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Language Models



Vector Space Models work reasonably well, but have a few problems: 

• They are based on bag-of-words, so they ignore grammatical 
context and suffer from term mismatch. 

• They don’t adapt to the user or collection, but ideal term weights are 
user- and domain-specific. 

• They are heuristic-based, and don’t have much explanatory power.

What’s wrong with VSMs?



We can address these problems by moving to probabilistic models, 
such as language models: 

• We can take grammatical context into account, and trade off 
between using more context and performing faster inference. 

• The model can be trained from a particular collection, or conditioned 
based on user- and domain-specific features. 

• The model is interpretable, and makes concrete predictions about 
query and document relevance.

Probabilistic Modeling



1. Ranking as a probabilistic classification task 

2. Some specific probabilistic models for classification 

3. Smoothing: estimating model parameters from sparse data 

4. A probabilistic approach to pseudo-relevance feedback

In this Module…



Imagine we have a function that gives us the probability that a document D is 
relevant to a query Q, P(R=1|D, Q). We call this function a probabilistic model, 
and can rank documents by decreasing probability of relevance. 

There are many useful models, which differ by things like: 

• Sensitivity to different document properties, like grammatical context 

• Amount of training data needed to train the model parameters 

• Ability to handle noise in document data or relevance labels 

For simplicity here, we will hold the query constant and consider P(R=1|D).

Ranking with Probabilistic Models



Suppose we have documents and 
relevance labels, and we want to 
empirically measure P(R=1|D). 

Each document has only one 
relevance label, so every probability is 
either 0 or 1. Worse, there is no way to 
generalize to new documents. 

Instead, we estimate the probability of 
documents given relevance labels,   
P(D|R=1).
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We can estimate P(D|R=1), not P(R=1|D), 
so we apply Bayes’ Rule to estimate 
document relevance. 

• P(D|R=1) gives the probability that a 
relevant document would have the 
properties encoded by the random 
variable D. 

• P(R=1) is the probability that a 
randomly-selected document is 
relevant.

Bayes’ Rule
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Starting from Bayes’ Rule, we can easily build a classifier to tell us whether documents 
are relevant. We will say a document is relevant if: 

!

!

!

!

We can estimate P(D|R=1) and P(D|R=0) using a language model, and P(R=0) and P(R=1) 
based on the query, or using a constant. Note that for large web collections, P(R=1) is 
very small for virtually any query.

Bayesian Classification
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In order to put this together, we need a language model to estimate 
P(D|R). 

Let’s start with a model based on the bag-of-words assumption. We’ll 
represent a document as a collection of independent words 
(“unigrams”).

Unigram Language Model
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Let’s consider querying a collection of five short documents with a 
simplified vocabulary: the only words are apple, baker, and crab.

Example

Document Rel? apple? baker? crab?

apple apple crab! 1 1 0 1

crab baker crab 0 0 1 1

apple baker baker 1 1 1 0

crab crab apple 0 1 0 1

baker baker crab 0 0 1 1

2(4 = �) = �/�

2(4 = �) = �/�

Term # Rel # Non Rel P(w|R=1) P(w|R=0)

apple 2 1 2/2 1/3

baker 1 2 1/2 2/3

crab 1 3 1/2 3/3



Is “apple baker crab” relevant?

Example

Term P(w|R=1) P(w|R=0)

apple 1 1/3

baker 1/2 2/3

crab 1/2 1
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So far, we’ve focused on language models like P(D = w1, w2, …, wn). Where’s the query? 

Remember the key insight from vector space models: we want to represent queries and 
documents in the same way. The query is just a “short document:” a sequence of 
words. There are three obvious approaches we can use for ranking: 

1. Query likelihood: Train a language model on a document, and estimate the query’s 
probability. 

2. Document likelihood: Train a language model on the query, and estimate the 
document’s probability. 

3. Model divergence: Train language models on the document and the query, and 
compare them.

Retrieval With Language Models
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Suppose that the query specifies a 
topic. We want to know the probability 
of a document being generated from 
that topic, or P(D|Q). 

