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Abstract

Probabilistic Latent Semantic Analysis is a
novel statistical technique for the analysis
of two{mode and co-occurrence data, which
has applications in information retrieval and
�ltering, natural language processing, ma-
chine learning from text, and in related ar-
eas. Compared to standard Latent Semantic
Analysis which stems from linear algebra and
performs a Singular Value Decomposition of
co-occurrence tables, the proposed method
is based on a mixture decomposition derived
from a latent class model. This results in a
more principled approach which has a solid
foundation in statistics. In order to avoid
over�tting, we propose a widely applicable
generalization of maximum likelihood model
�tting by tempered EM. Our approach yields
substantial and consistent improvements over
Latent Semantic Analysis in a number of ex-
periments.

1 Introduction

Learning from text and natural language is one of the
great challenges of Arti�cial Intelligence and Machine
Learning. Any substantial progress in this domain has
strong impact on many applications ranging from in-
formation retrieval, information �ltering, and intelli-
gent interfaces, to speech recognition, natural language
processing, and machine translation. One of the fun-
damental problems is to learn the meaning and usage

of words in a data-driven fashion, i.e., from some given
text corpus, possibly without further linguistic prior
knowledge.

The main challenge a machine learning system has to
address roots in the distinction between the lexical
level of \what actually has been said or written" and
the semantical level of \what was intended" or \what

was referred to" in a text or an utterance. The result-
ing problems are twofold: (i) polysems, i.e., a word
may have multiple senses and multiple types of usage
in di�erent context, and (ii) synonymys and semanti-
cally related words, i.e., di�erent words may have a
similar meaning, they may at least in certain contexts
denote the same concept or { in a weaker sense { refer
to the same topic.

Latent semantic analysis (LSA) [3] is well-known tech-
nique which partially addresses these questions. The
key idea is to map high-dimensional count vectors,
such as the ones arising in vector space representa-
tions of text documents [12], to a lower dimensional
representation in a so-called latent semantic space. As
the name suggests, the goal of LSA is to �nd a data
mapping which provides information well beyond the
lexical level and reveals semantical relations between
the entities of interest. Due to its generality, LSA
has proven to be a valuable analysis tool with a wide
range of applications (e.g. [3, 5, 8, 1]). Yet its theoreti-
cal foundation remains to a large extent unsatisfactory
and incomplete.

This paper presents a statistical view on LSA which
leads to a new model called Probabilistic Latent Se-

mantics Analysis (PLSA). In contrast to standard
LSA, its probabilistic variant has a sound statistical
foundation and de�nes a proper generative model of
the data. A detailed discussion of the numerous ad-
vantages of PLSA can be found in subsequent sections.

2 Latent Semantic Analysis

2.1 Count Data and Co-occurrence Tables

LSA can in principle be applied to any type of count
data over a discrete dyadic domain (cf. [7]). How-
ever, since the most prominent application of LSA is
in the analysis and retrieval of text documents, we
focus on this setting for sake of concreteness. Sup-
pose therefore we have given a collection of text doc-



uments D = fd1; : : : ; dNg with terms from a vocab-
ulary W = fw1; : : :wMg. By ignoring the sequen-
tial order in which words occur in a document, one
may summarize the data in a N � M co-occurrence

table of counts N = (n(di; wj))ij, where n(d;w) 2 IN
denotes how often the term w occurred in document
d. In this particular case, N is also called the term-
document matrix and the rows/columns of N are re-
ferred to as document/term vectors, respectively. The
key assumption is that the simpli�ed `bag-of-words' or
vector-space representation [12] of documents will in
many cases preserve most of the relevant information,
e.g., for tasks like text retrieval based on keywords.

