslingual IR (CLIR) task [58], Advanced Crosslingual
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Information Access (ACLIA) task [93] and the Geotemporal Information Re-
trieval (GeoTime) task [45].

Sakai and Robertson [92] have explored a few extensions of the above interpre-
tation: they considered non-uniform stopping probability distributions, namely,
a distribution based on relevant documents seen so far, and a distribution that
takes the relevance levels into account. The family of these metrics is collectively
known as Normalised Cumulative Utility (NCU).

R-precision, R-measure R-precision [108] is a binary-relevance, early-TREC
metric, defined for each topic with R relevant documents as R-prec = Prec(R).
That is, this is the precision (or equivalently, recall) at the measurement depth
of R. Similarly, R-measure [75, 74], a variant of Q, is defined as R-measure =
BR(R). These metrics can be regarded as a type of NCU where all users stop
scanning the ranked list at rank R. Although R-measure leverages graded rele-
vance, it gives a score of one to any system as long as the top R documents are
all relevant, even if marginally relevant documents are ranked above the highly
relevant ones.

RR The basic assumption behind all of the above ranked retrieval metrics is
that the user wants as many relevant documents as possible. While they may
be suitable for informational search intents, there are also navigational search
intents [14], which basically require just one document: in this case, we can
assume that retrieving multiple relevant documents do not help the user.

Reciprocal Rank (RR) is a metric suitable for navigational intents. For a
ranked list that does not contain a relevant document, we let RR = 0. Otherwise,
let r1 be the rank of the first relevant document in the ranked list: then RR =
1/r1.

RR can also be seen as a member of the aforementioned NCU family: it is
assumed that all users stop at rank r1, and the utility at rank r1 is measured
by precision: Prec(r1) = C(r1)/r1 = 1/r1. Just like AP, it cannot handle graded
relevance.

P+ There are a few graded-relevance versions of RR: here, we discuss P+ [76],
which is a variant of Q and therefore a member of the NCU family. For a ranked
list that does not contain a relevant document, we let P+ = 0. Otherwise, let
rp be the rank of the document that is highest-ranked among the most relevant
documents within the measurement depth l. For example, if a ranked list contains
a marginally relevant document at rank 2, a highly relevant document at rank
4 and another highly relevant document at rank 6, then rp = 4. (Whereas, note
that r1 = 2.) Then P+ is defined as:

P+ =
1

C(rp)

rp∑

r=1

I(r)BR(r) . (14)
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Thus, P+ is an NCU metric that (a) assumes that the user’s stopping probability
distribution is uniform over the top C(rp) relevant documents, i.e., all relevant
documents at or above rp; and (b) measures the utility at a given stopping rank
in terms of the blended ratio just like Q.

Sakai [76] have discussed the advantages of P+ over other graded-relevance
versions of RR such as Weighted Reciprocal Rank (WRR) [44], P-measure (de-
fined as BR(rp)) and O-measure (defined as BR(r1)). While P+ itself is not a
well-known metric, together with Q, it forms the basis of another metric for
evaluating diversified search called P+Q, which we shall discuss in Section 3.1.
Probably the most well-known graded-relevance metric that is suitable for nav-
igational intents is Expected Reciprocal Rank [27] (ERR), which we shall discuss
next.

ERR Let Pr(r) denote the probability that the user is satisfied at a document
at rank r. ERR assumes that the user stops scanning the ranked list as soon as
she is satisfied with a document, and that this satisfaction probability depends
directly and solely on the relevance level of each document. For example, we
can assume that Pr(r) = 0 if the document at r is nonrelevant; if we have
marginally relevant, partially relevant and highly relevant documents (i.e. three
relevance levels), we may let Pr(r) be (21 − 1)/23 = 1/8, (22 − 1)/23 = 3/8 and
(23 − 1)/23 = 7/8, respectively [27]. Under the linear traversal assumption (i.e.
the user scans the list from top to bottom), the probability that the user is still
unsatisfied at rank r is given by dsat(r) =

∏r
k=1(1−Pr(k)). ERR is then given

by:

ERR =
∑

r

dsat(r − 1)Pr(r)
1

r
. (15)

ERR can also be regarded as an instance of NCU, which (a) assumes that
the user’s stopping probability over ranks is given by dsat(r − 1)Pr(r), i.e. the
probability that the user is dissatisfied with all documents between ranks 1 and
r − 1 and finally satisfied at r; and (b) uses the RR at r to measure the utility.
Note that RR is used rather than precision, since the document at r is considered
to be the only useful one.

What distinguishes ERR from most of the other metrics discussed so far is
its diminishing return property [26]: whenever a relevant document is found,
the value of another relevant document found later in the list is discounted.
For example, given the three-level probability setting as described above, the
stopping probability for a highly relevant document at rank 2 would be (1− 0) ∗
7/8 = 0.8750 if the document at rank 1 is nonrelevant; but it would be (1−7/8)∗
7/8 = 0.1094 if the document at rank 1 is also highly relevant. The interpretation
is that the second highly relevant document in the latter case is redundant,
which aligns well with the definition of a navigational intent. This property is
in contrast with other metrics such as nDCG and Q that discount the value
of each relevant document based solely on its rank. Sakai and Robertson [92]
have described another NCU metric that also possesses the diminishing return
property: the stopping probability distribution of their metric is designed based

✓
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on the assumption that “it is probably more likely that a user would stop after
few relevant documents than after many.”

Another interesting feature of ERR is that it does not have a recall com-
ponent, unlike other graded-relevance metrics such as Q and nDCG: note that
even though nDCG does not directly depend on R, the number of relevant doc-
uments, it can still be regarded as a recall-dependent metric as it relies on an
ideal ranked list which requires enumeration of relevant documents3. ERR, on
the other hand, does not rely on the notion of ideal list, and is not normalised.

RBP Rank-Biased Precision [63] (RBP) is another recall-independent metric
with a clear user model: like all other metrics discussed so far, the model assumes
linear traversal, and furthermore assumes that, after the user examines rank r,
she will either move on to rank (r+1) with probability p or stop scanning the list
with probability 1−p. The user behaves this way irrespective of the relevance of
the documents, and p is a constant. This p can be regarded as a user persistence
parameter: the higher p is, the more persistent she is.

RBP can handle graded relevance, with gain values g(r) = gvx set within
the 0-1 range. It can be expressed as:

RBP = (1− p)
∑

r

pr−1g(r) . (16)

Note that RBP discounts the value of a relevant document based solely on the
rank, just like other metrics such as nDCG and Q. Thus, unlike ERR, it does
not possess the diminishing return property.

While Moffat and Zobel [63] have discussed the strengths of RBP such as
its recall-independence, Sakai and Kando [89] have demonstrated a few of its
shortcomings: for example, the maximum possible value of RBP varies widely
depending on the parameter p4; RBP has low discriminative power [77] (dis-
cussed in Section 5.1).

TBG The metrics discussed so far treat a ranked list of documents as if they are
just a list of document IDs with relevance levels. In modern IR contexts such as
web search, however, the user often examines snippets (a.k.a. summaries) before
reading the actual documents, and the document lengths vary. In light of this,
Smucker and Clarke [104] have proposed to use the time spent by the user as the
basis for discounting the value of a document instead the document rank.

While the general framework TBG proposes to accumulate the gains of rele-
vant documents over time, the instantiation of TBG discussed by Smucker and
Clarke [104] actually performs a rank-based gain accumulation as follows:

TBG =
∑

r

g(r) exp(−T (r)
ln 2

h
) (17)

3 Of course, we also have Discounted Cumulative Gain (DCG) [49], which is not nor-
malised.

4 In a binary relevance environment, the maximum RBP for a topic with R relevant
documents is given by (1− p)

∑R
r=1

pr−1.
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where T (r) is the expected time to reach rank r and h is the half-life for the time-
based decay (i.e. discounting) function. This instantiation of TBG [104] is based
on binary relevance: the gain value g(r) for every relevant document is estimated
as the probability of click on a relevant summary times the probability of judging
the actual document as relevant; that for every nonrelevant document is zero.
As for T (r), let TS be the time to read any summary in seconds; let L(r) be the
length of the document at r in terms of the number of words; and let Prclick (r)
be the probability of click at r, which depends on whether the document at r is
relevant or nonrelevant. Then T (r) is estimated as:

T (r) =
r−1∑

k=1

(TS + Prclick (k)TD(k)) (18)

where TD(r) = 0.018L(r)+ 7.8 is the estimated time to read the document at r.
As the summation over previous ranks in Eq. 18 shows, TBG relies on the

linear traversal assumption. Moreover, as the formula for TD(r) shows, TBG fur-
ther assumes that the document reading time grows linearly with the document
length.

It is of note that TBG as defined above does not guarantee diminishing
return, even though it discounts documents by taking relevance into account.
Suppose we have a nonrelevant document at rank 1, and a relevant document at
rank 2, and imagine that the nonrelevant document at rank 1, whose document
length is 1000 words, is replaced with a new relevant document whose length is 10
words. Moreover, following the calibration results from Smucker and Clarke [104],
let Pr click(r) = 0.64 if the document at r is relevant and Pr click(r) = 0.39
otherwise. Then, according to Eq. 18, the time to reach the relevant document
at rank 2 before the replacement is T (2) = TS + 0.39 ∗ (0.018 ∗ 1000 + 7.8) =
TS +10.062, while the corresponding time after the replacement is T (2) = TS +
0.64 ∗ (0.018 ∗ 10 + 7.8) = TS + 5.107. Thus, by replacing a long nonrelevant
document at rank 1 with a short relevant document, the time required to reach
rank 2 has decreased, which means that the relevant document at 2 receives more
weight according to the exponential decay function in Eq. 17. On the other hand,
if the document length variance is relatively small, we can expect TBG to follow
the diminishing return pattern most of the time.

Smucker and Clarke [102, 103] have extended their TBG ideas in the context
of stochastic simulation of user behaviours.

Prior to the proposal of TBG, Turpin et al. [105] and Yilmaz et al. [117]
have also explored incorporating the snippet examination phase into IR evalua-
tion. Several forms of time-based evaluation have also been proposed previously:
for example, Dunlop [42] proposed a time-based evaluation method based on
Cooper’s expected search length [35].