However, the query is very small, and 
documents are long: document 
language models have less variance. 

In the Query Likelihood Model, we use 
Bayes' Rule to rank documents based 
on the probability of generating the 
query from the documents’ language 
models.

Query Likelihood Retrieval
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Example: Query Likelihood
Wikipedia: WWI

World War I (WWI or WW1 or World War One), 
also known as the First World War or the 
Great War, was a global war centred in Europe 
that began on 28 July 1914 and lasted until 11 
November 1918. More than 9 million 
combatants and 7 million civilians died as a 
result of the war, a casualty rate exacerbated 
by the belligerents' technological and industrial 
sophistication, and tactical stalemate. It was 
one of the deadliest conflicts in history, paving 
the way for major political changes, including 
revolutions in many of the nations involved.

Query: “deadliest war in history”

Term P(w|D) log P(w|D)

deadliest 1/94 = 0.011 -1.973

war 6/94 = 0.063 -1.195

in 3/94 = 0.032 -1.496

history 1/94 = 0.011 -1.973

Π = 2.30e-7 Σ = -6.637

Keyword Saad query 3-4 terms

→ Q.L . model



Example: Query Likelihood
Wikipedia: WWI

World War I (WWI or WW1 or World War One), 
also known as the First World War or the 
Great War, was a global war centred in Europe 
that began on 28 July 1914 and lasted until 11 
November 1918. More than 9 million 
combatants and 7 million civilians died as a 
result of the war, a casualty rate exacerbated 
by the belligerents' technological and industrial 
sophistication, and tactical stalemate. It was 
one of the deadliest conflicts in history, paving 
the way for major political changes, including 
revolutions in many of the nations involved.

Query: “deadliest war in history”

Term P(w|D) log P(w|D)

deadliest 1/94 = 0.011 -1.973

war 6/94 = 0.063 -1.195

in 3/94 = 0.032 -1.496

history 1/94 = 0.011 -1.973

Π = 2.30e-7 Σ = -6.637



Example: Query Likelihood

Wikipedia: Taiping Rebellion

The Taiping Rebellion was a massive civil 
war in southern China from 1850 to 1864, 
against the ruling Manchu Qing dynasty. It 
was a millenarian movement led by Hong 
Xiuquan, who announced that he had 
received visions, in which he learned that he 
was the younger brother of Jesus. At least 20 
million people died, mainly civilians, in one of 
the deadliest military conflicts in history.

Query: “deadliest war in history”

Term P(w|D) log P(w|D)

deadliest 1/56 = 0.017 -1.748

war 1/56 = 0.017 -1.748

in 2/56 = 0.035 -1.447

history 1/56 = 0.017 -1.748

Π = 2.56e-8 Σ = −6.691



There are many ways to move beyond this basic model. 

• Use n-gram or skip-gram probabilities, instead of unigrams. 

• Model document probabilities P(D) based on length, authority, genre, 
etc. instead of assuming a uniform probability. 

• Use the tools from the VSM slides: stemming, stopping, etc. 

Next, we’ll see how to fix a major issue with our probability estimates: 
what happens if a query term doesn’t appear in the document?

Summary: Language Model



There are three obvious ways to perform retrieval using language models: 

1. Query Likelihood Retrieval trains a model on the document and 
estimates the query’s likelihood. We’ve focused on these so far. 

2. Document Likelihood Retrieval trains a model on the query and 
estimates the document’s likelihood. Queries are very short, so these 
seem less promising. 

3. Model Divergence Retrieval trains models on both the document and 
the query, and compares them.

Retrieval With Language Models
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The most common way to compare 
probability distributions is with 
Kullback-Liebler (“KL”) Divergence. 

This is a measure from Information 
Theory which can be interpreted as 
the expected number of bits you 
would waste if you compressed data 
distributed along p as if it was 
distributed along q. 

If p = q, DKL(p||q) = 0.

Comparing Distributions
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Model Divergence Retrieval works as 
follows: 

1. Choose a language model for the 
query, p(w|q). 

2. Choose a language model for the 
document, p(w|d). 

3. Rank by –DKL(p(w|q) || p(w|d)) – more 
divergence means a worse match. 

This can be simplified to a cross-entropy 
calculation, as shown to the right.

