
CS6200: Information Retrieval
Slides by: Jesse Anderton

Language Models

Vector Space Models work reasonably well, but have a few problems:

• They are based on bag-of-words, so they ignore grammatical
context and suffer from term mismatch.

• They don’t adapt to the user or collection, but ideal term weights are
user- and domain-specific.

• They are heuristic-based, and don’t have much explanatory power.

What’s wrong with VSMs?

We can address these problems by moving to probabilistic models,
such as language models:

• We can take grammatical context into account, and trade off
between using more context and performing faster inference.

• The model can be trained from a particular collection, or conditioned
based on user- and domain-specific features.

• The model is interpretable, and makes concrete predictions about
query and document relevance.

Probabilistic Modeling

1. Ranking as a probabilistic classification task

2. Some specific probabilistic models for classification

3. Smoothing: estimating model parameters from sparse data

4. A probabilistic approach to pseudo-relevance feedback

In this Module…

Imagine we have a function that gives us the probability that a document D is
relevant to a query Q, P(R=1|D, Q). We call this function a probabilistic model,
and can rank documents by decreasing probability of relevance.

There are many useful models, which differ by things like:

• Sensitivity to different document properties, like grammatical context

• Amount of training data needed to train the model parameters

• Ability to handle noise in document data or relevance labels

For simplicity here, we will hold the query constant and consider P(R=1|D).

Ranking with Probabilistic Models

Suppose we have documents and
relevance labels, and we want to
empirically measure P(R=1|D).

Each document has only one
relevance label, so every probability is
either 0 or 1. Worse, there is no way to
generalize to new documents.

Instead, we estimate the probability of
documents given relevance labels,
P(D|R=1).

The Flaw in our Plan
D=1
R=1

D=3
R=0

D=4
R=0

D=5
R=0

2(4 = �|&) = �

D=1 D=2 D=3 D=4 D=5

P(D|R=1) 1/2 1/2 0 0 0

P(D|R=0) 0 0 1/3 1/3 1/3

D=2
R=1

2(4 = �|&) = �

Ganga
age Hodel for doc =prob desk. over . words Harms

We can estimate P(D|R=1), not P(R=1|D),
so we apply Bayes’ Rule to estimate
document relevance.

• P(D|R=1) gives the probability that a
relevant document would have the
properties encoded by the random
variable D.

• P(R=1) is the probability that a
randomly-selected document is
relevant.

Bayes’ Rule

2(4 = �|&) =
2(&|4 = �)2(4 = �)

2(&)

=
2(&|4 = �)2(4 = �)�
T 2(&|4 = T)2(4 = T)

Recap pwbabbasicsgeapedaons , eastman , bayes , Rid↳
⇐ califate? - dty

attend ykpelq,
R= binary

PCR ID) = PCD IR) . PCR)
-

PCD)
independent

PC AIB , c) =pCA) . PCB) . pcc)

Starting from Bayes’ Rule, we can easily build a classifier to tell us whether documents
are relevant. We will say a document is relevant if:

!

!

!

!

We can estimate P(D|R=1) and P(D|R=0) using a language model, and P(R=0) and P(R=1)
based on the query, or using a constant. Note that for large web collections, P(R=1) is
very small for virtually any query.

Bayesian Classification

2(4 = �|&) > 2(4 = �|&)

=� 2(&|4 = �)2(4 = �)
2(&)

>
2(&|4 = �)2(4 = �)

2(&)

=� 2(&|4 = �)
2(&|4 = �)

>
2(4 = �)
2(4 = �)

want prob(relevance I doc)

Re teleranee = relevance fora particular query .

In order to put this together, we need a language model to estimate
P(D|R).

Let’s start with a model based on the bag-of-words assumption. We’ll
represent a document as a collection of independent words
(“unigrams”).

Unigram Language Model

& = (Y�,Y�, . . . ,YP)
2(&|4) = 2(Y�,Y�, . . . ,YP|4)

= 2(Y�|4)2(Y�|4,Y�)2(Y�|4,Y�,Y�) . . .2(YP|4,Y�, . . . ,YP��)

= 2(Y�|4)2(Y�|4) . . .2(YP|4)

=
P�

K=�

2(YK|4)

Gods
prog that Dad Is about

Battista!.ae?Fffc*tO.@i9-#impraaeae← check uae're independence
F- term correlationsassuwiedependentwake co- occurrence

Let’s consider querying a collection of five short documents with a
simplified vocabulary: the only words are apple, baker, and crab.

Example

Document Rel? apple? baker? crab?

apple apple crab! 1 1 0 1

crab baker crab 0 0 1 1

apple baker baker 1 1 1 0

crab crab apple 0 1 0 1

baker baker crab 0 0 1 1

2(4 = �) = �/�

2(4 = �) = �/�

Term # Rel # Non Rel P(w|R=1) P(w|R=0)

apple 2 1 2/2 1/3

baker 1 2 1/2 2/3

crab 1 3 1/2 3/3

Is “apple baker crab” relevant?

Example

Term P(w|R=1) P(w|R=0)

apple 1 1/3

baker 1/2 2/3

crab 1/2 1

2(4 = �) = �/�

2(4 = �) = �/�

2(&|4 = �)
2(&|4 = �)

?
>

2(4 = �)
2(4 = �)�

K 2(YK|4 = �)�
K 2(YK|4 = �)

?
>

2(4 = �)
2(4 = �)

2(CRRNG = �|4 = �)2(DCMGT = �|4 = �)2(ETCD = �|4 = �)
2(CRRNG = �|4 = �)2(DCMGT = �|4 = �)2(ETCD = �|4 = �)

?
>

�.�
�.�

� · �.� · �.�
�.�̄ · �.�̄ · �

?
>

�.�
�.�

�.��� < �.�

So far, we’ve focused on language models like P(D = w1, w2, …, wn). Where’s the query?