U-measure Sakai and Dou [85] recently proposed a general information access
evaluation framework that can potentially handle not only ranked retrieval dis-
cussed here but also summaries, diversified search, multi-query sessions etc. that
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Summary 

Sentence 1 

Sentence 2 

query search 

Snippet 1 

Snippet 2 

Fulltext 3 

query1 search 

query search 

query2 search 

Snippet 1 

news ads 

Ad 2 

web 

Snippet 3 

Snippet 1 

Snippet 2 

Snippet 3 

Fulltext 4 

(a) Reading a summary: 
Sentence 1 ї Sentence 2 

(b) Browsing an aggregated search output: 
Snippet 1 ї Ad 2 ї Snippet 3 

(c) Scanning a ranked list: 
Snippet 1 ї Snippet 2 ї Fulltext 3 

(d) Scanning multiple ranked lists in a session: 
Snippet 1 ї Snippet 2 ї Snippet 3 ї Fulltext 4 

Fig. 4. Constructing trailtexts for various information access tasks.

will be discussed in Section 3. Their U-measure framework is similar to TBG
in that it takes document lengths into account, but unlike TBG (as instanti-
ated by Smucker and Clarke [104]), it does not depend on the linear traversal
assumption.

Figure 4 illustrates the construction of trailtext, which represents all the text
the user has read during an information seeking process. This could be obtained
from direct user observation with eyetracking, or from user behaviour models
with relevance assessments or click data. Since we are now discussing ranked
retrieval, let us focus on Part (c) of this figure: here, the user scans a search
result page, reads the first snippet, reads the second snippet and then visits the
full text of the second document. The trailtext in this case is represented as a
concatenation of these texts: “Snippet 1 Snippet 2 Fulltext 3.” The key idea
of the U-measure framework is to define an evaluation metric over the trailtext
rather than document ranks, so that any textual information seeking activities
may be evaluated on a common ground.

Formally, a trailtext tt is a concatenation of n strings: tt = s1s2 . . . sn. These
strings may be documents, parts of documents, snippets, sentences, or any other
fragments of text that have been read. We define the offset position of sk(1 ≤
k ≤ n) as pos(sk) =

∑k
j=1 |sj | where the length of each string is measured in

terms of the number of characters. Furthermore, we define the position-based
gain as g(pos(sk)) = 0 if sk is considered nonrelevant and g(pos(sk)) = gvx if
its relevance level is considered to be x. Then U-measure is given by:

U -measure =
1

N

|tt|∑

pos=1

g(pos)D(pos) (19)



where N is a normalisation factor, which is set to zero if normalisation is not
required. Here, D(pos) is a position-based decay function, which may be defined
as:

D(pos) = max(0, 1− pos

L
) (20)

where L(> 0) is a parameter, which represents the amount of text read at which
all relevant pieces of information become worthless for any user (set to L =
132000 by Sakai and Dou [85] based on web search session data). While an
exponential decay function like the one used with TBG (Eq. 17) is also possible,
the above simple linear function has been inherited from S-measure [91] which
was proposed for summary evaluation. S-measure will be discussed in Section 3.3.

s1 s2 s3 s4 s5 s6 

Rank 1 snippet 
Rank 2 snippet + full text 

Rank 3 snippet 
Rank 4 snippet + full text 

nonrelevant 
relevant 

nonrelevant 
relevant 

(a) Ranked list (b) Trailtext for U (based on (a)) and D-U (based on (c)) 

1 
2 

3 
4 

pos(s3) pos(s6) 

(c) Diversified  
      ranked list 

nonrel 
rel 

nonrel 

1 
2 

3 
4 nonrel 

Intent1 Intent2 
s1 s2 s3 s4 s5 

pos(s3) 

s1 s2 s4 s5 

pos(s5) 

(d) Trailtexts for U-IA 
nonrel 

rel 

nonrel 
nonrel 

s3 

for Intent1 

for Intent2 

Rank 1 snippet 
Rank 2 snippet + full text 

Ranks 3-4 snippets 

Ranks 1-3 snippets Rank 4 snippet + full text 

Fig. 5. Automatically constructing trailtexts from relevance assessments of traditional
and diversified IR test collections.

Figure 5 Part (a) shows a ranked list where the documents at ranks 2 and 4
are known to be relevant; Part (b) shows a possible trailtext for this list, under
the linear traversal assumption. It is assumed that the four snippets plus the two
relevant documents are read. In practice, it is assumed that only F% of every
relevant document is read; F = 20 has been shown to be a reasonable choice [85].

Like ERR, U-measure possesses the diminishing return property. Suppose
that, in Part (a), the nonrelevant document at rank 3 is replaced by a relevant
document. Then, since it is now assumed that the document at rank 3 is also
read, the trailtext shown in Part (b) will be longer, and the fourth document
is pushed back towards the end of the trailtext. That is, the gain value for the
fourth document has diminished.



nDCG AP Q P+ ERR RBP TBG U 

(a) Graded 
relevance 

(b) Normalised 

(c) Recall-
independent 

(d) 
Discriminative 
power 

(e) Diminishing 
return

(f) Snippet& 
doc length 

(g) Nonlinear 
traversal 

Fig. 6. Comparison of traditional ranked retrieval metrics.

Ranked Retrieval Metrics: Summary Figure 6 provides a quick summary
of the properties of the traditional ranked retrieval metrics. Some additional
comments:

(a) The original AP cannot handle graded relevance, but a few graded-relevance
versions exist (e.g. [57, 73]). TBG as described by Smucker and Clarke [104]
is binary-relevance-based.

(b) and (c) These properties are two sides of the same coin. nDCG, Q and P+ depend
on an ideal ranked list, which requires the enumeration of all known relevant
documents. AP and Q depend directly on the number of relevant documents.
On the other hand, ERR, RBP, TBG and U are unnormalized (See the
discussion on normalization below).

(d) nDCG, AP and Q are top-heavy metrics suitable for informational search
intents, as they have been designed to consider many relevant documents.
Hence, in terms of discriminative power (discussed in Section 5.1), they
outperform other metrics such as P+ (See Sakai [76]), ERR (See Sakai
and Song [94]), RBP (See Sakai and Kando [89]), TBG (See Smucker and
Clarke [104] and Sakai and Dou [85]), and U (See Sakai and Dou [85]).

(e) ERR and U possess the diminishing return property, which is intuitive. TBG
also shows this property unless the document lengths do not vary wildly. Di-
minishing return means that when a relevant document is found, the value of
the next relevant document diminishes: this generally has a negative impact
on discriminative power (See (d)).

(f) Besides TBG and U, a few other studies have considered the user’s snip-
pet reading behaviour (e.g. [105, 117]). But only TBG and U consider the
document length.

(g) The instantiation of TBG as described by Smucker and Clarke [104] depends
on the time to reach rank r. This relies on the linear traversal assumption.
Sakai and Dou [85] have demonstrated that U can quantify the difference
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between linear and nonlinear traversals in the context of click-based web
search evaluation where click timestamps are available (See Section 3.2).

Normalisation and Averaging Given a test collection with a topic set and
relevance assessments for each topic, it is common to discuss the arithmetic
mean of an evaluation metric over the topic set. For this purpose, normalised
metrics, that range fully between 0 and 1, are convenient. Normalising before
averaging implies that every topic is of equal importance, while not normalising
sometimes implies that every user effort (e.g. finding one relevant document) is
of equal importance. When using unnormalised metrics, researchers should be
aware that the upperbound is different for every topic, and that topics with cer-
tain properties (e.g. those with many relevant documents) may heavily influence
the mean.

A useful alternative to the arithmetic mean is the geometric mean: for ex-
ample, while the arithmetic mean of AP is known as MAP (Mean AP), the
geometric mean version is known as GMAP [70]. Taking a geometric mean is
equivalent to taking the log of the metric for each topic and then taking the
arithmetic mean, thereby emphasising the lower end of the metric scale. Thus
this is useful for examining poor retrieval performance.

Condensed-list Metrics Many modern large-scale test collections were built
based on pooling [106, 108], and therefore the relevance assessments are incom-
plete [16]: the target corpus probably contains more relevant documents that have
never been assessed. Formally, let D denote the target corpus, and for a particu-
lar topic, let Cj denote the contributions (e.g. top-100 retrieved documents) from
the j-th contributor to the test collection (e.g. a TREC participant). Then, the
pool for this topic is given by P =

⋃
j Cj , where |P | ( |D|, and the documents

in D − P are never judged for this topic (See also Section 5.4). Moreover, the
incomplete relevance assessments may also be biased towards particular types of
relevant documents or towards particular types of retrieval systems. The incom-
pleteness is a problem particularly when one wants to evaluate a system that did
not contribute to the pools: the documents returned by such a system are either
(I) judged relevant (possibly with relevance levels); (II) judged nonrelevant; or
(III) unjudged. We do not know whether each unjudged document is relevant or
not.

A standard practice in the IR community is to regard both documents of
Types (II) and (III) as nonrelevant. However, a simple and useful alternative is
to first create a condensed list from the raw ranked list by removing all unjudged
documents from it, and then compute the evaluation metrics for the condensed
list [79]. For example, if a raw ranked list contains an unjudged document at
rank 1, a judged nonrelevant document at rank 2, and a judged relevant docu-
ment at rank 3, the corresponding condensed list would have the judged non-
relevant document at rank 1 and the judged relevant document at rank 2. Thus
condensing a ranked list promotes judged documents.
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A condensed-list version of Metric M is referred to as M ′ [79]: in particular,
AP′ is also known as Induced AP [116]. Let r′ denote the rank of a document in
a condensed list. Then, from Eq. 9:

AP ′ =
1

R

∑

r′

I(r′)
C(r′)

r′
. (21)

Buckley and Voorhees [16] designed a family of metrics known as bpref (binary
preference) specifically for the purpose of conducting IR evaluation that is robust
to incomplete relevance assessments. The basic idea is to evaluate systems based
on their ability to prefer judged relevant documents over judged nonrelevant
ones. However, Sakai [79] showed that bpref is equivalent to AP′ except that it
lacks the top heaviness property, and that some condensed-list metrics are in fact
more robust to incompleteness than bpref. Subsequently, Sakai and Kando [89]
generalised his experiments.