2.2 Latent Semantic Analysis by SVD

As mentioned in the introduction, the key idea of LSA
is to map documents (and by symmetry terms) to a
vector space of reduced dimensionality, the latent se-

mantic space [3]. The mapping is restricted to be lin-
ear and is based on a Singular Value Decomposition
(SVD) of the co-occurrence table. One thus starts
with the standard SVD given by N = U�Vt; where
U and V are orthogonal matrices UtU = VtV = I

and the diagonal matrix � contains the singular val-
ues of N. The LSA approximation of N is computed
by setting all but the largest K singular values in �

to zero (= ~�), which is rank K optimal in the sense
of the L2-matrix norm. One obtains the approxima-
tion ~N = U ~�Vt � U�Vt = N: Notice that the
document-to-document inner products based on this
approximation are given by ~N ~Nt = U ~�2Ut and hence
one might think of the rows of U ~� as de�ning coor-
dinates for documents in the latent space. While the
original high-dimensional vectors are sparse, the corre-
sponding low-dimensional latent vectors will typically
not be sparse. This implies that it is possible to com-
pute meaningful association values between pairs of
documents, even if the documents do not have any
terms in common. The hope is that terms having a
commonmeaning, in particular synonyms, are roughly
mapped to the same direction in the latent space.

3 Probabilistic LSA

3.1 The Aspect Model

The starting point for Probabilistic Latent Semantic

Analysis is a statistical model which has been called
aspect model [7]. The aspect model is a latent variable
model for co-occurrence data which associates an un-
observed class variable z 2 Z = fz1; : : : ; zKgwith each
observation. A joint probability model over D �W is

z wd z w

P(z)
(a) (b)

d
P(d) P(z|d) P(w|z) P(d|z) P(w|z)

Figure 1: Graphical model representation of the as-
pect model in the asymmetric (a) and symmetric (b)
parameterization.

de�ned by the mixture

P (d;w)=P (d)P (wjd); P (wjd)=
X

z2Z

P (wjz)P (zjd): (1)

Like virtually all statistical latent variable models the
aspect model introduces a conditional independence
assumption, namely that d and w are independent con-
ditioned on the state of the associated latent variable
(the corresponding graphical model representation is
depicted in Figure 1 (a)). Since the cardinality of z is
smaller than the number of documents/words in the
collection, z acts as a bottleneck variable in predict-
ing words. It is worth noticing that the model can be
equivalently parameterized by (cf. Figure 1 (b))

P (d;w) =
X

z2Z

P (z)P (djz)P (wjz) ; (2)

which is perfectly symmetric in both entities, docu-
ments and words.

3.2 Model Fitting with the EM Algorithm

The standard procedure for maximum likelihood es-
timation in latent variable models is the Expectation
Maximization (EM) algorithm [4]. EM alternates two
coupled steps: (i) an expectation (E) step where poste-
rior probabilities are computed for the latent variables,
(ii) an maximization (M) step, where parameters are
updated. Standard calculations (cf. [7, 13]) yield the
E-step equation

P (zjd;w) =
P (z)P (djz)P (wjz)P

z02Z
P (z0)P (djz0)P (wjz0)

; (3)

as well as the following M-step formulae

P (wjz) /
X

d2D

n(d;w)P (zjd;w); (4)

P (djz) /
X

w2W

n(d;w)P (zjd;w); (5)

P (z) /
X

d2D

X

w2W

n(d;w)P (zjd;w) : (6)

Before discussing further algorithmic re�nements, we
will study the relationship between the proposed
model and LSA in more detail.
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Figure 2: Sketch of the probability sub-simplex
spanned by the aspect model.

3.3 Probabilistic Latent Semantic Space

Consider the class-conditional multinomial distribu-
tions P (�jz) over the vocabulary which we call factors.
They can be represented as points on the M � 1 di-
mensional simplex of all possible multinomials. Via
its convex hull, this set of K points de�nes a L �
K�1 dimensional sub-simplex. The modeling assump-
tion expressed by (1) is that conditional distributions
P (wjd) for all document are approximated by a multi-
nomial representable as a convex combination of fac-
tors P (wjz), where the mixingweights P (zjd) uniquely
de�ne a point on the spanned sub-simplex. A simple
sketch of this situation is shown in Figure 2. Despite
of the discreteness of the introduced latent variables, a
continuous latent space is obtained within the space of
all multinomial distributions. Since the dimensionality
of the sub-simplex is � K�1 as opposed to a maximum
ofM�1 for the complete probability simplex, this per-
forms a dimensionality reduction in the space of multi-
nomial distributions and the spanned sub-simplex can
be identi�ed with a probabilistic latent semantic space.

