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Motivation: Scale

Corpus Terms Entries
Shakespeare’s ~31.000 37 71.'1
Plays million
English ~1.7 ~4.5 ~ /.05
Wikipedia million million trillion
. - >1.7
English Web | >2 million - >3.4x10
billion

e Aterm

iINncidence matrix with V

terms and D documents has O(V x
D) entries.

 Shakespeare used around 31,000
distinct words across 37 plays, for
about 1.1M entries.

 As of 2014, a collection of Wikipedia

pages
and ro

comprises about 4.5M pages
ughly 1.7M distinct words.

AsSsumnr

INg Just one bit per matrix

entry, this would consume about
890GB of memorv.



Brutus

Inverted Indexes - Intro

Caesar

Calpurnia

| S —

Dictionary

» Figure 1.2 The two parts of an inverted index. The dictionary is commonly kept in
memory, with pointers to each postings list, which is stored on disk.

1| 2 11 | 31 | 45 | 173 | 174
1| 2 5| 6|16 | 57| 132 | ...
2|31 101

Posgngs

* [wo Insights allow us to reduce this to a
manageable size:

1. The matrix Is sparse — any document
uses a tiny fraction of the vocabulary.

2. A query only uses a handful of
words, so we don't need the rest.

 We use an inverted index instead of
using a term incidence matrix directly.

 An inverted index iIs a map from a term

to a posting list of documents which
use that term.
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def

def

Search Algorithm

runQuery([t1l, t2, ..., tn]):

terms = sortByIncreasingFrequency([t1l, t2, ...

result = terms[@].postings
for term in terms[1:]:

result = intersect(result, term.postings)
return result

intersect(pl, p2):
answer = []
i=3=0
while 1 < len(pl) and j < len(p2):
if plli] == p2[j]:
answer.add(p1[i])
1+=1
] =1
elif pll[i] < p2[j]:
1+=1
else:
] =1
return answer

, tnl)

 Consider gueries of the form:

t1+ AND to AND ... AND tj,

take the
posting |

n this simplitied case, we need only

iNntersections of the term
IStS.

* [his algorithm, inspired by merge sort,

relles on

the posting lists being sorted

by length.

e \We save
N order -

time by processing the terms
rom least common to most

commaor

. (Why does this help?)



Motivation

* All modern search engines rely on inverted indexes in some form.
Many other data structures were considered, but none has matched
ts efficiency.

* [he entries In a production inverted index typically contain many
more fields providing extra information about the documents.

* [he efficient construction and use of inverted indexes is a topic of Its
own, and will be covered Iin a later module.



Motivation

A reasonably-sized index of the web contains many billions of
documents and has a massive vocabulary.

Search engines run roughly 10° queries per second over that collection.

We need fine-tuned data structures and algorithms to provide search
results In much less than a second per query. O(n) and even O(log n)

algorithms are often not nearly fast enough.

The solution to this challenge Is to run an inverted index on a massive
distributed system.



lnverted Indexes

Inverted Indexes are primarily used to allow fast, concurrent query
processing.

Each term found in any indexed document receives an independent
inverted list, which stores the information necessary to process that

term when it occurs in a query.
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lnaexes

‘he primary purpose of a search engine

needed to minimize processing at query time.

ndex IS to store whatever information is

Text search has unigue needs compared to,
e.g., database queries, and needs its own
data structures — primarily, the inverted index.

* A forward index is a map from documents

to terms (and positions). These are used
when you search within a document.

 An inverted index is a map from terms to

documents (and positions). These are used
when you want to find a term in any

document.