Let N denote the number of judged nonrelevant documents for a topic, and
recall that R is the number of judged relevant documents. Using our notations,
bpref can be expressed as:

bpref R =
1

R

∑

r′

I(r′)(1− min(R, r′ − C(r′))

R
) (22)

if R ≤ N , and

bpref N =
1

R

∑

r′

I(r′)(1 − r′ − C(r′)

N
) (23)

if R ≥ N . Let us consider a case where R = N = 500, so that bpref = bpref R =
bpref N , and recall our discussion of the top heaviness of AP. Thus, when a
relevant document moves up from 2 to 1 in the condensed list, its contribution
of precision to AP′ changes from 0.5 to 1; whereas, when a relevant document
moves up from 100 to 99, its contribution of precision to AP′ increases from
0.0100 to 0.0101. The latter change is negligible and hence AP′ is top heavy. In
contrast, when a relevant document moves up from 2 to 1 in the condensed list,
the contribution to bpref, 1 − (r′ − C(r′))/N , changes from 1 − (2 − 1)/500 =
0.9980 to 1 − (1 − 1)/500 = 1 and the difference is only 0.002; when a relevant
document moves up from 100 to 99, the contribution to bpref changes from
1 − (100 − 1)/500 = 0.8020 to 1 − (99 − 1)/500 = 0.8040 and the difference is
0.002 again. It can be observed that this lack of top heaviness arises from the
large constants R and N used as the denominator in Eqs. 22 and 23. Compare
these with Eq. 21, which uses r′ as the denominator.

Büttcher et al. [18] advocated the use of a metric called RankEff [2] for
robust evaluation with incomplete and biased relevance assessments. However,
Sakai [81] pointed out that RankEff is none other than bpref N, whose limitation
has already been discussed above. De Beer and Moens proposed graded-relevance
versions of bpref called rpref [40]: one of them is similar to bpref N and therefore
suffers from the same problem; the other has a minor flaw, which can be fixed [79].



While condensed-list metrics handle incomplete relevance assessments more
elegantly and robustly than bpref [79, 89], they do not necessarily provide ac-
curate evaluation results if the relevance assessments are biased. More specif-
ically, Sakai [81] showed that, while standard metrics tend to underestimate
non-contributors (i.e. systems that did not contribute to the pools), condensed-
list metrics tend to overestimate them. This is because new systems return many
unjudged documents: they are removed when the ranked list is condensed, which
results in promotion of many relevant documents in the list.

2.3 Further Reading

Kekäläinen and Järvelin [56] have discussed graded-relevance versions of re-
call and precision called generalised recall and generalised precision. Several re-
searchers have discussed appropriate decay functions for ranked retrieval evalu-
ation [20, 53, 119].

Some ranked retrieval tasks require high recall. Patent search would be an
example. Magdy and Jones [62] have recently proposed a recall-oriented eval-
uation metric specifically designed for patent search. In the context of patent
invalidation search, Sakai [78] pointed out that conditional relevance [37] in a
ranked list may be handled using an approach related to the condensed list: If
Patent 1 at rank 1 and Patent 2 at rank 10 can invalidate a new patent appli-
cation only if they are used together, then an evaluation metric that treats only
Patent 2 in the ranked list as relevant may be useful.

On handling incompleteness and bias: in contrast to the simple condensed-
list approach which can be used with any evaluation metric (See Section 2.2),
there are also statistical approaches to estimating binary-relevance AP, such as
infAP [116] and statAP [23]; Webber and Park [113] describe a score adjust-
ment approach, which requires some new relevance assessments for the non-
contributors.

Della Mea and Mizzaro’s Average Distance Measure [41] is a metric that
requires systems to estimate the absolute relevance score for each document,
and is not a ranked retrieval metric per se. For ranked retrieval, it is not suitable
as it lacks the top heaviness property [74].

The evaluation metrics discussed in this lecture assume per-document rele-
vance assessments. An alternative would be to design evaluation metrics based
on preference judgments [22]: is this document more relevant than another?

3 Advanced IR Metrics

Section 2 discussed set retrieval and ranked retrieval metrics: the evaluation
target was a set or a ranked list of documents, where each document is either
(graded) relevant or nonrelevant.

In this section, we discuss evaluation metrics for more diverse information ac-
cess tasks. Section 3.1 discusses evaluation metrics for diversified search, which is
especially important for web search where queries tend to be ambiguous and/or
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underspecified [32]. Section 3.2 discusses evaluation metrics for multi-query ses-
sions (i.e. multiple ranked lists), and Section 3.3 discusses those for systems that
generate a textual output in response to a query. Section 3.4 provides information
for further reading.

3.1 Diversified Search Metrics

Given an ambiguous and/or underspecified query, diversified search aims at cov-
ering different search intents with a single, short list of retrieved documents. To
evaluate diversified search, it is usually assumed that each topic has a set of
known intents (or subtopics)5. In contrast to traditional IR evaluation where rel-
evance assessments are obtained for each topic, in diversity evaluation, relevance
assessments are obtained for each intent. Note that a document may be relevant
to multiple intents of a given topic, with different degrees of relevance.

A diversified search test collection may consist of the following:

(a) A target corpus;
(b) A topic set {q} that contains ambiguous or underspecified topics;
(c) A topic type label for each topic, e.g. “ambiguous”, “underspecified (faceted)”,

etc. (optional);
(d) A set of intents {i} for each topic;
(e) Intent probabilities Pr(i|q) (optional);
(f) An intent type label for each intent, e.g. “informational”, “navigational”, etc.

(optional); and
(g) (Graded) relevance assessments for each intent.

Subtopic Recall, or Intent Recall Subtopic recall [118], also known as intent
recall [94] (I-rec), is the proportion of intents covered by a search output. In
the context of ranked retrieval, one way to express it would be as follows. Let
Ii(r) be 0 if the document at rank r is nonrelevant to Intent i, and 1 otherwise;
let isnew i(r) be 1 if Ii(k) = 0 for 1 ≤ k ≤ r − 1, and 0 otherwise; and let
newint(r) =

∑
i isnew i(r)Ii(r). This is the number of new intents covered at

rank r. Then intent recall for ranked retrieval may be expressed as:

I-rec =

∑
r newint(r)

|{i}| . (24)

This metric by itself is not sufficient for diversity evaluation as it is actually
a set retrieval metric.

5 “office” may be an ambiguous query, which may have intents such as “microsoft
office” and “workplace”; “harry potter” may be an underspecified query, which may
have intents such as “harry potter books”, “harry potter films”, “harry potter the
character” and so on.
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α-nDCG α-nDCG [32] was probably the first metric to have considered the
trade-off between relevance and diversity for ranked retrieval. It is an extension of
nDCG: the key difference is that, prior to rank-based discounting, each document
relevant to a particular intent is discounted based on the number of relevant
documents already seen. Because redundancy within each intent is discouraged,
the overall diversity of the ranked list is encouraged.

Let Ci(r) =
∑r

k=1 Ii(k). α-nDCG is computed by replacing the standard
gain values g(r) in Eq. 6 with novelty-biased gains ng(r):

ng(r) =
∑

i

Ii(r)(1 − α)Ci(r−1) (25)

where α is a parameter that can be interpreted as the probability that the user
judges a nonrelevant document to be relevant to intent i by mistake (0 ≤ α < 1)6.
Unlike the standard nDCG, however, computing the ideal list based on ng(r)
and thereby obtaining the ideal novelty-biased gains ng∗(r) is NP-complete, and
a greedy approximation is required in practice.

It should be noted that α-nDCG cannot handle per-intent graded relevance.
According to Eq. 25, the relevance level of a document (before discounting) is
defined simply as the number of intents it covers7. For example, if α = 0.5 (the
setting used at the TREC diversity task [29]), a document relevant to only one
intent will receive an ng(r) of 1 if this is the first relevant one found for the intent,
0.5 if this is the second relevant one found, and 0.25 if this the third relevant
one found, and so on. Also, the above version of α-nDCG does not consider the
intent probabilities Pr(i|q): Clarke et al. [30] extended the α-nDCG framework
to incorporate them.

Leenanupub, Zuccon and Jose [59] proposed to set the parameter α of α-
nDCG on a per-topic basis. Clarke, Kolla and Vechtomova [33] combined the
ideas of RBP and α-nDCG and proposed another diversity metric called Novelty-
and Rank-Biased Precision (NRBP).

Intent-Aware Metrics Agrawal et al. [1] proposed the intent-aware (IA) ap-
proach to diversity evaluation. Let Mi be the value of a traditional IR metric
computed for each intent i, using the per-intent relevance assessments for i. Then
the IA version of this metric, denoted by M -IA, is simply defined as:

M -IA =
∑

i

Pr(i|q)Mi . (26)

More specifically, Agrawal et al. considered nDCG, AP and RR for Mi. Note
that, to compute nDCG-IA, an ideal list needs to be created for each intent

6 Whereas, it is assumed that the user never judges a relevant document to be non-
relevant by mistake [32].

7 To be more precise, α-nDCG defines the relevance level of a document as the number
of nuggets it covers [32], but in practice, each intent (subtopic) is considered as a
single nugget.
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based on per-intent relevance assessments, so that nDCGi is computed prior to
taking the expectation over the intents. The per-intent gain values gv i,x used for
computing nDCG i are sometimes referred to as local gains, and the per-intent
ideal list used as the denominator of nDCGi is sometimes referred to as locally
ideal lists [94].

While IA metrics are simple to understand and to compute, they have several
shortcomings. First, they do not range fully between 0 and 1: note, for example,
that it is usually impossible for a system output to be locally ideal for every
intent at the same time when computing nDCG-IA. Second, IA metrics generally
tend to heavily reward relevance-oriented systems rather than diversity-oriented
systems [30, 94]. Third, they underperform other diversity metrics in terms of
discriminative power [77] (discussed in Section 5.1).

Perhaps the most useful (and the most popular) of the IA metrics is ERR-IA,
the IA version of ERR [27]. A version of ERR-IA was used as the primary metric
at the TRECWeb Track Diversity Task [34]. As we discussed in Section 2.2, ERR
has the diminishing return property, which, when used with the IA approach,
serves as a mechanism for penalising redundancy for each intent i, just like the
novelty-biased gain of α-nDCG does. Thus, unlike the other IA metrics, ERR-IA
can reward diversity-oriented systems as it is supposed to. Clarke et al. [30] and
Chapelle et al. [26] have independently shown that α-nDCG and ERR-IA can
be formulated within a single framework.