To stress this point and to clarify the relation to
LSA, let us rewrite the aspect model as parameter-
ized by (2) in matrix notation. Hence de�ne ma-
trices by Û = (P (dijzk))i;k, V̂ = (P (wjjzk))j;k, and

�̂ = diag(P (zk))k. The joint probability model P
can then be written as a matrix product P = Û�̂V̂t.
Comparing this with SVD, one can make the follow-
ing observations: (i) outer products between rows of

Û and V̂ reect conditional independence in PLSA,
(ii) the K factors correspond to the mixture compo-
nents in the aspect model, (iii) the mixing proportions
in PLSA substitute the singular values. The crucial
di�erence between PLSA and LSA, however, is the
objective function utilized to determine the optimal
decomposition/approximation. In LSA, this is the L2-
or Frobenius norm, which corresponds to an implicit
additive Gaussian noise assumption on (possibly trans-
formed) counts. In contrast, PLSA relies on the like-

lihood function of multinomial sampling and aims at
an explicit maximization of the predictive power of
the model. As is well known, this corresponds to a
minimization of the cross entropy or Kullback-Leibler
divergence between the empirical distribution and the
model, which is very di�erent from any type of squared
deviation. On the modeling side this o�ers important
advantages, for example, the mixture approximation
P of the co-occurrence table is a well-de�ned proba-
bility distribution and factors have a clear probabilistic
meaning. In contrast, LSA does not de�ne a properly
normalized probability distribution and ~N may even
contain negative entries. In addition, there is no obvi-
ous interpretation of the directions in the LSA latent
space, while the directions in the PLSA space are in-
terpretable as multinomial word distributions. The
probabilistic approach can also take advantage of the
well-established statistical theory for model selection
and complexity control, e.g., to determine the opti-
mal number of latent space dimensions. Choosing the
number of dimensions in LSA on the other hand is
typically based on ad hoc heuristics.

A comparison of the computational complexity might
suggest some advantages for LSA: ignoring potential
problems of numerical stability the SVD can be com-
puted exactly, while the EM algorithm is an iterative
method which is only guaranteed to �nd a local max-
imum of the likelihood function. However, in all our
experiments the computing time of EM has not been
signi�cantly worse than performing an SVD on the co-
occurrence matrix. There is also a large potential for
improving run-time performance of EM by on-line up-
date schemes, which has not been explored so far.

3.4 Topic Decomposition and Polysemy

Let us briey discuss some elucidating examples at
this point which will also reveal a further advantage of
PLSA over LSA in the context of polsemous words. We
have generated a dataset (CLUSTER) with abstracts
of 1568 documents on clustering and trained an aspect
model with 128 latent classes. Four pairs of factors are
visualized in Figure 3. These pairs have been selected
as the two factors that have the highest probability to
generate the words \segment", \matrix", \line", and
\power", respectively. The sketchy characterization of
the factors by their 10 most probable words already re-
veals interesting topics. In particular, notice that the
term used to select a particular pair has a di�erent
meaning in either topic factor: (i) `Segment' refers to
an image region in the �rst and to a phonetic segment
in the second factor. (ii) `Matrix' denotes a rectangu-
lar table of numbers and to a material in which some-
thing is embedded or enclosed. (iii) `Line' can refer to
a line in an image, but also to a line in a spectrum.
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Figure 3: Eight selected factors from a 128 factor decomposition. The displayed word stems are the 10 most
probable words in the class-conditional distribution P (wjz), from top to bottom in descending order.