IRISHMAN—an Irishman with.. .. Merry Wives, ii. 2
altogether directed by an Irishman .. Henry V.11, 2
IRISHMEN-against the Irishmen? .2 Henry /L 111, 1
IRK —and yet it irks me......veves. dsyou Likeit, 11, |
it irks his heart, he cannot ..........1 Henry 'l 1. 4
it irks my very soul ..........0annn 3Henry V1. ii. 2
IRKSOME —was irksome to me .. Asyou Like it, 111
is an irksome brawling scold .. Taming of Shrew, 1.
irksome is this music to my heart!..2Hemy Il 11.
IRON —to wear iron about you.... TwelfthNight, 111.
my young soldier, put up your iron.. — 1V,
before barred up with ribs of iron! .. Much Ado, 1v.
runs not this speech like iron through  —  v.
but yet you draw not iron...... Mid. N.'s Dream, 11.
the 1ron tongue of midoight hath .... — V.
iron may hold with her ......7Tammgof Shrew, 11.
feteh me an iron Crow........ Comedy of Errors, iil.
their iron indignation 'gainst your.. King John, 11.
with his iron tongue and brazen mouth —  1ii.
heat me these ironshot .............. iv.
must you with hot irons burn (rep.).. iv.
none, but in this iron age ............ iv.
stubborn hard than hammered iron? iv.

Is this a forward or an inverted index?
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Abstract Model of Ranking

Document Topical Features
|ﬂdeX68 are Cl’eated (0 SUppOl’t Fred's Tropical Fish Shop is 9.7 fish
: : the best place to find 4.2 tropical
SearCh’ and the prlmary SearCh taSk IS tropical fish at low, low 22.1tropical fish
document r ank/ng. prices. ~ Whether you're 8.2 seaweed
looking for a little fish or a 4 2 suyrfboards
| big fish, we've got what you _
We sort documents according to some nesd.  We even have fake Quality Features
; ; seaweed for your fishtank 14 incoming links
scoring function which depends on (and lictle surfboards too). 3 days since last update
the terms In the query and the *
document representation.
Query
In the abstract, we need to store tropical fish ~ ==ap-| Scoring Function
various document features to
efficiently score documents in v
response to a query. Document Score

24.5



More Concrete Model

R(Q,D) = Zgi(Q)fi(D) fi is a document feature function

g; 1s a query feature function

i 4.2 tropical

Fred's Tropical Fish Shop is o
the best place to find 22.1 tropica.

tr(.)pical fish at low, lcl>w / 87 seaweed chichlids 1.2 \
prices. Whether you're

looking for a little fish or a 4.2 surfboards barbs 0.7

big fish, we've got what you

nced.  We even have fake Topical Features Topical Features

seaweed for your fishtank

—p fish 5.2
@———— p tropical 3.4 gi
fish q— » tropical fish 9.9
tropical fish
Query

(and little surfboards too). \
14 incoming links .¢———p» incominglinks 1.2

3 update count g » update count 0.9

Document Quality Features Quality Features

303.01

Document Score



INn an inverted Index, each term has an

Inverted Lists

assoclated inverted list.

At minimum, this list contains a list of

identifiers for documents which

contal

Usual

inform

relates to that term. Each entry in an

n that term.

Yy we have more deta

ation for each docum

led

ent as It

inverted list is called a posting.
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s e posiden
:ﬁ%@ﬁm r derives
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| inverted list
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Simple Inverted Index
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fishkeepers |2 this
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Inverted Index with Counts

Document postings can store any
information needed tor efficient

ranking.

For instance, they typically store term
counts for each document — tf,.a.

Depending on the underlying storage .. iﬁ

system, it can be expensive to

increase the size of a posting. It
important to be able to efficient
inverted list, and it

through an
they're sma

S

y scan

elps if

Cwu)

S g&\,\\/ Lg—k ((/O\)vdﬁ

and |[1:1
aquarium | 3:1
are |3:1||4:1
around |1:1
as |2:1
both |1:1
M&<> bright |3:1
coloration |3:1|]4:1
" EO%\NS derives |4:1
due |3:1
environments 1:1
fish |1:2|]2:3][3:2| | 4:2
N\,QQ\QQ@AA\WO fishkeepers |2:1 "
found |1:1 51@ - W\,v»)\;
fresh |2:1) \g&g\w’“
Eeshwater 1:1] {4l
from |4:1
generally [4:1
in | 1:1][4:1
include |[1:1
including | 1:1
iridescence |[4:1
marine |2:1
often |2:1|]3:1

Inverted Index with Counts

only
pigmented
popular
refer
referred
requiring
salt
saltwater
species
term
the
their
this
those
to
tropical
typically
use
water
while
with

world

2:1
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2:1

1:1

2:1

1:1

3:1

4:1

2:1

2:2

1:2

3:1
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2:1

1:1

2:1

4:1

4:1

2:1

1:1




Indexing Aaditional Data

The information used to support all modern search features can grow quite complex.