D-measures Sakai and Song [94] proposed the D-measure approach to diversity
evaluation. Let rel be a random binary variable, which can either be 1 (relevant)
or 0 (nonrelevant). According to the Probability Ranking Principle [69] (PRP),
systems should rank the documents {d} by Pr (rel = 1|q, d). In the context of
diversity evaluation where the query q has a set of intents {i}, we let rel = 1
for (q, d) if and only if there exists at least one intent i such that rel = 1 for
(i, d). If we assume that the intents for query q are mutually exclusive, then
the PRP reduces to ranking documents by

∑
i Pr(i|q)Pr(rel = 1|i, d), where

Pr(rel = 1|i, d) is the probability that d is relevant to intent i. If we further
assume that the local gain value gv i,x for each (i, d) pair is proportional to this
probability, then the systems should rank documents by the global gain, given
by

∑
i Pr(i|q)gv i,x. The resultant list is called the globally ideal list. This can be

understood as the requirement that documents highly relevant to many major
intents should be ranked higher than those marginally relevant to few minor
intents, which is intuitive.

Let GG∗(r) denote the global gain value for the document at rank r in the
globally ideal list. On the other hand, for a given diversified ranked list to be
evaluated, let gi(r) = gv i,x if the document at r is x-relevant to intent i, and let
the global gain at r be defined as:

GG(r) =
∑

i

Pr(i|q)gi(r) . (27)
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By replacing the g(r) of nDCG in Eq. 6 with GG(r), D-nDCG can be defined
as:

D-nDCG =

∑l
r=1 GG(r)/ log(r + 1)

∑l
r=1 GG∗(r)/ log(r + 1)

. (28)

Similarly, based on the globally ideal list, other “D-measures” such as D-Q (a
D- version of Q-measure) can be defined [94].

Note that while nDCG-IA requires multiple locally ideal lists, D-nDCG de-
fines one globally ideal list, achieves the maximum value of 1 when the evaluated
list is identical to the ideal list for ranks [1, l]. D-measures are “overall relevance”
metrics that combine per-intent relevance assessments and intent probabilities.

At the NTCIR INTENT tasks [88], D-nDCG (overall relevance) was plotted
against I-rec (pure diversity) for each participating system, which is useful for
seeing which systems are relevance-oriented and which systems are diversity-
oriented. Furthermore, to combine the two axes to provide a summary metric,
the INTENT tasks also used D#-nDCG:

D#-nDCG = γI-rec+ (1 − γ)D-nDCG (29)

where γ is a parameter (0 ≤ γ ≤ 1), simply set to 0.5 at NTCIR.
Sakai and Song [94, 95] have demonstrated the advantages of the D-measure

framework over α-nDCG and the IA metrics in terms of discriminative power [77]
(discussed in Section 5.1) and the concordance test [82] (discussed in Section 5.3).

Sakai and Dou [85] have combined the idea of U-measure (See Section 2.2)
with the above D-measure approach and with the IA approach to handle diver-
sity evaluation. Figure 4(b)-(d) (See Section 2.2) illustrate how trailtexts can
be constructed in the context of diversity evaluation: recall that U-measure can
reflect the snippet/document reading behaviour of the user, and has the dimin-
ishing return property. Let sk be a string (i.e. a snippet or part of full text), and
let pos(sk) be the offset position of sk within a trailtext. Then, using position-
based local gain values gi(sk) for each i, the position-based global gain can be
defined as

g(pos(sk)) =
∑

i

Pr (i|q)gi(pos(sk)) . (30)

Plugging in Eq. 30 to Eq. 19 gives D-U, the D-measure version of U-measure.
Similarly, the IA version of U can be computed by first computing a “local”
U-measure Ui for each intent, and then combining them across the intents:

U -IA =
∑

i

Pr(i|q)Ui . (31)

In fact, it can be shown analytically that D-U and U-IA behave similarly [85]8.

8 In contrast, D-nDCG and nDCG-IA do not behave similarly, as normalisation is
involved [94]: while D-nDCG normalises for the entire topic, nDCG-IA normalises
per-intent (and is not normalised in its final form).
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Intent-Type-Sensitive Metrics All of the diversity metrics discussed above
are intent-type-agnostic: they do not consider the informational/navigational
intent type labels9. One could argue that, just as diversified search systems
should try to allocate more space within the top search result page to popular
intents (i.e. those with high Pr(i|q) values), they should also try to allocate
more space to the informational intents, while reserving one document slot for
each popular navigational intent. Sakai’s intent-type-sensitive diversity metrics
do just that [82].

In the context of intent-type-sensitive diversity evaluation, we denote the sets
of informational and navigational intents for query q as {i} and {j}, respectively.
One simple idea for intent-type-sensitive evaluation would be to completely ig-
nore “redundant” relevant documents for each navigational intent, by assuming
that only the first relevant document found will be useful for that intent10. In
accordance with this view, let us modify Eq. 27 as follows:

GGDIN (r) =
∑

i

Pr(i|q)gi(r) +
∑

j

isnew j(r)Pr (j|q)gj(r) . (32)

That is, we “turn off” all “redundant relevant” documents for each navigational
intent. Note that we do this only for the ranked list being evaluated: the globally
ideal list remains unchanged. DIN-nDCG can now be defined as:

DIN -nDCG =

∑l
r=1 GGDIN (r)/ log(r + 1)
∑l

r=1 GG∗(r)/ log(r + 1)
. (33)

Since the modified global gain ignores some relevant documents for naviga-
tional intents, GGDIN (r) ≤ GG(r) holds in general, and the maximum value of
DIN-nDCG may be less than one if at least one navigational intent has multiple
relevant documents. Clearly, DIN-nDCG is a generalisation of D-nDCG: if all of
the intents for q are informational, it reduces to D-nDCG.

Another approach to intent-type-sensitive diversity evaluation is to borrow
the IA approach, but to use two different metrics for handling the two intent
types. More specifically, let us use Q-measure (Eq. 13) for each informational
intent, and P+ (Eq. 14) for each navigational intent: recall that the only dif-
ference between these two metrics is that while Q assumes a uniform stopping
probability distribution over R (or l) relevant documents, P+ assumes a uniform
stopping probability distribution over the top rp relevant documents. Then, our
second intent-type-sensitive metric, P+Q, can be defined as:

P+Q =
∑

i

Pr (i|q)Qi +
∑

j

Pr (j|q)P+
i . (34)

Finally, Eqs. 33 or 34 may be combined with I-rec using a formula similar to
Eq. 29: the resultant metrics are called DIN#-nDCG and P+Q#, respectively.
9 For query “harry potter”, “I want to know various facts about harry potter’s char-
acters” is probably an informational intent; “I want to visit pottermore.com” is
probably navigational.

10 Even navigational intents generally have multiple relevant documents in diversity
test collections that have been constructed at TREC and NTCIR.
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Fig. 7. Comparison of diversity metrics.

Diversity Metrics: Summary Figure 7 provides a quick summary of the
diversity metrics discussed above. Some additional comments:

(a) We have discussed Eq. 25: α-nDCG defines the graded relevance of a docu-
ment as the number of intents it covers, and does not have a mechanism for
directly handling per-intent graded relevance.

(b) The original α-nDCG [32] did not consider Pr (i|q), but later it was incor-
porated [30].

(c) and (d) Again, these are two sides of the same coin. α-nDCG requires an approxima-
tion of an ideal ranked list; there is a version of ERR-IA used at TREC that
is normalised in a way similar to α-nDCG [30]. Normalisation generally im-
plies the knowledge of all relevant documents, so the normalised metrics are
recall-dependent. D(#)-nDCG, DIN(#)-nDCG and P+Q all require a glob-
ally ideal list which also implies the knowledge of all relevant documents.
DIN(#)-nDCG is “almost” normalised, but may not reach one if at least one
navigational intent has multiple relevant documents.

(e) In terms of discriminative power, D(#)-nDCG and α-nDCG outperform ERR-
IA [94]; D(#)-nDCG outperform D-U, U-IA and ERR-IA [85]11.

(f) α-nDCG, ERR-IA and U-IA possess the per-intent diminishing return prop-
erty: for each intent, “redundant” relevant documents are penalised, so that

11 These two studies [94, 85] used a version of ERR-IA, which is an “IA version of
normalised ERR.”



diversity across intents is encouraged. D-U behaves similarly to U-IA, as
the original U-measure already has the per-topic diminishing return prop-
erty [85].

(g) To date, D-U and U-IA are the only diversity metrics that take the user’s
snippet and full text reading behaviour into account.

(h) Let “M1 ) M2” denote the relatioship: “M1 outperforms M2 in terms of the
concordance test with some gold standard metrics.” In terms of simultaneous
concordance with I-rec and effective precision12, DIN#-nDCG ) D#-nDCG
) P+Q# ) α-nDCG [82] while DIN-nDCG ) D-nDCG ) P+Q [96]; in
terms of simultaneous concordance with I-rec and precision and Precision for
the Most Popular Intent (PMP)13, D#-nDCG ) D-nDCG ) (a version of)
ERR-IA [95]; In terms of simultaneous concordance with I-rec and precision,
D#-nDCG ) U-IA ) D-U ) D-nDCG ) α-nDCG ) ERR-IA [83]14.

It is worth noting that ERR-IA performs relatively poorly in terms of both
discriminative power and the condordance test.

Chandar and Carterette [24] analysed α-nDCG, ERR-IA and the intent-
aware version of AP using multi-way analysis of variance. Sakai, Dou and Clarke [86]
have investigated the effect of the choice of intents on diversity evaluation with
α-nDCG, ERR-IA and D(#)-nDCG. Golbus, Aslam and Clarke [46] have com-
bined the ideas of α-nDCG, IA metrics and D-measure and proposed a family of
metrics called α#-IA measures, which emphasise inherently difficult topics and
subtopics. Brandt et al. [13] have proposed a dynamic tree-like presentation of
diversified search results and discussed an evaluation method for it.

Sakai et al. [87] and Sakai [84] have experimented with condensed-list versions
of D(#)-nDCG and ERR-IA to investigate the possibility of evaluating non-
contributors (See Section 2.2) with existing diversity test collections. The results
suggest that condensed-list diversity metrics provide better estimates of the non-
contributors’ true performances than the raw-list metrics.

3.2 Session Metrics

In this section, we discuss evaluation metrics for multi-query sessions, which
involve multiple ranked lists of documents.

Session DCG Here, we define a multi-query session as a user’s search activity
involving at least one query reformulation (which could be done manually or
possibly through a click on a query suggestion) and therefore multiple ranked
lists of documents, but with an unchanging underlying information need. That
is, there is a static set of (graded) relevant documents for this need.