Document 1, Pfzkjd1; wj = `segment`g = (0:951; 0:0001; : : :)
Pfwj = `segment`jd1g = 0:06

SEGMENT medic imag challeng problem �eld imag analysi diagnost base proper SEGMENT digit imag SEGMENT medic imag need

applic involv estim boundari object classif tissu abnorm shape analysi contour detec textur SEGMENT despit exist techniqu SEGMENT

specif medic imag remain crucial problem [...]

Document 2, Pfzkjd2; wj = `segment`g = (0:025; 0:867; : : :)
Pfwj = `segment`jd2g = 0:010

consid signal origin sequenc sourc specif problem SEGMENT signal relat SEGMENT sourc address issu wide applic �eld report describ

resolu method ergod hidden markov model hmm hmm state correspond signal sourc signal sourc sequenc determin decod procedur viterbi

algorithm forward algorithm observ sequenc baumwelch train estim hmm paramet train materi applic multipl signal sourc identif problem

experi perform unknown speaker identif [...]

Figure 4: Abstracts of 2 exemplary documents from the CLUSTER collection along with latent class posterior
probabilities Pfzjd;w = `segment'g and word probabilities Pfw = `segment'jdg.

(iv) 'Power' is used in the context of radiating objects
in astronomy, but also in electrical engineering.

Figure 4 shows the abstracts of two exemplary docu-
ments which have been pre-processed by a standard
stop-word list and a stemmer. The posterior probabil-
ities for the classes given the di�erent occurrences of
`segment' indicate how likely it is for each of the factors
in the �rst pair of Figure 3 to have generated this ob-
servation. We have also displayed the estimates of the
conditional word probabilities Pfw = `segment'jd1;2g.
One can see that the correct meaning of the word `seg-
ment' is identi�ed in both cases. This implies that al-
though `segment' occurs frequently in both document,
the overlap in the factored representation is low, since
`segement' is identi�ed as a polysemous word (relative
to the chosen resolution level) which { dependent on
the context { is explained by di�erent factors.

3.5 Aspects versus Clusters

It is worth comparing the aspect model with statistical
clustering models (cf. also [7]). In clustering models
for documents, one typically associates a latent class
variable with each document in the collection. Most
closely related to our approach is the distributional

clustering model [10, 7] which can be thought of as an
unsupervised version of a naive Bayes' classi�er. It
can be shown that the conditional word probability of
a probabilistic clustering model is given by

P (wjd) =
X

z2Z

Pfc(d) = zgP (wjz) ; (7)

where Pfc(d) = zg is the posterior probability of doc-
ument d having latent class z. It is a simple impli-
cation of Bayes' rule that these posterior probabili-
ties will concentrate their probability mass on a cer-
tain value z with an increasing number of observations
(i.e., with the length of the document). This means
that although (1) and (7) are algebraically equiva-
lent, they are conceptually very di�erent and yield in
fact di�erent results. The aspect model assumes that
document-speci�c distributions are a convex combina-
tion of aspects, while the clustering model assumes
there is just one cluster-speci�c distribution which is
inherited by all documents in the cluster.1 Thus in
clustering models the class-conditionals P (wjz) have

1In the distributional clustering model it is only the pos-
terior uncertainty of the cluster assignments that induces
some averaging over the class-conditional word distribu-
tions P (wjz).



to capture the complete vocabulary of a subset (clus-
ter) of documents, while factors can focus on certain
aspects of the vocabulary of a subset of documents.
For example, a factor can be very well used to ex-
plain some fraction of the words occurring in a doc-
ument, although it might not explain other words at
all (e.g., even assign zero probability), because these
other words can be taken care of by other factors.