Locations, dates, usernames, and other metadata are common search criteria,
especially in search functions of web and mobile applications.

When these fields contain text, they are ultimately stored using the same inverted list
structure.

Next, we'll see how to compress inverted lists to reduce storage needs and
filesystem |/O.
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Cvinul = (820,00 AT am)
Indexing Term POSltlon,@&

dlode. ont! ‘M/d\g - WM&@W\ 5 A 00 s W
Many scoring functions assign higher ;ﬁdgq\

scores to documents containing the ° —
query terms in closer proximity. gudwj m (DGEI ]3_752,1;2
et (k™ > , 5: (8 16, 190, 429, 433);

Some query languages allow users to  tle©
specify proximity requirements, like m
‘tropical NEAR fish.” W‘

| | | 178239:
In the Inverted lists to the right, the (1,2: (17, 25);
word “to” has a DF of 993,427. It is 4,5: (17,191, 291, 430, 434);
found In five documents: its TF in doc 5,3: (14,19, 101);...)

11s 6, and the list of positions is given. Postings with DF, TF, and Positions



Proximity Searching

POSITIONALINTERSECT(pq, p2, k)
1 answer «— ()

A 2 whil # NIL and pz # NIL
In proximity search, you search for 3 doif deelD(py) = driD (o)

documents where terms are : then ;; < >p siona(py)
o 1 < positions(p
sufficiently close to each other. 6 ppa — positions(py)
7 while pp, # NIL
8 do while pp, # NIL
Y do if |pos( ) — pos( )| <k
We process terms from least to most o o o et
common In order to minimize the - else iff}:[(‘r’gtzg; pos(pp1)
number of documents processed. 13 pp2 — next(pp2)
14 while [ # () and |I|0] — pos(ppy1)| > k
15 do DELETE(!|0])
' ' 16 for each ps € |
The algorithm shown II” ere fmd; " do ADD(meser, [docID(p.), pos(pms), pe)]
documents from two Inverted lists 18 pp1 < next(pp1)
Coy 19 p, « next(p,)
where the terms are within kK words of 20 pa — next(py)
21 else if docID(pq) < doclD(p;)
each other. 22 then p; — next(p;)
23 else py « next(p2)

24 return answer

Algorithm for Proximity Search



Indexing Scores

For some search applications, it's worth storing the document’s matching score
for a term in the posting list.

Postings may be sorted from largest to smallest score, in order to quickly find
the most relevant documents. This is especially useful when you want to quickly
find the approximate-best documents rather than the exact-best.

Indexir

g scores

akes queries m

your re:

rieval func

on. It Is particu

Jch fas

er, but gives less flexibility in updating

arly effi

clent for single term queries.

For Machine Learning based retrieval, it's common to store per-term scores
such as BM25 as features.



Fields and Extents

Some Indexes have distinct fields with their own inverted lists. For instance,

an index of e-mails may contain fields for common e-mail headers (from,
subject, date, ...).

Others store document regions such as the title or headers using extent lists.

Extent lists are contiguous regions of a document stored using term
positions.

fish 1,2 1,4 2,7 2,18 112,23 3,2 3,0 4,3 4,13
title | 1:(1,3) 2:(1,5) 4:(9,15)

/

extent list



iINndex grows more complex, It becomes

useful to represe
schema.

However, we nor
SQL-type schem

Index Schemas

As the information stored in an inverted

{

Nt it using some form of "retweeted": false,

"favorited':false,
"created_at":"Thu Nov 17 19:02:46 +0000 2014",
"in_reply_to_screen_name":null,

mally don't use strict
as, partly due to the

cost of rebuilding a massive index.

Instead, flexible

‘ormats such as <key, \

va lue> maps wi
arranged by convention are used.