Divergence-based Retrieval
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Model Divergence Retrieval 
generalizes the Query and Document 
Likelihood models, and is the most 
flexible of the three. 

Any language model can be used for 
the query or document. They don’t 
have to be the same. It can help to 
smooth or normalize them differently. 

If you pick the maximum likelihood 
model for the query, this is equivalent 
to the query likelihood model.

Retrieval Flexibility

Equivalence to Query Likelihood Model
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We make the following model choices: 

• p(w|q) is Dirichlet-smoothed with a 
background of words used in 
historical queries. 

• p(w|d) is Dirichlet-smoothed with a 
background of words used in 
documents from the corpus. 

• Σw qfw = 500,000 

• Σw cfw = 1,000,000,000

Example: Model Divergence Retrieval
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Ranking by (negative) KL-Divergence provides a very flexible and theoretically-sound retrieval system.



Example: Model Divergence Retrieval

Wikipedia: WWI
World War I (WWI or WW1 or World War 
One), also known as the First World War or 
the Great War, was a global war centred in 
Europe that began on 28 July 1914 and 
lasted until 11 November 1918. More than 
9 million combatants and 7 million civilians 
died as a result of the war, a casualty rate 
exacerbated by the belligerents' 
technological and industrial sophistication, 
and tactical stalemate. It was one of the 

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 0.002 -1.891

war 2,000 35,000 0.202 0.003 -1.700

one 6,000 5E+07 0.205 0.049 -0.893

-4.484
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Example: Model Divergence Retrieval

Wikipedia: Taiping Rebellion
The Taiping Rebellion was a massive civil 
war in southern China from 1850 to 1864, 
against the ruling Manchu Qing dynasty. It 
was a millenarian movement led by Hong 

Xiuquan, who announced that he had 
received visions, in which he learned that he 
was the younger brother of Jesus. At least 20 
million people died, mainly civilians, in one of 

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 8.75E-05 -2.723

war 2,000 35,000 0.202 0.001 -2.199

one 6,000 5E+07 0.205 0.049 -0.890

-5.812
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Although the bag of words model works very well for text classification, it is intuitively 
unsatisfying – it assumes the words in a document are independent, given the relevance 
label, and nobody believes this. 

What could we replace it with? 

• A “bag of paragraphs” wouldn’t work – too many paragraphs are unique in the 
collection, so we can’t do meaningful statistics without subdividing them. 

• A “bag of sentences” is better, but not much – many sentences are unique, and two 
documents expressing the same thought are unlikely to choose exactly the same 
sentence. We need similar documents to have similar features. 

• We’ll use sets of words, called n-grams, and consider sets of different sizes to balance 
between good probability estimates (for small n) and semantic nuance (for large n).

Modeling Language



Maximum likelihood probability 
estimates assign zero probability to 
terms missing from the training data. 

This is catastrophic for a Naive Bayes 
retrieval model: any document that 
doesn’t contain all query terms will get 
a matching score of zero. 

Many other probabilistic models have 
similar problems. Only truly impossible 
events should have zero probability.

Probability Estimation

Query Likelihood Model

Query: “world war one”
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The solution is to adjust our probability estimates by taking some probability away from the 
most-likely events, and moving it to the less-likely events. 

!

!

!

!

!

This makes the probability distribution less spiky, or “smoother.” The probabilities all move 
just a little toward the mean.

Smoothing

Maximum Likelihood Estimate
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Smoothing is important for many reasons. 

• Assigning zero probability to possible events is incorrect. 

• Maximum likelihood estimates from your data don’t generalize perfectly 
to new data, so a Bayesian update from some kind of prior works better. 

However, uniform smoothing doesn’t work very well for language 
modeling. Next, we’ll see why that is, and how we can do better. 

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to 
information retrieval.

Smoothing



Laplace Smoothing, aka “add-one 
smoothing,” smooths maximum likelihood 
estimates by adding one count to each 
event. 

!

!

!