3.6 Model Fitting Revisited: Improving

Generalization by Tempered EM

So far we have focused on maximum likelihood estima-
tion to �t a model from a given document collection.
Although the likelihood or, equivalently, the perplex-
ity2 is the quantity we believe to be crucial in assessing
the quality of a model, one clearly has to distinguish
between the performance on the training data and on
unseen test data. To derive conditions under which
generalization on unseen data can be guaranteed is ac-
tually the fundamental problem of statistical learning
theory. Here, we propose a generalization of maxi-
mum likelihood for mixture models which is known as
annealing and is based on an entropic regularization
term. The resulting method is called Tempered Expec-

tation Maximization (TEM) and is closely related to
deterministic annealing [11].

The starting point of TEM is a derivation of the E-
step based on an optimization principle. As has been
pointed out in [9] the EM procedure in latent variable
models can be obtained by minimizing a common ob-
jective function { the (Helmholtz) free energy { which
for the aspect model is given by

F� = ��
X

d;w

n(d;w)
X

z

~P (z; d;w) logP (d;wjz)P (z)

+
X

d;w

n(d;w)
X

z

~P (z; d;w) log ~P (z; d;w) : (8)

Here ~P (z; d;w) are variational parameters which de-
�ne a conditional distribution over Z and � is a pa-
rameter which { in analogy to physical systems { is
called the inverse computational temperature. Notice
that the �rst contribution in (8) is the negative ex-
pected log-likelihood scaled by �. Thus in the case of
~P (z; d;w) = P (zjd;w) minimizingF w.r.t. the param-
eters de�ning P (d;wjz)P (z) amounts to the standard
M-step in EM. In fact, it is straightforward to ver-
ify that the posteriors are obtained by minimizing F
w.r.t. ~P at � = 1. In general ~P is determined by

~P (z; d;w) =
[P (z)P (djz)P (wjz)]�P
z0 [P (z0)P (djz0)P (wjz0)]�

: (9)

2Perplexity refers to the log-averaged inverse probabil-
ity on unseen data.
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Figure 5: Perplexity results as a function of the latent
space dimensionality for (a) the MED data (rank 1033)
and (b) the LOB data (rank 1674). Plotted results
are for LSA (dashed-dotted curve) and PLSA (trained
by TEM = solid curve, trained by early stopping EM
= dotted curve). The upper baseline is the unigram
model corresponding to marginal independence. The
star at the right end of the PLSA denotes the perplex-
ity of the largest trained aspect models (K = 2048).

This shows that the e�ect of the entropy at � < 1 is
to dampen the posterior probabilities such that they
will become closer to the uniform distribution with
decreasing �.

Somewhat contrary to the spirit of annealing as a con-
tinuation method, we propose an `inverse' annealing
strategy which �rst performs EM iterations and then
decreases � until performance on held-out data deteri-
orates. Compared to annealing this may accelerate the
model �tting procedure signi�cantly (e.g., by a factor
of � 10� 50) and we have not found the test set per-
formance of `heated' models to be worse than the one
achieved by carefully `annealed' models. The TEM
algorithm can thus be implemented in the following
way:

1. Set �  1 and perform EM with early stopping.

2. Decrease �  �� (with � < 1) and perform one
TEM iteration.

3. As long as the performance on held-out data im-
proves (non-negligible) continue TEM iterations
at this value of �, otherwise goto step 2

4. Perform stopping on �, i.e., stop when decreasing
� does not yield further improvements.

4 Experimental Results

In the experimental evaluation, we focus on two tasks:
(i) perplexity minimization for a document-speci�c un-
igram model and noun-adjective pairs, and (ii) auto-
mated indexing of documents. The evaluation of LSA



Table 1: Average precision results and relative improvement w.r.t. the baseline method cos+tf for the 4 standard
test collections. Compared are LSI, PLSI, as well as results obtained by combining PLSI models (PLSI�).
An asterix for LSI indicates that no performance gain could be achieved over the baseline, the result at 256
dimensions with � = 2=3 is reported in this case.