Each text field In
gets its own Inve

"user":{
il

screen_name":"user@l”,

"geo_enabled":true,

"lang":"en",

"time_zone":"Mountain Time (US & Canada)",
"created_at":"Fri Sept 23 23:23:39 +0000 2010",
"location":"Boise, ID",

th field names "retweet count":null,
"1d":12345678,

"in_reply_to_user_id":null,

"text":"just spent the day learning about lucene"”

the schema typically }

rted lists.

Partial JSON Schema for Tweets
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Index Construction

We have |ust scratched the surface of the complexities of constructing and updating large-scale

iIndexes. The most complex indexes are massive engineering projects that are constantly being
improved.

An indexing algorithm needs to address hardware limitations (e.g., memory usage), OS limitations
(the maximum number of files the filesystem can efficiently handle), and algorithmic concerns.

When considering whether your algorithm is sutficient, consider how it would perform on a
document collection a few orders of magnitude larger than it was designed for.

Northeastern UniVCI‘Sity CS6200: Information Retrieval
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Basic Indexing

Given a collection of documents, how can
we efficiently create an inverted index of
its contents”

Basic In-Memory Indexer

The basic steps are: def build_index(docs):
index = {}
_ docid = 0
1. Tokenize each dOCumeﬂt, to convert It for doc in docs: # Iterate over collection
docid += 1 # Generate unique docid
to a sequence of terms tokens = parse_doc(doc) # Tokenize document
tokens = set(tokens) # Remove duplicate tokens
: . for token in tokens:
2. Add doc to inverted list for each token if token not in index:

index[token] = []
L . . index[token].append(docid) # Add docid to inverted list
This is simple at small scale and In return index

memory, but grows much more complex
to do efficiently as the document
collection and vocabulary grow.




Merging Lists

The basic indexing algorithm will fail as soon as you run out of
memory.

To address this, we store a partial inverted list to disk when it grows
too large to handle. We reset the in-memory index and start over.
When we're finished, we merge all the partial indexes.

The partial indexes should be written in a manner that facilitates later
merging. For instance, store the terms in some reasonable sortead

order. This permits merging with a single linear pass througn all partial
lIsts.






Index A

Index B

Index A

Index B

Combined index

Merging Example

aardvark apple

aardvartk | 6 | 9 | actor | 15 | 42 | 68

Eann
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Result Merging

An index can be updated from a new batch of documents by merging the posting
ists from the new documents. However, this is inefficient for small updates.

Instead, we can run a search against both old and new indexes and merge the
result lists at search time. Once enough changes have accumulated, we can
merge the old and new indexes in a large batch.

In order to handle deleted documents, we also need to maintain a delete list of
docids to ignore from the old index. At search time, we simply ignore postings
from the old index for any docid in the delete list.

It a document is modified, we place its docid into the delete list and place the new
version In the new Index.




Updating Indexes

If each term’s inverted list is stored in a separate file, updating the index
s straightforward: we simply merge the postings from the old and new

index.

However, most filesystems can't handle very large numbers of files, so
several inverted lists are generally stored together in larger files. This
complicates merging, especially if the index is still being used for query

processing.

There are ways to update live indexes efficiently, but it's often simpler to
simply write a new index, then redirect queries to the new index and

delete the old one.



Compressing Indexes

The best any compression scheme can do depends on the entropy of the
orobabillity distribution over the data. More random data is less compressible.

Huffman Codes meet the entropy limit and can be built in linear time, so are a
common choice. Other schemes can do better, generally by interpreting the
iInput sequence differently (e.g. encoding sequences of characters as if they
were a single input symbol — different distribution, different entropy limit).

Northeastern UniVCI“Sity CS6200: Information Retrieval
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Index Size

Inverted lists often consume a large amount of space.

* £.9., 25-50% of the size of the raw documents for TREC collections
with the Indri search engine

 much more than the raw documents if n-grams are indexed

Compressing indexes Is important to conserve disk and/or RAM
space. Inverted lists have to be decompressed to read them, but there
are fast, lossless compression algorithms with good compression
ratios.

tteqengD o by 2) cunky
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IC ed variable length codes

= @ L LD “ ) “ /
\W8p~ an extension of multicase encodings (“shift key”) where different code Ieﬂt] ths are
C used for each case. Only a few code lengths are chosen, to simplify encodmg and

decoding.

o Use first bit to indicate case. , e O . gmj QQC\GQ:ES ‘

. XTZE? less frequent Cﬁaracterﬂﬂt In 8 bits ’i» XXXXXX) - \DuJ bg> /> Q é{i)
OO OO'DQ/ \®00°d) \QQQOD \0 o a"‘a\ QU\C@

i g
2 n English, 7 most frequent characters’are 65% of occurrences

")7
L

* Expected code length is approximately 5.4 bits per character, for a 32.8%
compression ratio.