!

This is equivalent to a Bayesian posterior 
with a uniform prior, as we'll see.

Laplace Smoothing

Pierre-Simon Laplace (1745-1827)
Image from Wikipedia
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If we assume nothing about a 
document’s vocabulary distribution, 
we will use uniform probabilities for all 
terms. 

When we observe the terms in a 
document, the Bayesian update of 
these probabilities yields Laplace 
smoothing. 

This Bayesian posterior is our 
smoothed estimate of the vocabulary 
distribution for the document’s topic.

Deriving Laplace Smoothing
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Laplace smoothing can be 
generalized from add-one smoothing 
to add-� smoothing, for � ∈ (0, 1]. 

This lets you tune the amount of 
smoothing you want to use: smaller 
values of � are closer to the maximum 
likelihood estimate.

Add-� Smoothing

2(G) =
EQWPV(G) + Ɇ�

G�GXGPVU (EQWPV(G) + Ɇ)

2(Y|F) =
VHY,F + Ɇ

|F| + Ɇ|8|



Uniform smoothing assigns the same probability to all unseen words, 
which isn’t realistic. This is easiest to see for n-gram models: 

!

We strongly believe that “house” is more likely to follow “the white” 
than “effortless” is, even if neither trigram appears in our training data. 

Our bigram counts should help: “white house” probably appears more 
often than “white effortless.” We can use bigram probabilities as a 
background distribution to help smooth our trigram probabilities.

Limits of Uniform Smoothing

2(JQWUG|VJG,YJKVG) > 2(GHHQTVNGUU|VJG,YJKVG)



One way to combine foreground and background distributions is to take their 
linear combination. This is the simplest form of Jelinek-Mercer Smoothing. 

!

For instance, you can smooth n-grams with (n-1)-gram probabilities. 

!

You can also smooth document estimates with corpus-wide estimates. 

Jelinek-Mercer Smoothing
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Most smoothing techniques amount to 
finding a particular value for λ in 
Jelinek-Mercer smoothing. 

For instance, add-one smoothing is 
Jelinek-Mercer smoothing with a 
uniform background distribution and a 
particular value of λ.

Relationship to Laplace Smoothing
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TF-IDF is also closely related to 
Jelinek-Mercer smoothing. 

If you smooth the query likelihood 
model with a corpus-wide background 
probability, the resulting scoring 
function is proportional to TF and 
inversely proportional to DF.

Relationship to TF-IDF
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Dirichlet Smoothing is the same as 
Jelinek-Mercer smoothing, picking λ 
based on document length and a 
parameter μ – an estimate of the 
average doc length. 

!

The scoring function to the right is the 
Bayesian posterior using a Dirichlet 
prior with parameters: 

Dirichlet Smoothing
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Example: Dirichlet Smoothing
Query: “president lincoln”

tf 15

cf 160,000

tf 25

cf 2,400

|d| 1,800

Σ 10

μ 2,000

log R(S|F) =
�

Y�S

log
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

= log
�� + �, ��� � (���, ���/���)

�, ��� + �, ���

+ log
�� + �, ��� � (�, ���/���)

�, ��� + �, ���
= log(��.��/�, ���) + log(��.���/�, ���)
= � �.�� + ��.��
= � ��.��



Dirichlet Smoothing is a good choice for 
many IR tasks. 

• As with all smoothing techniques, it never 
assigns zero probability to a term. 

• It is a Bayesian posterior which considers 
how the document differs from the corpus. 

• It normalizes by document length, so 
estimates from short documents and long 
documents are comparable. 

• It runs quickly, compared to many more 
exotic smoothing techniques.

Effect of Dirichlet Smoothing

tf tf ML Score Smoothed 
Score

15 25 -3.937 -10.53

15 1 -5.334 -13.75

15 0 N/A -19.05

1 25 -5.113 -12.99

0 25 N/A -14.4



Dirichlet Smoothing is the same as 
Jelinek-Mercer smoothing, picking λ 
based on  

 * doc length |d| 

 * doc vocabulary |V| (number of 
unique terms in document) 

!