MED CRAN CACM CISI
prec. impr. prec. impr. prec. impr. prec. impr.

cos+tf 44.3 - 29.9 - 17.9 - 12.7 -
LSI 51.7 +16.7 �28.7 -4.0 �16.0 -11.6 12.8 +0:8
PLSI 63.9 +44.2 35.1 +17.4 22.9 +27.9 18.8 +48.0
PLSI� 66.3 +49.7 37.5 +25.4 26.8 +49.7 20.1 +58.3

and PLSA on the �rst task will demonstrate the advan-
tages of explicitly minimizing perplexity by TEM, the
second task will show that the solid statistical founda-
tion of PLSA pays o� even in applications which are
not directly related to perplexity reduction.

4.1 Perplexity Evaluation

In order to compare the predictive performance of
PLSA and LSA one has to specify how to extract
probabilities from a LSA decomposition. This problem
is not trivial, since negative entries prohibit a simple
re-normalization of the approximating matrix ~N. We
have followed the approach of [2] to derive LSA prob-
abilities.

Two data sets that have been used to evaluate the
perplexity performance: (i) a standard information re-
trieval test collection MED with 1033 document, (ii)
a dataset with noun-adjective pairs generated from a
tagged version of the LOB corpus. In the �rst case, the
goal was to predict word occurrences based on (parts
of) the words in a document. In the second case, nouns
have to predicted conditioned on an associated adjec-
tive. Figure 5 reports perplexity results for LSA and
PLSA on the MED (a) and LOB (b) datasets in de-
pendence on the number of dimensions of the (proba-
bilistic) latent semantic space. PLSA outperforms the
statistical model derived from standard LSA by far.
On the MED collection PLSA reduces perplexity rela-
tive to the unigram baseline by more than a factor of
three (3073=936 � 3:3), while LSA achieves less than
a factor of two in reduction (3073=1647� 1:9). On the
less sparse LOB data the PLSA reduction in perplex-
ity is 1316=547 � 2:41 while the reduction achieved by
LSA is only 1316=632 � 2:08. In order to demonstrate
the advantages of TEM, we have also trained aspect
models on the MED data by standard EM with early
stopping. As can be seen from the curves in Figure 5
(a), the di�erence between EM and TEM model �t-
ting is signi�cant. Although both strategies { temper-
ing and early stopping { are successful in controlling
the model complexity, EM training performs worse,

since it makes a very ine�cient use of the available
degrees of freedom. Notice, that with both methods
it is possible to train high-dimensional models with a
continuous improvement in performance. The num-
ber of latent space dimensions may even exceed the
rank of the co-occurrence matrix N and the choice of
the number of dimensions becomes merely an issue of
possible limitations of computational resources.

4.2 Information Retrieval

One of the key problems in information retrieval is
automatic indexing which has its main application in
query-based retrieval. The most popular family of in-
formation retrieval techniques is based on the Vector

Space Model (VSM) for documents [12]. Here, we have
utilized a rather straightforward representation based
on the (untransformed) term frequencies n(d;w) to-
gether with the standard cosine matching function,
a more detailed experimental analysis can be found
in [6]. The same representation applies to queries q,
so that the matching function for the baseline term
matching method can be written as

s(d; q) =

P
w n(d;w)n(q; w)pP

w n(d;w)
2
pP

w n(q; w)
2
; (10)

In Latent Semantic Indexing (LSI), the original vec-
tor space representation of documents is replaced by a
representation in the low-dimensional latent space and
the similarity is computed based on that representa-
tion. Queries or documents which were not part of the
original collection can be folded in by a simple matrix
multiplication (cf. [3] for details). In our experiments,
we have actually considered linear combinations of the
original similarity score (10) (weight �) and the one
derived from the latent space representation (weight
1� �).