Eestricted variable length codes: more symbols

« Use more than 2 cases. SN Ubéo\Q % md‘ &eﬂ (4(‘? J‘%)

e | Txxx for 2° = 8 most frequent symbols, and ( Q «"5 _eg
— £4 a$ 20
i ar ) © o\, & e ’

+ | 000000 Txxx for next 2” = 512 symbols, and} O )\v\‘/\ DXXX \KXX 0((?\(5 \d =7 QZ«DQ)
S — s S Zo = A

* average code length on WSJ89 is 6.2 bits per

\ DE( odE \eas

RYOREYY AT Ty s1Nis | TTOT | ey =—
« Pro: Variable number of symbols. Vm% eP | e 0y A% Vﬁ— 3bP
Pro: Variabl ber of symbol \VA (3 1 e ois

\o\ \(o |0}
VRV T

symbol, for a 23.0% CompreSS|on t|o

» Con: Only 72 symbols in 1 byte. \ﬂ(’s \O\ 60 ‘ \VD

0o o



Cowvol U,
restricted variable length codes : numeric data

o Ixxxxxxx for 2/ = 128 most frequent symbols

o OXXXXXXXTxxxxxxX for next 2’4 = 16,384 symbols

e average code length on W&J89 is 8.0 bits per symbol, for a 0.0%
compression ratio ().

* Pro: Can be used for integer data

 Examples: word frequencies, inverted lists



restricted variable —length codes : word based
encoding

Restricted Variable-Length Codes can be used on words (as opposed to symbols)

build a dictionary, sorted by word frequency, most frequent words first

Represent each word as an offset/index into the dictionary

Pro: a vocabulary of 20,000-50,000 words with a Zipt distribution requires 12-13
bits per word

 compared with a 10-11 bits for completely variable length

Con: The decoding dictionary is large, compared with other methods.



—_—

restricted variable—len@oodes: summary

————

Four methods presented. all are
e simple
e very effective when their assumptions are correct

No assumptions about language or language models

all require an unspecified mapping from symbols to numbers (a
dictionary)

all but the basic method can handle any size dictionary
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Entropy and Compressibility

The entropy of a probability I s =
distribution is a measure of its y
randomness. / )
H(p) = — > pilogp; \
; L '/",-"' \ \ _
The more random a sequence of data sl / \
s, the less predictable and less |/
compressible it is. / \ _
The entropy of the probability '\ :
distribution of a data sequence
provides a bound on the best possible I

compression ratio. - .

Entropy of a Binomial Distribution



Huffman Codes

In an ideal encoding scheme, a symbol
with probabillity p; of occurring will be
assigned a code which takes log(p;) bits.

The more probable a symbol Is to occur,

the smal

er Its code shou

view, U

—-32 assumes a

d be. By this

Jniform

distribution over all unicode symbols;
UTF-8 assumes ASCI| characters are more
common.

Huffman Codes achieve the best possible

compression ra
Known and whe
multiple symbols.

10 when the distribution 1S
N NO code can stand for

Symbol 0 Code 5[ lengthl]

a 1/2 0 0.5
b 4 10 05
¢ 18 10 0375
4 6 1110 025
e e 1111 025
Plaintext: aedbbaae (64 bits in UTF-8)
Ciphertext: 0111111101010001111



Building Huffman Codes

Huffman Codes are built using a binary tree
which always |oins the least probable
remaining nodes.

1. Create a leaf node for each symbol,
weighted by its probability.

2. lteratively join the two least probable
nodes without a parent by creating a
oarent whose weight is the sum of the
childrens’ weights.

3. Assign 0 and 1 to the edges from each
parent. The code for a leaf is the
sequence of edges on the path from the
root.

110 1110 1111



Can We Do Better?