Witten-Bell Smoothing

� =
|d|

|d|+ |V |



An n-gram is an ordered set of n 
contiguous words, usually found within 
a single sentence. Special cases are n 
= 1 (unigrams), n = 2 (bigrams), and n = 
3 (trigrams). 

Skip-grams are more “relaxed” – they 
can appear in any order, and need not 
be adjacent. They are an unordered 
set of n words that appear within a 
fixed window of k words.

N-grams and Skip-grams

The quick brown fox jumped over the lazy dog.
Sentence

Trigrams (n = 3)
the quick brown 
quick brown fox 

brown fox jumped 
…

Skip-grams (n = 3, k = 5)
quick brown fox 

fox jumped quick 
lazy dog jumped 

…



We typically construct a generative 
model of n-grams using Markov chains 
– what is the probability distribution over 
the next word in the n-gram, given the n 
– 1 words we’ve seen so far? 

P(wn|w1, w2, …, wn-1) 

This assumes that words are 
independent, given the relevance label 
and the preceding n – 1 words. 

We use a special token, like $, for words 
“before” the beginning of the sentence.

Markov Chains

The quick brown fox jumped over the lazy dog.
Sentence

Trigram Sentence Probability
2(VJG|$, $) · 2(SWKEM|$, VJG) · 2(DTQYP|VJG, SWKEM)
·2(HQZ|SWKEM, DTQYP) · 2(LWORGF|DTQYP, HQZ)
·2(QXGT|HQZ, LWORGF) · 2(VJG|LWORGF, QXGT)
·2(NC\[|QXGT, VJG) · 2(FQI|VJG, NC\[)



How many n-grams do we expect to see, as a 
function of the vocabulary size v and n-gram 
size n? 

• At first glance, you’d expect to see 

!

• However, most possible n-grams will never 
appear (like “correct horse battery 
staple?”), and n-grams are limited by 
typical sentence lengths. 

• As n increases, the number of distinct 
observed n-grams peaks around n = 4 and 
then decreases.

Number of n-grams in a Corpus

�
X
P

�
= 1(XP)

Web 1T 5-gram Corpus

0M

350M

700M

1,050M

1,400M

n=1 n=2 n=3 n=4 n=5

1.18E+09

1.31E+09

9.77E+08

3.15E+08

1.36E+07

Total tokens: 1,024,908,267,229 
Vocabulary size: 13,588,391



The best n-gram size to use depends on a variance-bias tradeoff: 

• Smaller values of n have more training data: infrequent n-grams will 
appear more often, reducing the variance of your probability estimates. 

• Larger values of n take more context into account: they have more 
semantic information, reducing the bias of your probability estimates. 

The best n-gram size is the largest value your data will support. Common 
choices are n = 3 for millions of words, or n = 2 for smaller corpora.

Choosing n-gram Size



Using n-grams and skip-grams allows us to include some linguistic 
context in our retrieval models. This helps disambiguate word senses 
and improve retrieval performance. 

Larger values of n are beneficial, if you have the data to support them. 
The number of n-grams does not grow exponentially in n, so the index 
size can be manageable. 

Next, we’ll see how to use an n-gram language model for retrieval.

Wrapping Up
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language models 
for retrieval
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• Model is an idealization or abstraction of an actual process
• Mathematical models are used to study the properties of the 
process, draw conclusions, make predictions
• Conclusions derived from a model depend on whether the 
model is a good approximation of the actual situation
• Statistical models represent repetitive processes, make 
predictions about frequencies of interesting events
• Retrieval models can describe the computational
process
 – e.g. how documents are ranked

 – Note that how documents or indexes are stored is implementation

• Retrieval models can attempt to describe the human
process

 – e.g. the information need, interaction
 – Few do so meaningfully

• Retrieval models have an explicit or implicit definition of 
relevance

what is a retrieval model?
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today

retrieval models

• boolean

• vector space

• latent semnatic indexing

• statistical language

• inference network

• hyperlink based
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4



5

outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples
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probabilities

• sample space

• probability

• independent events

• cond. probability

• Bayes theorem

• distributions

6
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information theory,
coding

• entropy

• joint entropy

• cond. entropy

• relative entropy

• convexity, Jensen ineq.