The same ideas have been applied in Probabilistic La-
tent Semantic Indexing (PLSI) in conjunction with
the PLSA model. More precisely, the low-dimensional
representation in the factor space P (zjd) and P (zjq)
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Figure 6: Precision-recall curves for term matching, LSI, and PLSI� on the 4 test collections.

have been utilized to evaluate similarities. To achieve
this, queries have to be folded in, which is done in the
PLSA by �xing the P (wjz) parameters and calculating
weights P (zjq) by TEM.

One advantage of using statistical models vs. SVD
techniques is that it allows us to systematically com-
bine di�erent models. While this should optimally
be done according to a Bayesian model combination
scheme, we have utilized a much simpler approach in
our experiments which has nevertheless shown excel-
lent performance and robustness. Namely, we have
simply combined the cosine scores of all models with a
uniform weight. The resulting method is referred to as
PLSI�. Empirically we have found the performance to
be very robust w.r.t. di�erent (non-uniform) weights
and also w.r.t. the �-weight used in combination with
the original cosine score. This is due to the noise re-
ducing bene�ts of (model) averaging. Notice that LSA
representations for di�erent K form a nested sequence,
which is not true for the statistical models which are
expected to capture a larger variety of reasonable de-
compositions.

We have utilized the following four medium-sized stan-
dard document collection with relevance assessment:
(i) MED (1033 document abstracts from the National
Library of Medicine), (ii) CRAN (1400 document ab-
stracts on aeronautics from the Cran�eld Institute of
Technology), (iii) CACM (3204 abstracts from the
CACM Journal), and (iv) CISI (1460 abstracts in li-
brary science from the Institute for Scienti�c Informa-
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Figure 7: Perplexity and average precision as a func-
tion of the inverse temperature � for an aspect model
with K = 48 (left) and K = 128 (right).

tion). The condensed results in terms of average pre-
cision recall (at the 9 recall levels 10%�90%) are sum-
marized in Table 1, while the corresponding precision
recall curves can be found in Figure 6. Here are some
additional details of the experimental setup: PLSA
models at K = 32; 48; 64; 80;128 have been trained by
TEM for each data set with 10% held-out data. For
PLSI we report the best result obtained by any of these
models, for LSI we report the best result obtained for
the optimal dimension (exploring 32{512 dimensions
at a step size of 8). The combination weight � with the



cosine baseline score has been coarsely optimized by
hand, MED, CRAN: � = 1=2, CACM, CISI:� = 2=3.

The experiments consistently validate the advantages
of PLSI over LSI. Substantial performance gains have
been achieved for all 4 data sets. Notice that the rela-
tive precision gain compared to the baseline method is
typically around 100% in the most interesting interme-
diate regime of recall! In particular, PLSI works well
even in cases where LSI fails completely (these prob-
lems of LSI are in accordance with the original results
reported in [3]). The bene�ts of model combination
are also very substantial. In all cases the (uniformly)
combined model performed better than the best single
model. As a sight-e�ect model averaging also deliber-
ated from selecting the correct model dimensionality.

These experiments demonstrate that the advantages of
PLSA over standard LSA are not restricted to appli-
cations with performance criteria directly depending
on the perplexity. Statistical objective functions like
the perplexity (log-likelihood)may thus provide a gen-
eral yardstick for analysis methods in text learning and
information retrieval. To stress this point we ran an
experiment on the MED data, where both, perplexity
and average precision, have been monitored simulta-
neously as a function of �. The resulting curves which
show a striking correlation are plotted in Figure 7.

5 Conclusion

We have proposed a novel method for unsupervised
learning, called Probabilistic Latent Semantic Analy-

sis, which is based on a statistical latent class model.
We have argued that this approach is more principled
than standard Latent Semantic Analysis, since it pos-
sesses a sound statistical foundation. Tempered Expec-

tation Maximization has been presented as a powerful
�tting procedure. We have experimentally veri�ed the
claimed advantages achieving substantial performance
gains. Probabilistic Latent Semantic Analysis has thus
to be considered as a promising novel unsupervised
learning method with a wide range of applications in
text learning and information retrieval.
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