Huffman codes achieve the theoretical limit for compressibility, assuming
that the size of the code table is negligible and that each input symbol
must correspond to exactly one output symbol.

Other codes, such as Lempel-Ziv encoding, allow variable-length

sequences of input symbols to correspond to particular output symbols
and do not require transterring an explicit code table.

Compression schemes such as gzip are based on Lempel-Ziv encoding.
However, for encoding inverted lists it can be beneficial to have a 1:1
correspondence between code words and plaintext characters.



Lempel-Ziv

an adaptive dictionary approach to variable length coding.

Use the text already encountered to build the dictionary.

f text follows Zipf's laws, a good dictionary is built.

No need to store dictionary; encoder and decoder each know how to build it on the fly.
Some variants: LZ77, Gzip, LZ78, LZW, Unix compress

Variants differ on:
* how dictionary is built,
e how pointers are represented (encoded), and

 limitations on what pointers can refer to.



Lempel Ziv: encoding

* 0010111010010111011011



Lempel Ziv: encoding

* 0010111010010111011011

e preak into known pretixes

0|01 |O11|1 ]010f/0101f11]|0110]|11



Lempel Ziv: encoding

0010111010010111011011

break into known prefixes

001 |011|1 [010[0101]11]0110(11

encode references as pointers

0(1,1|1,1]0,1|3,0 |1,1 |3,1]5,0 |2,?



Lempel Ziv: encoding

* 0010111010010111011011

e pbreak into known prefixes

. 0|01 |011|1 |010|0101|11|0110]|11

e encode references as pointers

- Of1,1f1,1|0,1|3,0|1,1 |3,1]|5,0 |2,7?

e encode the pointers with log(?)bits

. 0/1,1|01,1 |00,1]011,0 |001,1 |011,1|101,0 |0010,?



Lempel Ziv: encoding

0010111010010111011011
break into known prefixes: 0|01 [011|1 [010|0101|{11|0110|11
encode references as pointers : 0|1,1[1,1]0,1|3,0 [1,1 [3,1|5,0 |2,7
encode the pointers with log(?)bits :

0(1,1|01,1]00,1/011,0 |001,1 |011,1{101,0 |0010,7

final string : 01101100101100011011110100010



Lempel Ziv: decoding

« 01101100101100011011110100010



Lempel Ziv: decoding

« 01101100101100011011110100010

* decode the pointers with log(?)bits

- 0)1,1/01,1 |OO,1|011,0 |OOL1,1 |O11,1]101,0 |0O0O10,7



Lempel Ziv: decoding

01101100101100011011110100010

decode the pointers with log(?)bits

o|i41/01,1)00,1j011,0 [OO1,1 |O11,1]101,0 [0OO10,?

encode references as pointers

0(1,1|1,1]0,1|3,0 |1,1 |3,1]5,0 |2,?



Lempel Ziv: decoding

01101100101100011011110100010

decode the pointers with log(?)bits

0l1,1]01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

encode references as pointers

o|i4,11,1|0,1|3,0 1,1 |3,1]5,0 |2,?

decode references

0/01 |011|1 |010/0101|11]0110|11



Lempel Ziv: decoding

e 01101100101100011011110100010

- decode the pointers with log(?) bits : 0I1,1101,1 100,11011,0 1001,1 1011,11101,0 10010,?
+ encode references as pointers :0I1,111,110,113,0 [1,1 [3,115,0 12,7

- decode references : 0l01 101111 101010101111/0110111

original string : 0010111010010111011011



Lempel Ziv optimality

 LempelZiv compression rate approaches (asymptotic) entropy

 \When the strings are generated by an ergodic source
[CoverThomas91].

e easier proof : for i.l.d sources

e that is not a good model for English



LempelZiv optimality
—|.1.d source

o let x = ajan...an 2 sequence of length n gen-
erated by a iid source and Q(x) = the proba-
bility to see such a sequence

e Say LempelZiv breaks Into ¢ phrases x =
y1Yy2...Ye and call ¢g = # of phrases of length [

then —logQ(x) > > ¢ logg
[
(proof) > Q(y) <1lso II Qy) < ($)°

i | =l ;| =l

o if p;, IS the source probab for a; then by law

of large numbers x will have roughly np; occur-
rences of a; and then

logQ(z) = — 109 Hp?pi ~ n . p;logp; = nHsource
g

e Note that ) ¢;logc; is roughly the LempelZiv
[

encoding length so th einequality reads
nH >~ LZencoding whichisto say H =~> LZrate.