12 Precision that ignores redundant relevant documents for navigational intents.
13 Only documents that are relevant to the intent with the highest intent probability

are considered relevant. This gold standard metric is meant to represent the diversity
metrics’s ability to emphasise important intents.

14 This study [83] used the official ERR-IA performance values from TREC 2011.
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In the above setting, the idea of nDCG can be extended as follows. First,
arrange the m multiple ranked lists in chronological order, and concatenate the
top l documents from the lists. (Alternatively, if the data contains click infor-
mation, then each ranked list could first be truncated at the lowest click and
then be concatenated [85].) Let r be the rank of a document in the concatenated
list. (The list may contain duplicate documents: one possible approach to han-
dling this is to simply keep only the first occurrence of each document in the
list and remove all other duplicates, in a way similar to the construction of a
condensed list [54].) The gain at r, i.e. g(r), may be defined based on relevance
assessments, clicks, or possibly both. Let qnum(r) be a function that maps the
document at r in the concatenated list to its query number: for example, if the
document at r originally comes from the ranked list for the second query issued,
then qnum(r) = 2. Then a version of session Discounted Cumulative Gain [54]
(sDCG) can be defined as:

sDCG =
∑

r

g(r)

log4(qnum(r) + 3) log2(r+ 1)
. (35)

Thus the value of a relevant document is discouted not only by the rank in the
concatenated list, but also by how many queries had to be issued in order to
reach the document. In the original definition of sDCG [50], documents in later
ranked lists could receive higher discounted gains than ones in the earlier lists,
but the above formulation solves the problem.

The above sDCG is unnormalised: in a way similar to Eq. 6, it could be
normalised based on a single ideal ranked list, which represents a situation where
the user could obtain all relevant documents in decreasing order of relevance
without ever reformulating a query. Note that in this case, duplicate relevant
documents in the concatenated list obtained from the system shoud be removed:
the same relevant documents should not be rewarded twice. (Järvelin et al.[50]
describe a different normalisation scheme that involves concatenation of the top
l documents from m ideal ranked lists, allowing duplicates.)

Click-based U U-measure, which was discussed in Section 2.2, can handle the
evaluation of multi-query sessions. If click data with timestamps are available,
it can handle nonlinear traversals as well [85]. Figure 8 Parts (e) and (f) show
how a trailtext may be constructed from clicks that involve two queries (i.e. two
ranked lists), by assuming that clicked documents are relevant. Parts (g) and
(h) show how a trailtext may be constructed from a nonlinear traversal: in this
example, the click data shows that the document at rank 4 was clicked first,
and then the one at rank 2 was clicked; here, we assume that the user read the
four snippets first and then read (parts of) the two clicked documents. More
generally, Figure 9 provides a pseudocode of a click-based version of U-measure,
for a search engine whose average snippet length is 200 characters. Note that
this is just a straightforward implementation of Eq. 19 from Section 2.2.

Kanoulas et al. [54] proposed more complex evaluation metrics for sessions,
which consider multiple possible browsing paths over the multiple ranked lists. U-
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Fig. 8. Automatically constructing trailtexts from clicks or nonlinear traversals and
sessions.

snippetlen = 200;
g = 0.5; // gain of a clicked document: (2l − 1)/2H = (21 − 1)/21.
pos = 0; U = 0;
while read < querynumber , clickedrank , doclen > sorted by time

if querynumber is new then initialise array snippetdone [];
// stores whether or not snippet at rank r has already been read.
for( r = 1; r ≤ clickedrank ; r++)

if snippetdone [r] == 0 then
pos += snippetlen ; //reads all snippets above a click.
snippetdone [r] = 1;

end if
pos += F ∗ doclen ; // reads F% of clicked document.
U += g ∗max(0, 1− pos/L);

end while
return U ;

Fig. 9. Algorithm for computing U-measure by reading a session data file, which con-
sists of querynumber, clickedrank and doclen sorted by time.

measure may also be extended along this line. Baskaya, Keskustalo and Järvelin [10]
proposed an evaluation framework for sessions where the cost of various user ac-
tions such as query (re)formulations and clicking on “next page” are taken into
account. This is in contrast to U-measure which assumes that the text that
the user has read is an adequate representation of the user effort. Azzopardi [9]
viewed interactive IR applications as a stream of documents and proposed eval-
uation metrics such as “frequency of observing a relevant document.”

3.3 Summarisation and QA Metrics

Query-focussed text summarisation and question answering are types of informa-
tion access where the output provided by the system is textual, in contrast to the
information access tasks previously discussed where the output was in essence a
set of document IDs, a ranked list of document IDs or multiple ranked lists of



document IDs (although TBG and U-measure consider snippets and document
contents in addition). The textual output could be a single text, a ranked list of
texts or a combination of document IDs with texts, but here let us consider the
simplest case of evaluating a single text produced in response to a query.

ROUGE ROUGE [60] (Recall-Oriented Understudy for Gisting Evaluation)
is a family of metrics that have been used widely for evaluating summaries.
Here we discuss a few from the family to understand its basic principles. In
summarisation, summaries are evaluated by means of comparison with one or
more reference summaries, which represent the gold standard. The reference
summaries could be prepared, for example, by hiring multiple people to construct
summaries manually. For simplicity, here we discuss the case where there is only
one reference summary s∗. Let s denote the summary to be evaluated, and let
gramN (s) denote the set of word N-grams generated from s. Let e denote an
N-gram, and let Count(e, s) denote the frequency of e within s. Then the most
basic version of ROUGE, known as ROUGE-N, can be expressed as follows [60,
64]:

ROUGE -N =

∑
e∈gramN (s)∩gramN (s∗) min(Count(e, s),Count(e, s∗))

∑
e∈gramN (s∗) Count(e, s

∗)
(36)

It is clear that ROUGE-N is basically an N-gram recall measure: it was inspired
by a machine translation evaluation metric called BLEU, which is based on N-
gram precision [66].

Another version of ROUGE, called ROUGE-S, uses skip bigrams as the basic
matching unit instead of N-grams, to allow more flexible matching between the
system’s summary and the reference summaries. For a given summary s, let
skip2(s) denote the set of skip bigrams, that is, any word pair extracted from
the text that preserves the word order, including bigrams15. Then ROUGE-S
can be expressed as follows [60, 64]:

Rec-S =

∑
e∈skip2(s)∩skip2(s

∗) min(Count(e, s),Count(e, s∗))
∑

e∈skip2(s
∗) Count(e, s

∗)
(37)

Prec-S =

∑
e∈skip2(s)∩skip2(s

∗)min(Count(e, s),Count(e, s∗))
∑

e∈skip2(s)
Count(e, s)

(38)

ROUGE -S =
(β2 + 1)Prec-SRec-S

β2Prec-S + Rec-S
(39)

It is clear that ROUGE-S is an F-measure (Eq. 5) based on skip bigrams. Lin [60]
proposed a variant of ROUGE-S called ROUGE-SU, which uses unigrams in
addition.

15 In practice, a word distance constraint may be imposed in order to avoid pairs of
words that are too far apart.
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It can be observed that in summarisation evaluation, essentially IR met-
rics such as recall and F-measure are computed based on small textual units.
(Manually constructed semantic content units [65] may be used instead of au-
tomatically extracted units such as those mentioned above.) This is also true
for question answering evaluation, where the small textual unit is referred to
as nuggets: atomic pieces of information that address a certain aspect of the
question [39].

Suppose that a set of gold-standard nuggets V ∗ is available for a question,
and that we hired a group of assessors who independently labelled each nugget
v ∈ V ∗ as either vital or okay (i.e. non-vital). Then, using the vital labels as votes,
a weight w(v) can be assigned to each v. Furthermore, given a system’s answer
of length l (in characters, excluding white spaces), it can be manually compared
with the nuggets from V ∗, so that a set of matched nuggets V (⊆ V ∗) is obtained.
Let allow = 100 ∗ |V |. Then the answer may be evaluated as follows [39]:

W -Rec =

∑
v∈V w(v)∑
v∈V ∗ w(v)

(40)

Precallow = 1− max(0, l − allow )

l
(41)

F -measureQA =
(β2 + 1)PrecallowW -Rec

β2Precallow +W -Rec
(42)

Note that Precallow = 1 if l ≤ allow . Thus it is assumed that each matched
nugget in V is entitled to use up 100 charaters. On the other hand, if l > allow ,
then the (l − allow ) characters in the answer is treated as noise.

Lin and Demner-Fushman [61] proposed an automatic unigram-matching
method for replacing the aforementioned manual matching between the answer
and the gold standard nuggets, and called their F-measure-based evaluation met-
ric POURPRE. It should be noted that while automatic matching methods like
ROUGE and POURPRE enable efficient evaluation for extractive systems, they
may not be able to fully handle abstractive systems: for example, an intelligent
summariser might paraphrase the information obtained from source documents,
causing the automatic matching to fail.

S-measure, T-measure Sakai, Kato and Song [91] defined a task related to
muti-document summarisation and question answering called one click access
and proposed an extension of nugget-based weighted recall (Eq. 40) called S-
measure. Sakai and Kato [90] extended this framework and introduced a precision-
like metric called T-measure, and an F-measure-like metric called S#.

Figure 10 illustrates the concept of one click access evaluation. One click
assess systems are required to present important pieces of information first, and
to minimise the amount of text the user has to read to obtain the information.
If traditional nugget-based weighted recall is used, Outputs (a) and (b), which
cover the same information, would receive exactly the same score. In contrast,
S-measure prefers (b) over (a). On the other hand, T-measure imposes a length



Fig. 10. Comparison of one click access systems.

penalty and prefers (b) over (c). S# reflects both of these properties, as shown
below.

In the one click access evaluation framework, the basic evaluation unit is
called the iUnit. Let V ∗ denote the set of gold-standard iUnits for a query, and
let w(v) denote the weight assigned to an iUnit v ∈ V ∗. Each iUnit n has a vital
string vs(v), which represents a minimal textual expression required in order to
convey the information of the iUnit to the user [91]. For example, suppose that
v represents a fact: “Paul McCartney was born on June 18 cv , 1942.” Then the
vital string for v could possibly be defined as “born 6/18/1942.” Thus the vital
string defines how much minimal space the iUnit requires. For a given query, we
first define a Pseudo Minimal Output (PMO) by sorting all vs(v) where v ∈ V ∗

by using w(v) as the first key and |vs(v)| as the second key and concatenating
them. PMO approximates an ideal output that presents important and concise
iUnits first. Let pos∗(v) denote the offset position (end position in characters)
of vs(v) within the PMO.