• optimal coding

• Fano’s ineq.

7
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outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples

8



9

• Probability distribution over strings of text
– how likely is a given string (observation) in a given “language”
– for example, consider probability for the following four strings

p1 = P(“a quick brown dog”)
p2 = P(“dog quick a brown”)
p3 = P(“быстрая brown dog”)
p4 = P(“быстрая собака”)

– English: p1 > p2 > p3 > p4

• … depends on what “language” we are modeling
– In most of IR, assume that p1 == p2

what is a language model ?

9
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• Every document in a collection defines a “language”
– consider all possible sentences (strings) that author could have 
written down when creating some given document
– some are perhaps more likely to occur than others

• subject to topic, writing style, language …
– P(s|MD) = probability that author would write down string “s”

• think of writing a billion variations of a document 
and counting how many time we get “s”

• Now suppose “Q” is the user’s query
– what is the probability that author would write down “q” ?

• Rank documents D in the collection by P(Q|MD) 
– probability of observing “Q” during random sampling from the 
language model of document D

lang modeling for IR

10
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language models

• estimate probabilities of certain ”events” 

in the text 

• based on these probabilities, use 

likelihood as similarity 

• language model based on 

– letters? 

– words? 

– phrases?

11
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statistical text generation
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• What kind of language model should 
we use?

– Unigram or higher-order models?
– Multinomial or multiple-Bernoulli?

• How can we estimate model 
parameters?

– Basic models
– Translation models
– Aspect models
– non-parametric models

• How can we use the model for 
ranking?

– Query-likelihood
– Document-likelihood
– Likelihood Ratio
– Divergence of query and document models

LM choices

14
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unigram LM

• words are sampled independently, with 
replacement 

• order of the words is lost (no phrases)

15
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higher-order LM
• Unigram model assumes word independence

– cannot capture surface form: P(“brown dog”) == P(“dog 
brown”)

• Higher-order models
– n-gram: condition on preceding words

– cache: condition on a window (cache)

– grammar: condition on parse tree

• Are they useful?
– no improvements from n-gram, grammar-based models
– some research on cache-like models (proximity, passages, etc.)
– parameter estimation is prohibitively expensive

16
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outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples
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• Predominant model 

• Fundamental event: 
what is the identity of the i’th query token?

• observation is a sequence of events, one for 
each query token

multinomial similarity

18
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• Original model 

• fundamental event: does the word w occur in the query?

• observation is a vector of binary events, one for each 
possible word

multiple-Bernoulli similarity

19
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•what is the probability to generate the given 
query, given a language model?

•what is the probability to generate the given 
document, given a language model?

•how ”close” are 2 statistical models?

score, ranking in LM

20
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• Standard approach: query-likelihood
– estimate a language model MD for every document D in the 
collection
– rank docs by the probability of “generating” the query

• Drawbacks:
– no notion of relevance in the model: everything is random sampling
– user feedback / query expansion not part of the model
-examples of relevant documents cannot help us improve the language 
model MD
– does not directly allow weighted or structured queries

score: query likelihood

21
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• Flip the direction of the query-likelihood approach
– estimate a language model MQ for the query Q
– rank docs D by the likelihood of being a random sample from MQ
– MQ expected to “predict” a typical relevant document

• Problems:
– different doc lengths, probabilities not comparable
– favors documents that contain frequent (low content) words

score: document likelihood

22
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• Try to fix document likelihood:
– Bayes’ likelihood that Mq was the source, given that we 
observed D
– related to Probability Ranking Principle: P(D|R) / P (D|N)
– allows relevance feedback, query expansion, etc.
– can benefit from complex estimation of the query model MQ

score: likelihood ratio

23
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• Combine advantages of two ranking methods
– estimate a model of both the query MQ and the document MD
– directly compare similarity of the two models
– natural measure of similarity is cross-entropy (others exist):

– number of bits we would need to “encode” MQ using MD
– equivalent to Kullback-Leibler divergence
– equivalent to query-likelihood if MQ is simply counts of words in Q

• Cross-entropy is not symmetric: use H (MQ || MD)
– reverse works consistently worse, favors different document 
– use reverse if ranking multiple queries w.r.t. one document

score: model comparison

24
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Models of Text Generation

Query Model Query

Doc Model Doc

Searcher

Writer

Is this the same model?