Bit-aligned Codes

Bit-aligned codes allow us to minimize the storage used to encode integers.

We can use just a few bits for small integers, and still represent arbitrarily large
numbers.

Inverted lists can also be made more compressible by delta-encoding their
contents.

Next, we'll see how to encode integers using a variable byte code, which Is
more convenient for processing.

Northeastern UniVCI‘Sity CS6200: Information Retrieval
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Compressing Inverted Lists

An inverted list Is generally represented

as multiple sequences of integers. to, 993427

(1,6: (7,18,33,72, 86, 231);
2,5:(1,17,74, 222, 255);
4,5: (8,16,190, 429, 433);
5, 2: (363, 367);
7,3:(13,23,191);...)

e Term and document IDs are used
instead of the literal term or
document URL/path/name.

* Tk DF, term position lists and other

data in the inverted lists are often be, 178239:
integers. (1,2: (17, 25);
4,5: (17,191, 291, 430, 434);
We'd like to efficiently encode this 5,3: (14,19, 101); ...)

iInteger data to help minimize disk anad

Postings with DF, TF, and Positions
memory usage. But how?




Unary

ne encodings used by processors for
integers (e.qg., two’s complement) use a
fixed-width encoding with fixed upper

bounds. Any number takes 32 (say) bits,

with no abillity to encode larger numbers.

Both proper

les are bad for inverted lists.

Smaller numbers tend to be much more
common, and should take less space. But

very

arge n

consider ter

or document |

Umlbers can
M positions |

nappen —

N very large files,

Ds in a large web collection.

What it we used a unary encoding? This
encodes k by k 1s, followed by a 0.

decimal binary
0 00000000 0
1 00000001 10
7 00000111 11111110
13 00001101 11111111111110




Elias-y Codes

Unary is efficient for small numbers, Decimal k
but very inefficient for large numbers.

There are better ways to get a variable
bit length. 2 1

With Elias-y codes, we use unary to
encode the bit length and then store
the number in binary.

k
0
0
1
/
\/ .
2 X0
(7Y
@*h“

To encode a number k, compute: T
16 111100000
)L loga k] fwr2 oy 255 11111110111111{
k, = k —/2l°82" &xSA’XQWDEZ 1093 511 1111111110
V\;[S LQ,\,L[QJC} 111111111 N

R T binaey Mkr) ovs kg s (07



d=4

u“jb ol l L= 3

olue < ke\ﬂzf =

Elias-0 Codes

k| +1D0its.

Decimal k& k k k

Elias-y codes Code

take 2|log,

We can do better, especially for large
1 0/ 0|00 0
numbers.
2 1111010 1000
Elias-0 codes encode k; using an
. . 3 1110 1 100 1
Elias-y code, and take approximately b
2 log, log, k + log, k bits. UZQ' QANCP 6 211 ] 1 ]2 101 10
Jo
We split k4 into: 19 3|2 |0 | 7 110 00 111
kg = |log, ks | ® 16 | 4| 2| 1| 0 110010000
‘ kg — 2H08 255 | 7|3 0 127/ 1110000
1111111
1023 | 9| 3| 2 |511] 1110010
111111111




23V

Python Implementation

import math

def unary_encode(n):
return "1" x n + "0@"

def binary_encode(n, width):
r — mnn
for 1 in range(@, width):
if ((1l<<i) & n) > 0:
r — ll1ll + r
else:
r="9"+r
return r

def gamma_encode(n):
logn = int(math.log(n,2))
return unary_encode(logn) + " " + binary_encode(n, logn)

def delta_encode(n):
logn = int(math.log(n,2))
1t n == 1:
return "0"
else:
loglog = int(math.log(logn+1l, 2))
residual = logn+l - int(math.pow(2, loglog))
return (unary_encode(loglog) + " "
+ binary_encode(residual, loglog) + " "
+ binary_encode(n, logn))