Let V (⊆ V ∗) be the set of iUnits identified within a system output. In one
click access evaluation, a system output is manually compared with the gold-
standard iUnits, and the position of each iUnit found within the system output
is recorded. For each v ∈ V , let pos(v) denote its offset position (end position in
characters) within the system output. Then S-measure, a position-aware version
of weighted recall (See Eq. 40), is defined as:

S-measure =

∑
v∈V w(v)max(0, 1− pos(v)/L)∑

v∈V ∗ w(v)max(0, 1− pos∗(v)/L)
(43)

=

∑
v∈V w(v)max(0, L− pos(v))∑

v∈V ∗ w(v)max(0, L− pos∗(v))
(44)

where L is a parameter representing how quickly the user’s patience runs out [91].
For example, Sakai, Kato and Song [91] considered a Japanse one click access
task with L = 1000: as the averege reading speed of Japanese text is known
to be around 500 characters per minute, this task means that the user needs
to gather information within two mintutes: after that, the value of any nugget
becomes zero.



As S is only a position-aware version of recall, it gives the same score to
Outputs (b) and (c). In order to introduce a length penalty to handle such
cases, Sakai and Kato [90] introduced T-measure:

T -measure =

∑
v∈V |vs(v)|

l
(45)

where l is the system output length in characters. In contrast to the nugget pre-
cision used for question answering which uses an arbitrary allowance parameter
(Eq. 41), T reflects the fact that different pieces of information require different
amount of space. Finally, S# is a version of F-measure that is built on S and T:

S# =
(1 + β2)T %S%

β2T %+ S%
(46)

where S% = min(1, S-measure) and T % = min(1, T -measure) as the raw metrics
are not theoretically bounded above by 1. These metrics have been used at the
NTCIR One Click Access (1CLICK) task [55].

3.4 Further Reading

Recently, Arguello et al. [5] and Zhou et al. [120] have proposed evaluation meth-
ods for aggregated search, where not only web search results but also vertical
search results (e.g. news, images, videos) need to be selectively presented. Here,
the users’ vertical orientations are take into accout: for example, for a given
topic, some users might generally prefer images to textual web pages regardless
of relevance. Zhou et al. [120] discuss the connection between diversity evalua-
tion and aggregated search evaluation. So far, aggregated search in the research
community has been considered to be the problem of arranging blocks of web
search results and selected verticals on top of one another, although a more gen-
eral and practical formulation would involve presentation in a two-dimensional
space.

There are also information access tasks that are something of a mix be-
tween ranked retrieval and summarisation, and some evaluation methods have
been proposed accordingly. Character-based bpref has been used for evaluating
a ranked list of passages [4]; Yang and Lad [114] proposed a nugget-based eval-
uation method that models utility as benefit minus cost of reading for evaluating
multiple ranked lists of passages for a standing information need. Character-
based precision and recall have been used for evaluating XML passages [52];
Arvola, Kekäläinen and Junkkari [6] have proposed an evaluation method for an
XML retrieval task where the user first sees a list of documents and then jumps
to relevant passages of a document selected from that list. But as was mentioned
earlier, XML retrieval evaluation is beyond the scope of this lecture.

The aforementioned U-measure [85] can potentially handle various informa-
tion access tasks seamlessly by means of trailtext; it is easy to see that U (Eqs. 19
and 20) is a generalisation of an unnormalised version of S-measure (Eq. 43).



4 Computer-based Significance Tests

4.1 Basics

As was mentioned earlier, evaluation metrics are typically computed over a set
of topics (or search requests), and it is common to compare systems based on
Mean AP (MAP), Mean nDCG etc. Significance test results or confidence in-
tervals should accompany evaluation metric values: there are arguments against
statistical significance testing (e.g. [48, 51]), but reporting p-values is at least
more informative than just saying “Our system’s MAP was 0.333, while the
baseline’s MAP was 0.300.” Is this difference likely to be substantial or due to
chance?

Statistical significance testing starts with a null hypothesis H0: in IR ex-
periments, a typical null hypothesis would be that all systems that are being
evaluated are equivalent. Then we try to compute and discuss the p-value: this
is the probability of the observed or even more extreme data, under H0. That
is, “Assuming that the null hypothesis is true, how rare would this observation
be?” Table 1 shows a contingency table that is used in significance testing: here,
an arbitrary threshold called α is introduced. If the p-value is less than α, then
what we have observed is something extremely rare, so we reject H0: that is, we
decide that the systems are probably not equivalent.

Table 1. Type I and Type II errors in significance testing.

Accept H0 Reject H0

H0 is actually true correct conclusion Type I error
(systems are actually equivalent) (probability: 1− α) (probability: α)
H0 is actually false Type II error correct conclusion
(systems are actually different) (probability: β) (probability: 1− β)

The α is called the significance level, and is typically set to 0.05 (95% con-
fidence level) or 0.01 (99% confidence level). However, note that this threshold
directly affects our conlcusions: consider what happens when the p-value is 0.03.
Thus, it is better to report the actual p-value instead of saying “the difference
is significant at α = 0.05.” It is important to remember that statistical sig-
nificance does not necessarily imply practical significance, and that statistical
insignificance does not necessarily imply practical insignificance [47]. For exam-
ple, Algorithm A may consistently and significantly outperform Algorithm B for
any given topic, but each of the performance improvements may be too small
for the user no notice; Algorithm A may have fail to significantly outperform
Algorithm B, but your experiment may have used a small number of topics.

Classical significance tests may be used in IR experiments: when comparing
two systems using a common topic set, for example, standard tests such as
Student’s t-test (a parametric test), Wilcoxon signed-rank test and the sign test
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(nonparametric tests) may be used16. In general, parametric tests rely on more
assumptions but have higher statistical power (1−β in Table 1) [110]. But these
tests can be found in any textbooks on statistics.

In this lecture, I will mention a few simple and useful significance testing
methods that rely on computer power instead of assumptions on the underlying
distributions (which often do not hold). Computer-based significance tests rely
on fewer assumptions than classical tests, and are applicable to test statistics
other than the mean. Here I quote Efron and Tibshirani who described the
bootstrap, a very useful and versatile computer-based statistical framework [43]:
“The use of the bootstrap either relieves the analyst from having to do complex
mathematical derivations, or in some instances provides an answer where no
analytical answer can be obtained.”

4.2 Paired Bootstrap Test

This section briefly describes the paired bootstrap test [43, 77, 100] which may be
used instead of the t-test: suppose we have two systems X and Y that we want
to compare using a test collection with n topics. Unlike the t-test, the bootstrap
test does not require the normality assumption, and yet is as powerful.

For a topic set of size n, let x = (x1, . . . , xn) and y = (y1, . . . , yn) denote
the per-topic performances as measured by some metric M . Thus the per-topic
differences are given by z = (z1, . . . , zn) where zi = xi − yi. The sample means,
defined as x̄ =

∑
i xi/n and ȳ =

∑
i yi/n, are what are often reported in IR

papers, e.g. MAP of X , MAP of Y , and so on. But what we really want to
know is whether the population means of X and Y , which we denote by µX and
µY , are any different. Hence, let µ = µX − µY and let us set up the following
hypotheses for a two-tailed test:

H0 : µ = 0 vs . H1 : µ += 0. (47)

Thus the null hypothesis H0 says that the population means of X and Y are
actually the same.

Just like classical significance tests, the bootstrap assumes that z is an inde-
pendent and identically distributed sample drawn from an unknown distribution.
Figure 11 shows how to obtain B bootstrap samples of the per-topic differences
that obey H0. For simplicity, let us assume that n = 5, w = (z1− z̄, . . . , z5− z̄) =
(0.2, 0.0, 0.1, 0.4, 0.0) and the b-th random sample of integers is (1, 3, 1, 2, 4).
Then, w∗b = (0.2, 0.1, 0.2, 0.0, 0.4).

16 Some IR history: in the late 1970s, Van Rijsbergen wrote [68]: “parametric tests are
inappropriate because we do not know the form of the underlying distribution. [...]
One obvious failure is that the observations are not drawn from normally distributed
populations.” He then wrote: “the sign test [...] can be used conservatively.” In the
early 1990s, Hull wrote [47]: “While the errors may not be normal, the t-test is
relatively robust to many violations of normality. Only heavy skewness [...] or large
outliers [...] will seriously compromise its validity.”
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w = (z1 − z̄, . . . , zn − z̄);
for b = 1 to B

from a set of integers (1, . . . , n),
obtain a random sample of size n by sampling with replacement;
for i = 1 to n

j = i-th element of the sample of integers;
w∗b

i = j-th element of w;
end for

end for

Fig. 11. Algorithm for creating B bootstrap samples w∗b = (w∗b
1 , . . . , w∗b

n ) for the
Paired Test.

Now let us consider the studentized statistic of z:

t(z) =
z̄

σ̄/
√
n

(48)

where z̄ =
∑

i zi/n, and σ̄ is the standard deviation of z, given by:

σ̄ =

√∑

i

(zi − z̄)2/(n− 1) . (49)

Each bootstrap sample w∗b can be studentised in a similar way. Then, the p-
value, or the Achieved Significance Level [43] (ASL), can be obtained as shown
in Figure 12: this is simply the proportion of t(w∗b) that are larger than t(z).
The p-value thus obtained should be reported together with the MAP values,
etc.

count = 0;
for b = 1 to B

if( |t(w∗b)| ≥ |t(z)| ) then count++;
ASL = count/B;

Fig. 12. Algorithm for estimating the Achieved Significance Level based on the Paired
Test.