25
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Retrieval with Language Models

Query ModelQuery

Doc ModelDoc

Retrieval:  Query likelihood (1)
  Document likelihood (2)  
  Model comparison (3)

1

2

3
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• Use Unigram models
– no consistent benefit from using higher order models
– estimation is much more complex (e.g. bi-gram from a 3-word
query)

• Use Multinomial models
– well-studied, consistent with other fields that use LMs
– extend multiple-Bernoulli model to non-binary events?

• Use Model Comparison for ranking
– allows feedback, expansion, etc. through estimation of MQ and MD
– use KL(MQ || MD) for ranking multiple documents against a query

• Estimation of MQ and MD is a crucial step
– very significant impact on performance (more than other choices)
– key to cross-language, cross-media and other applications

LM: popular choices

27
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Translation model (Berger 
and Lafferty)

• Basic LMs do not address issues of synonymy.
– Or any deviation in expression of information need 

from language of documents

• A translation model lets you generate query 
words not in document via “translation” to 
synonyms etc.
– Or to do cross-language IR, or multimedia IR

                                      Basic LM  Translation

– Need to learn a translation model (using a dictionary or 
via statistical machine translation)

28
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outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples
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• Want to estimate MQ and/or MD from Q and/or D

• General problem:
– given a string of text S (= Q or D), estimate its language model MS
– S is commonly assumed to be an i.i.d. random sample from MS

• Independent and identically distributed

• Basic Language Models
– maximum-likelihood estimator and the zero frequency problem
– discounting, interpolation techniques
– Bayesian estimation

estimation

30
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• count relative frequencies of words in S
• maximum-likelihood property:

– assigns highest possible likelihood to the observation

• unbiased estimator:
– if we repeat estimation an infinite number of times with
different starting points S, we will get correct probabilities (on
average)
– this is not very useful…

maximum likelihood

31
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• Suppose some event not in our observation S
– Model will assign zero probability to that event
– And to any set of events involving the unseen event

• Happens very frequently with language

• It is incorrect to infer zero probabilities
– especially when creating a model from short samples

zero-frequency problem

32
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Laplace smoothing
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discounting methods

• Laplace smoothing

• Lindstone correction
– add  �to all count, 

renormalize

• absolute discounting

– substract �� redistribute 

probab mass
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• Held-out estimation
– Divide data into training and held-out sections
– In training data, count Nr, the number of words occurring r times
– In held-out data, count Tr, the number of times those words occur
– r* = Tr/Nr is adjusted count (equals r if training matches held-out)
– Use r*/N as estimate for words that occur r times

• Deleted estimation (cross-validation)
– Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)
– Estimate for words that occur r times is average of each

• Good-Turing estimation
– From previous, P(w|M) = r* / N if word w occurs r times in sample
– In Good-Turing, steal total probability mass from next most frequent 
word
– Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

discounting methods
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• Problem with all discounting methods:
– discounting treats unseen words equally (add or subtract ε)
– some words are more frequent than others

• Idea: use background probabilities
– “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)
– reflects expected frequency of events

interpolation methods

ML estimate
background probability

final estimate = 

36
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• Correctly setting λ is very important

• Start simple
– set λ to be a constant, independent of document, query

• Tune to optimize retrieval performance
– optimal value of λ varies with different databases, query 
sets, etc.