30
31
32
33
34
35
36
37

1f __name__ ==

main__ ':

for n in [1, 2, 3, 6, 15, 16, 255, 1023]:
logn = int(math.log(n,2))

loglogn =
print n,
print n,
print n,
print n,

int(math. log(logn+1,2))
"d_r", logn
"d_dd", loglogn
"d_dr", logn + 1 — int(math.pow(2, loglogn))
"delta", delta_encode(n)



We now have an effic
length integer encodi

Delta Encoding

ient variable bit
Ng scheme which

uses just a few bits for small numbers,
and can handle arbitrarily large numbers
with ease.

To further reduce the index size, we want
to ensure that docids, pos

O
d

ur i

gle

sts are small (for sma

itions, etc. In

ler encodings)

repetitive (for better compression).

We can do this by sorting the lists and
encoding the difference, or delta,

between the current number and the last.

t\\*.q(» Igwders C"-X- (’°§\IL°“Q)
)

Raw positions: 1 5 9 8, 23, ;@ 44/\5 48

Deltasf;&&(Q \<*5 3

ngh frequencz word@ore easily: 4§;&4
@B 2D G HGH O 3

Ciall (&g 1Lc§ = /‘Qan(\Mg do Jiy/

Low-frequency words have larger delta

/’W&Zi\mw/
(cw%e ta S /9 =3 o
'efe‘&’“.‘?



Byte-Aligned Codes

In production systems, inverted lists are stored using byte-aligned
codes for delta-encoded integer sequences.

Careful engineering of encoding schemes can help tune this process
to minimize processing while reading the inverted lists. This Is essential
for getting good performance in high-volume commercial systems.

Next, we'll look at how to produce an index from a document collection.

Northeastern UniVCFSity CS6200: Information Retrieval
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Byte-Aligned Codes

We've looked at ways to encode integers with bit-aligned codes.
These are very compact, but somewhat inconvenient.

Processors and most |/O routines and hardware are byte-aligned, so
it's more convenient to use byte-aligned integer encodings.

One of the commonly-used encodings is called vbyte. This encoding,
Ike UTF-8, simply uses the most significant bit to encode whether the
number continues to the next byte.



k Bytes Used Hexadecimal

k 1 1 1 0000001 81
2 2 6 1 0000110 80
2 3 127 11111111 FF
2 4 128 0 0000001 1 0000000 01 80
130 0 0000001 1 0000010 01 82
20000 | 0 0000001 0 0011100 1 0100000 01 1C AO




Java Implementation

public void decode( byte[] input, IntBuffer output ) {
for( int i=0; i < input.length; i++ ) {
int position = O;
int result = ((int)input[i] & Ox7F);

public void encode( int[] input, ByteBuffer output ) {
for( int i : input ) {
while( i >= 128 ) {
output.put( i & Ox7F );

i >>>= 7;
while( (input[i] & 0x80) == 0 ) {

i += 1;

position += 1;

} int unsignedByte = ((int)input[i] & Ox7F);
result |= (unsignedByte << (7*position));

¥

¥
output.put( i | 0x80 );

output.put (result) ;



Bringing It Together

L et's see how to put together a compressed inverted list with delta encoding.
We start with the raw inverted list: a sequence of tuples containing (docid,
tf, [posl, pos2, ..]).

(1,2,I11,71), (2,3,I[6,17,197]1), (3,1,[1])

We delta-encode the docid and position seqguences independently.
(1,2,I[1,6]1), (1,3,[6,11,180]), (1,1,I[1])

Finally, we encode the integers using vbyte.

81 82 81 86 81 82 86 8B 01 B4 81 81 81



Alternative Codes

Although vbyte is often adequate, we can do better for high-performance
decoding.

Vbyte requires a conditional branch at every byte and a lot of bit shifting.

Google’s Group Varint encoding achieves much better decoding

performance by storing a two bit continuation sequence for each of the
next 4-16 bytes.

Decimail: 1 15 511 131071

Encoded: 00000110 00000001 00001111 11111111 00000001 11111111 11111111 00000001