4.3 Unpaired Bootstrap Test

The bootstrap test described above was for a one-sample problem: we knew that
xi corresponds to yi and we could discuss the per-topic performance differences
zi. More generally, however, there are times when we cannot assume that xi

corresponds to yi. For example, suppose we have a set of AP values computed
over a certain topic set, and another set of AP values computed over a different
topic set. These topics may or may not differ in size. This section describes a
simple bootstrap test that is applicable to such two-sample problems: are the
two sets of performances substantially different?
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Let x = (x1, . . . , xn) and y = (y1, . . . , ym) denote the per-topic performances
as measured by some metricM , wheremmay or may not be equal to n. Then the
observed difference between the two overall performances is given by d̂ = M(x)−
M(y), where, for example, M(x) denotes some summary statistic computed
based on x. But what we really want to know is whether the true difference
d between X and Y is substantial. Hence our hypotheses for a two-tailed test
would be:

H0 : d = 0 vs . H1 : d += 0. (50)

As with classifcal significance tests, we assume that x and y are indepen-
dently and identically distributed samples from unknown distributions F and
G, respectively. Since we now need a distribution that obeys H0, let us assume
that F = G, that is, that the observed per-topic performances all come from the
same distribution. Figure 13 shows how to obtain B bootstrap samples x∗b and
y∗b that obey H0. For simplicity, suppose that x = (0.1, 0.3), y = (0.2, 0.0, 0.0)
and therefore that v = (0.1, 0.3, 0.2, 0.0, 0.0). If the b-th random sample of inte-
gers is (1, 3, 1, 2, 4), then x∗b = (0.1, 0.2) and y∗b = (0.1, 0.3, 0.0). Thus, per-topic
performance values are sampled with replacement without looking at whether
they come from x or y.

v = (x1, . . . , xn, y1, . . . , ym);
for b = 1 to B

from a set of integers (1, . . . , n+m),
obtain a random sample of size n+m by sampling with replacement;

for i = 1 to n
j = i-th element of the sample of integers;
x∗b
i = j-th element of v;

end for
for i = n+ 1 to n+m

j = i-th element of the sample of integers;
y∗b
i−n = j-th element of v;

end for
end for

Fig. 13. Algorithm for creating bootstrap samples x∗b = (x∗b
1 , . . . , x∗b

n ) and y∗b =
(y∗b

1 , . . . , y∗b
m ) for the Unpaired Test.

Figure 14 shows how to compute the ASL based on the unpaired bootstrap
test. Note that the ASL is the proportion of the bootstrap-based overall differ-
ences that are larger than the observed difference.

Webber, Moffat and Zobel [109] have demonstrated that score standardisa-
tion is useful for making the evaluation metric values such as x and y comparable
across different test collections.

@
alltogether
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count = 0;
for b = 1 to B

if( |M(x∗b)−M(y∗b)| ≥ |d̂| ) then count++;
ASL = count/B;

Fig. 14. Algorithm for estimating the Achieved Significance Level based on the Un-
paired Test.

4.4 Randomised Tukey’s HSD Test

When more than two systems are being evaluated in an experiment, then sig-
nificance tests suitable for that purpose should be used instead of conducting a
pairwise test such as the t-test or the bootstrap test one at a time. If a pair-
wise test with a significance level of α is conducted for k system pairs, then
the family-wise error rate amounts to 1 − (1 − α)k: this is the probability of
detecting at least one significant difference for a pair of systems that are in fact
equivalent. Carterette [21] describes a simple computer-based test suitable for
multiple comparisons, which is a randomised version of the Tukey’s Honestly
Significant Differences (HSD) test. The main idea behind Tukey’s HSD is that
if the largest mean difference observed is not significant, then none of the other
differences should be significant either; the null hypothesis is that there is no
difference between any of the systems.

For an experimental environment where we have n topics and m systems
(where k = m(m − 1)/2), let U be an n-by-m matrix whose element (i, j)
represents the performance of the j-th system for topic i according to some
metric M . Figure 15 shows how to obtain the ASL for each run pair based on
the randomised Tukey’s HSD test. The outcome of this test will generally be
more conservative than that of pairwise tests conducted independently, as the
family-wise error rate is now bounded above by α.

4.5 Further Reading

For one-sample problems, Smucker, Allan and Carterette [101] reported that the
paired bootstrap test, the randomisation test (a.k.a. permutation test) and the
t-test have little practical difference. Nevertheless, they advocate the use of the
randomisation test, partly because the test does not require the assumption that
the IR test topics are a random sample from a population of topics. They also
argue that the use of the Wilcoxon and sign tests should be discontinued.

Robertson and Kanoulas [72] recently proposed a new methodology for sig-
nificance testing in IR experiments, which views a document collection of a test
collection as a sample from some larger population of documents. Thus, they
discuss the interaction between a sampling of topics and a separate sampling
of documents. A related approach has been described earlier by Cormack and
Lynam [38].



foreach pair of runs (X,Y )
count(X,Y ) = 0;

for b = 1 to B
for i = 1 to n // i.e. for every topic (every row of U)

i-th row of U∗b = random permutation of the i-th row of U;
max ∗b = maxj u

∗b
j ; min∗b = minj u

∗b
j where

u∗b
j is the mean of j-th column vector of U∗b;

foreach pair of runs (X,Y )
if( max∗b −min∗b > |u(X)− u(Y )| where

u(·) is the mean of the column vector for a given run in U )
then count(X,Y ) + +;

end for
foreach pair of runs (X,Y )

ASL(X,Y ) = count(X,Y )/B;

Fig. 15. Algorithm for obtaining the Achieved Significance Level with the two-sided,
randomised Tukey’s HSD given a performance value matrix U whose rows represent
topics and columns represent runs [21].

5 Testing IR Metrics

One ultimate goal of IR researchers is to build systems that completely and
efficiently satisfy the user’s information needs, and we often regard evaluation
metrics as crude indicators of user satisfaction or performance. But what are
“good” metrics? There is no perfect method that answers this question. In gen-
eral, it is difficult to involve real users in determining which metrics are good:
we are using metrics instead of directly asking the users because it is difficult to
involve real users! Below, we discuss some (imperfect) methods that have been
used to “evaluate” evaluating metrics.

5.1 Discriminative Power

Suppose that two systems X and Y are being compared with evaluation metrics
M1 and M2. According to M1, X outperforms Y and the p-value is 0.0001;
according to M2, X outperforms Y but the p-value is 0.3. If these two metrics are
compared while the probability of Type I Error α (i.e. probability of concluding
that two systems are different even though they are in fact equivalent) is held
constant (e.g. α = 0.05), M1 provides a statistically significant result while M2

does not. If this trend can be observed for different systems pairs, then one might
prefer to use M1 in IR experiments. This property of M1 reflects its consistency
or stability across the topics.

More specifically, suppose that m systems are being compared; this gives us
m(m − 1)/2 system pairs. We can obtain a p-value for each of these pairs and
for each metric, and draw Achieved Significance Level (ASL) curves [77] like the
ones shown in Figure 16. Here, the y-axis represents the ASL (i.e. p-values), and
the x-axis represents the system pairs sorted by ASL. Sakai [77] originally used
the pairwise bootstrap test for producing ASL curves, but this example [85] uses

Tesensitivity of metric



the randomised version of the Tukey’s HSD test. Metrics whose curves are close
to the origin are the ones with high discriminative power [77, 79]: they produce
smaller p-values for many run pairs than other metrics do.
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Fig. 16. ASL curves from Sakai and Dou [85].

The discriminative power method may also be used for estimating the mini-
mum performance delta required that gives a statistically significant result, given
a topic set of size n [77]. With the randomised Tukey’s HSD test, this can sim-
ply be estimated as the smallest value among the performance deltas that were
actually found to be significant [82].

Discriminative power measures the consistency or stability of metrics based
on significance testing17. It does not tell whether the metrics are measuring what
we want to measure. Moreover, as was discussed earlier, statistical significance
does not necessarily imply practical significance (while statistical insignificance
does not necessarily imply practical insignificance). Despite this limitation, dis-
criminative power is a moderately popular method for evaluating evaluation
metrics(e.g. [30, 46, 53, 59, 73, 104, 111]).

Prior to the proposal of the discriminative power method, Buckley and
Voorhees [15] and Voorhees and Buckley [107] proposed methods that are re-
lated to discriminative power. The “swap method” [107] splits the topic set of a
given test collection in half, uses these two topic sets to evaluate systems indepen-
dently, and asks how consistent the pairwise evaluation outcomes are. However,
their methods do not consider statistical significance. Sanderson and Zobel [99]
used the t-test for filtering run pairs before conducting the swap method. Un-
like the discriminative power method, however, the swap method cannot directly
estimate the performance delta between two systems that can be considered sub-
stantial for the full topic set: for example, if the topic set contains n = 50 topics,
then it needs to be split into two sets of 25 topics [77]. A similar split-topic
method was used by Zobel in the 1990s [121].

17 We assumes that a metric is a function of some gold standard data and a system
output – and nothing else. For example, something that knows that Output X is
from Google and Output Y is Bing and uses this information to say that (say) “Y
is better than X” for any query [97] is not a metric.



5.2 Rank Correlation

Rank correlation compares two rankings. Thus, to evaluate the sanity of an
evaluation metric M , it is possible to produce a system ranking according to M ,
and compare it with another system ranking according to a “well-established”
metric M∗. (Here, it is assumed that the two metrics rank the same set of
systems.) This is also an imperfect method for evaluating evaluation metrics:
we want new metrics to correlate relatively well with “established” metrics: an
extremely low correlation would suggest that either previous IR research or the
new metric is wrong; an extremely high correlation would suggest that it is not
necessary to introduce the new metric.

Rank correlation statistics can be regarded as a special type of ranked re-
trieval metrics where the gold standard data also take the form of a ranked list.
The most widely-used rank correlation statistic in the IR community is Kendall’s
τ . Let m be the size of the two ranked lists, so that there are m(m− 1)/2 pairs
of ranked items within each list. Let conc denote the number of item pairs for
which the two ranked lists are concordant (e.g. if Item X is ranked above Item Y
in one list, Item X is also ranked above Item Y in the other list); similarly, let
disc denote the number of item pairs for which the two lists are discordant. Then
τ is simply given by:

τ =
conc − disc

m(m− 1)/2
. (51)

One of the problems with τ in the context of IR evaluation is that the swaps
near the top of the ranks and those near the bottom of the ranks are treated
equally, even though what happens near the top of the ranks is generally more
important. Thus several researchers have proposed alternative rank correlation
statistics that have the top heaviness property. Here, we describe a relatively
widely-used variant of τ , known as τap [115], which is easy to compute.

The raw τap interprets one of the two ranked lists as the gold standard (i.e.
correct ranking). Let correct(r) denote the number of items above rank r in the
evaluated list that are correctly ranked with respect to the item at rank r. For
example, suppose that Item Y is at rank r in the evaluated list, and that Item X
is ranked above it. If the gold-standard list also has X above Y , then Item Y
contributes to correct(r). Then τap is given by:

τap =
2

m− 1

m∑

r=2

(
correct(r)

r − 1
)− 1 . (52)

While Kendall’s τ is a monotonic function of the probability that a randomly
chosen pair of ranked items is ordered concordantly, τap is a monotonic function
of the probability that a randomly chosen item and one ranked above it are
ordered concordantly; unlike τ , the raw τap is asymmetric. However, a symmetric
version can easily be obtained by averaging two correlation values when each list
is treated as the gold standard [115]. Both τ and τap lie between −1 and 1.