Jelinek Mercer smoothing

37
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• Problem with Jelinek-Mercer:
– longer documents provide better estimates
– could get by with less smoothing

• Make smoothing depend on sample size

• N is length of sample = document length
• µ is a constant

Dirichlet smoothing

38
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• A step further:
– condition smoothing on “redundancy” of the example
– long, redundant example requires little smoothing
– short, sparse example requires a lot of smoothing

• Derived by considering the proportion of new events
as we walk through example

– N is total number of events = document length
– V is number of unique events = number of unique terms in doc

Witten-Bell smoothing
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• Two possible approaches to smoothing

• Interpolation:
– Adjust probabilities for all events, both seen and 
unseen

• Back-off:
– Adjust probabilities only for unseen events
– Leave non-zero probabilities as they are
– Rescale everything to sum to one: rescales “seen” 
probabilities by a constant

• Interpolation tends to work better
 – And has a cleaner probabilistic interpretation

interpolation vs back-off
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Two-stage smoothing

Query  = “the    algorithms     for      data       mining”

d1:                0.04        0.001             0.02        0.002        0.003       

d2:                0.02        0.001             0.01        0.003        0.004

41
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Two-stage smoothing

Query  = “the    algorithms     for      data       mining”

d1:                0.04        0.001             0.02        0.002        0.003       

d2:                0.02        0.001             0.01        0.003        0.004

p( “algorithms”|d1)  = p(“algorithm”|d2)

p( “data”|d1)  < p(“data”|d2)

p( “mining”|d1)  < p(“mining”|d2)

But    p(q|d1)>p(q|d2)!

41
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Two-stage smoothing

Query  = “the    algorithms     for      data       mining”

d1:                0.04        0.001             0.02        0.002        0.003       

d2:                0.02        0.001             0.01        0.003        0.004

p( “algorithms”|d1)  = p(“algorithm”|d2)

p( “data”|d1)  < p(“data”|d2)

p( “mining”|d1)  < p(“mining”|d2)

But    p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.
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c(w,d)

|d|
P(w|d) =

Two-stage smoothing

42



42

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1 

-Explain unseen words

-Dirichlet prior(Bayesian)

µ

Two-stage smoothing
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c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1 

-Explain unseen words

-Dirichlet prior(Bayesian)

µ

(1-λ) + λp(w|U)

Stage-2 

-Explain noise in query

-2-component mixture

λ

Two-stage smoothing
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• How do we determine if a given model is a LM?
• LM is generative

– at some level, a language model can be used to generate text
– explicitly computes probability of observing a string of text
– Ex: probability of observing a query string from a document model
probability of observing an answer from a question model
– model an entire population

• Discriminative approaches
– model just the decision boundary
– Ex: is this document relevant?
does it belong to class X or Y

– have a lot of advantages, 
- but these are not generative approaches

LM are generative techniques
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• Goal: estimate a model M from a sample text S

• Use maximum-likelihood estimator
– count the number of times each word occurs in S, divide by length

• Smoothing to avoid zero frequencies
– discounting methods: add or subtract a constant, redistribute mass
– better: interpolate with background probability of a word
– smoothing has a role similar to IDF in classical models

• Smoothing parameters very important
– Dirichlet works well for short queries (need to tune the parameter)
– Jelinek-Mercer works well for longer queries (also needs tuning)
– Lots of other ideas being worked on

LM: summary

44



45

Language models: pro & con

• Novel way of looking at the problem of text 
retrieval based on probabilistic language 
modeling

• Conceptually simple and explanatory
• Formal mathematical model
• Natural use of collection statistics, not heuristics 

(almost�)

• LMs provide effective retrieval and can be 
improved to the extent that the following 
conditions can be met

• Our language models are accurate representations 
of the data.

• Users have some sense of term distribution.
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Comparison With Vector Space

• There’s some relation to traditional tf.idf 
models:
– (unscaled) term frequency is directly in model

– the probabilities do length normalization of term 
frequencies

– the effect of doing a mixture with overall collection 
frequencies is a little like idf: terms rare in the general 
collection but common in some documents will have a 
greater influence on the ranking
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• Similar in some ways
– Term weights based on frequency

– Terms often used as if they were independent

– Inverse document/collection frequency used

– Some form of length normalization useful

• Different in others
– Based on probability rather than similarity

• Intuitions are probabilistic rather than geometric

– Details of use of document length and term, document, 
and collection frequency differ

Comparison With Vector Space
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