Pollock [67], Carterette [19] and Webber, Moffat and Zobel [112] have also
discussed top-heavy rank correlation statistics. Carterette’s drank measure in-
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corporates correlations among system pairs; Rank-Biased Overlap by Webber et
al. is applicable even to any pair of system rankings of different lengths.

5.3 Predictive Power and Concordance Test

Probably the most natural way to evaluate evaluation metrics is to “ask the
user.” As was mentioned earlier, Cooper [36, 37], in the early 1970s, described a
hypothetical interviewing method for users who “enter the library.” However, it
is clear that such a method is not feasible for most of today’s IR systems such
as web search engines.

Nevertheless, it is probably worthwhile to ask real people questions, and to
check if evaluation metrics behave similarly to their judgments. Specifically, sup-
pose a human participant is shown two outputs X and Y , and is asked to judge
which is better. A collection of such preference judgments can be seen as the
gold standard: if an evaluation metric agrees with the participant’s preference
between X and Y , then that is a correct prediction. This can be performed for
many pairs of outputs, and possibly for many participants. The ability to predict
the correct preference has been referred to as predictive power [98]. Sanderson
et al. [98] investigated the predictive power of traditional IR and diversity IR
metrics, although they had to evaluate the latter type of metrics by treating
each intent of a topic as an independent topic. Hence it may be difficult for
the predictive power method to evaluate the ability of a diversity metric to ac-
tually reward diversity. Zhou et al. [120] reported on a similar experiment for
aggregated search evaluation metrics. These studies leveraged Amazon Mechan-
ical Turk (AMT). Similarly, in the context of diversity evaluation, Chandar and
Carterette [25] used AMT to investigate what kind of novel document the user
would want to see right after seeing a document relevant to a particular in-
tent. While it should be remembered that the “Turkers” are not real users with
an information need, these types of inexpensive, human-in-the-loop evaluation
of evaluation metrics are probably good complements to “user-free” evaluation
methods such as discriminative power.

In the context of evaluating diversity IR metrics, Sakai [82] described the con-
cordance test, a user-free version of the predictive power test. Because diversity
IR metrics are complex, the concordance test tries to examine how “intuitive”
they are, by using some “gold-standard” metrics instead of the preference judg-
ments. For example, for diversified search, since we want both high diversity and
high relevance, it is possible to regard intent recall or precision as a gold stan-
dard. Moreover, simultaneous agreement with both of these metrics may also
be examined. Note that these gold-standard metrics themselves are not good
enough for diversity evaluation: these merely represent the basic properties of
the more complex diversity metrics that should be satisfied.

Figure 17 shows a simple algorithm for comparing two candidate metrics
M1 and M2 given a gold standard metric M∗: concordance with multiple gold
standards may be computed in a similar way. Here, for example, M1(q,X) de-
notes the value of metric M1 computed for the output of system X obtained in
response to topic q. Note that this algorithm focusses on the cases where M1



Table 2. Simultaneous concordance with intent recall and precision: TREC 2011 Web
Track Diversity Task data; measurement depth l = 10 [83]. Statistically significant
differences with the sign test are indicated by ‡ (α = 0.01).

D-nDCG D-U U-IA ERR-IA α-nDCG
D#-nDCG 48%/0%‡ 47%/38%‡ 45%/39%† 70%/29%‡ 68%/35%‡

(415) (771) (745) (1106) (913)
D-nDCG - 42%/65%‡ 40%/67%‡ 66%/40%‡ 58%/48%‡

(562) (568) (1044) (974)
D-U - - 33%/80%‡ 66%/40%‡ 62%/45%‡

(54) (1472) (1323)
U-IA - - - 67%/38%‡ 63%/43%‡

(1463) (1299)
ERR-IA - - - - 19%/76%‡

(292)

and M2 disagree with each other. While it is clear that this is also an imper-
fect method for evaluating metrics as it assumes that the gold-standard metrics
represent the real users’ preferences, it is useful to be able to quantify exactly
how often the metrics satisfy the basic properties such as “preference for a more
diversified output” or “preference for a more relevant output” [82, 95].

Disagreements = 0; Conc1 = 0; Conc2 = 0;
foreach pair of runs (X,Y )

foreach topic q
∆M1 = M1(q,X)−M1(q, Y );
∆M2 = M2(q,X)−M2(q, Y );
∆M∗ = M∗(q,X)−M∗(q, Y );
if( ∆M1 ×∆M2 < 0 ) then // M1 and M2 strictly disagree

Disagreements ++;
if( ∆M1 ×∆M∗ ≥ 0) ) then// M1 is concordant with M∗

Conc1 ++;
if( ∆M2 ×∆M∗ ≥ 0) ) then // M2 is concordant with M∗

Conc2 ++;
end if

end foreach
Conc(M1|M2,M

∗) = Conc1/Disagreements ;
Conc(M2|M1,M

∗) = Conc2/Disagreements ;

Fig. 17. Concordance test algorithm for a pair of metrics M1 and M2, given the gold-
standard metric M∗.

Table 2 shows some examples of concordance test results, taken from Sakai [83].
Here, both intent recall and precision are used as the gold-standard metrics, and
six diversity metrics are compared using the data from the TREC 2011 Diver-
sity Task [31]. The α-nDCG and ERR-IA values are from the official TREC



results computed by ndeval18; the D(#)-nDCG values were computed using
NTCIREVAL19; the D-U and U-IA values are from the Sakai and Dou [85]20. This
TREC data set contains 50 topics and 17 “Category A” runs [31], giving us
50 ∗ 17 ∗ 16/2 = 6800 pairs of ranked lists. For example, the table shows the
following information for D#-nDCG versus ERR-IA:

– D#-nDCG and ERR-IA disagree with each other for 1106 ranked list pairs
out of 6800;

– Of the 1106 disagreements, D#-nDCG is concordant with both intent recall
and precision 70% of the time, while ERR-IA is concordant with them only
29% of the time.

– The difference between D#-nDCG and ERR-IA is statistically significant at
α = 0.01 (though not shown in the table, D#-nDCG wins 592 times, while
ERR-IA wins only 130 times)21.

It can be observed that, as was mentioned in Section 3.1, D#-nDCG ) U-IA )
D-U ) D-nDCG ) α-nDCG ) ERR-IA holds, where “)” means “statistically
significantly better than” in terms of simultaneous concordance with I-rec and
precision.

5.4 Leave-One-Out Test

The Leave-One-Out (LOO) test [106, 121] is useful for testing the reusability of
test collections that have been built based on pooling. It can also be used for
comparing the robustness of evaluation metrics to incompleteness and system
bias (e.g. [18, 89, 87]). Figure 18 shows how the LOO test works: the relevance
assessments of a topic is a union of the contributions from each participating
team (or contributors). Then a LOO relevance assessment set can be created by
removing the unique contributions from one team (e.g. Team A). Then, if the runs
from this team are evaluted based on the LOO set, it is similar to the situation
where the original test collection is used for evaluating a non-contributor, i.e. a
team that did not contribute to the pooling process.

Formally, let m be the number of contributors, and let Cj denote the con-
tributions from the j-th team (j = 1, . . . ,m). Each team may submit multiple
runs22. The pool for this topic is given by P =

⋃
j Cj , and the set of unique con-

tributions from the j-th team is given by Uj = Cj −
⋃

j′ '=j Cj′ . Then the LOO
set for the j-th team is given by LOO j =

⋃
j′ '=j Cj′ = P − Uj. If the evaluation

outcome for the j-th team based on LOOj is similar to that based on the original

18 http://trec.nist.gov/data/web/11/ndeval.c
19 http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html
20 http://research.microsoft.com/u/
21 Thus D#-nDCG wins 54% of the time, while ERR-IA wins 12% of the time: whereas,

the concordance percentages shown in the table include cases where D#-nDCG and
ERR-IA are tied.

22 The original method of Zobel [121] left out one run at a time, but leaving out the
entire team is more realistic and more stringent.



Team A 

Team B 

Team C 

Team D 

Original relevance assessments =  
Union of contributions from Teams A, B, C and D 

Team B 

Team C 

Team D 

Remove Team A’s 
unique 
contributions 

“Leave Out Team A” 
relevance assessments 

Evaluate Team A using 
this LOO set. Can this 

“new” team evaluated 
fairly? 

Fig. 18. Leaving out Team A.

relevance assessments P , then the test collection with that particular evaluation
metric may be considered more or less reusable: the evaluation environment can
properly evaluate systems that did not contribute to the pool.

5.5 Further Reading

There are other ways to evaluate evaluation metrics or evaluation environments.
For example, Aslam, Yilmaz and Pavlu [8] have examined the informativeness
of evaluation metrics; Ashkan and Clarke [7] have extended this approach to
diversity evaluation metrics. Generalisability theory has been used for testing the
reliability of evaluation environments [11, 23]. Before conducting experiments, it
is always useful to discuss the theoretical properties of evaluation metrics: metrics
may be studied or even designed using measurement theory, formal constraints
and axioms (“axiometrics”) [3, 12]; just reformulating the definition of a known
metric may reveal some of its (dis)advantages [79, 81].

6 Summary

This lecture covered a wide variety of IR metrics and discussed some meth-
ods for evaluating evaluation metrics. It also briefly described computer-based
statistical significance test methods that are useful for IR evaluation. The take-
aways for IR experimenters are: (1) It is important to understand the properties
of IR metrics and choose or design appropriate ones for the task at hand; (2)
Computer-based statistical significance tests are simple and useful, although
statistical significance does not necessarily imply practical significance, and sta-
tistical insignificance does not necessarily imply practical insignificance; and (3)
Several methods exist for discussing which metrics are “good,” although none of
them is perfect.

Finally, the reader should be reminded that, to conduct good IR experments,
one should use a competitive baseline system (a statistically significant gain over
an obsolete, fifty-year-old technique is unlikely to advance the state of the art),



multiple evaluation metrics (to evaluate systems from several angles), and mul-
tiple test collections (to see how consistent and generalisable the results might
be).
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