Remember the key insight from vector space models: we want to represent queries and
documents in the same way. The query is just a “short document:” a sequence of
words. There are three obvious approaches we can use for ranking:

1. Query likelihood: Train a language model on a document, and estimate the query’s
probability.

2. Document likelihood: Train a language model on the query, and estimate the
document’s probability.

3. Model divergence: Train language models on the document and the query, and
compare them.

Retrieval With Language Models

→ proportionvrank✓eHust-eLHran.skinE.x@Mmno7e7Ea.e÷¥¥¥

Suppose that the query specifies a
topic. We want to know the probability
of a document being generated from
that topic, or P(D|Q).

However, the query is very small, and
documents are long: document
language models have less variance.

In the Query Likelihood Model, we use
Bayes' Rule to rank documents based
on the probability of generating the
query from the documents’ language
models.

Query Likelihood Retrieval

Assuming uniform prior

Naive Bayes unigram model

2(&|3)
TCPM
= 2(3|&)2(&)

= 2(3|&)

=
�

Y�3

2(Y|&)

TCPM
=

�

Y�3

log 2(Y|&) Numerically stable version

#
important It!!.it#aearaukungsycikeiiiii:.giuik9niaFata

germs? indep! .

*
is

.ese÷t÷÷

to
ii.Don query terms

log (prob) → stable computationally

dtwEwd ¥④pno5f=Ehg(pros)

fµ¥¥i÷±..*÷iTD*][[score cdt-sywreatuatohcw.cl#oKma.Yddoessqtapqfysleep doc dfw ? incorrect
.

⇒ loser 4dB
• can I implement Lang . Made Query likelihood this way? small
-problem: watch alogCpH)Ef-qo]I Fire

wax match value is o =6g CL) Solution for L .M .

Max pies -I change im't function

if wctd ⇒ watch Cw, d) westgate ⇒ we cannot
'M'Tscore(d)=?

→ply slap dad .

:

Example: Query Likelihood
Wikipedia: WWI

World War I (WWI or WW1 or World War One),
also known as the First World War or the
Great War, was a global war centred in Europe
that began on 28 July 1914 and lasted until 11
November 1918. More than 9 million
combatants and 7 million civilians died as a
result of the war, a casualty rate exacerbated
by the belligerents' technological and industrial
sophistication, and tactical stalemate. It was
one of the deadliest conflicts in history, paving
the way for major political changes, including
revolutions in many of the nations involved.

Query: “deadliest war in history”

Term P(w|D) log P(w|D)

deadliest 1/94 = 0.011 -1.973

war 6/94 = 0.063 -1.195

in 3/94 = 0.032 -1.496

history 1/94 = 0.011 -1.973

Π = 2.30e-7 Σ = -6.637

Keyword Saad query 3-4 terms

→ Q.L . model

Example: Query Likelihood
Wikipedia: WWI

World War I (WWI or WW1 or World War One),
also known as the First World War or the
Great War, was a global war centred in Europe
that began on 28 July 1914 and lasted until 11
November 1918. More than 9 million
combatants and 7 million civilians died as a
result of the war, a casualty rate exacerbated
by the belligerents' technological and industrial
sophistication, and tactical stalemate. It was
one of the deadliest conflicts in history, paving
the way for major political changes, including
revolutions in many of the nations involved.

Query: “deadliest war in history”

Term P(w|D) log P(w|D)

deadliest 1/94 = 0.011 -1.973

war 6/94 = 0.063 -1.195

in 3/94 = 0.032 -1.496

history 1/94 = 0.011 -1.973

Π = 2.30e-7 Σ = -6.637

Example: Query Likelihood

Wikipedia: Taiping Rebellion

The Taiping Rebellion was a massive civil
war in southern China from 1850 to 1864,
against the ruling Manchu Qing dynasty. It
was a millenarian movement led by Hong
Xiuquan, who announced that he had
received visions, in which he learned that he
was the younger brother of Jesus. At least 20
million people died, mainly civilians, in one of
the deadliest military conflicts in history.

Query: “deadliest war in history”

Term P(w|D) log P(w|D)

deadliest 1/56 = 0.017 -1.748

war 1/56 = 0.017 -1.748

in 2/56 = 0.035 -1.447

history 1/56 = 0.017 -1.748

Π = 2.56e-8 Σ = −6.691

There are many ways to move beyond this basic model.

• Use n-gram or skip-gram probabilities, instead of unigrams.

• Model document probabilities P(D) based on length, authority, genre,
etc. instead of assuming a uniform probability.

• Use the tools from the VSM slides: stemming, stopping, etc.

Next, we’ll see how to fix a major issue with our probability estimates:
what happens if a query term doesn’t appear in the document?

Summary: Language Model

There are three obvious ways to perform retrieval using language models:

1. Query Likelihood Retrieval trains a model on the document and
estimates the query’s likelihood. We’ve focused on these so far.

2. Document Likelihood Retrieval trains a model on the query and
estimates the document’s likelihood. Queries are very short, so these
seem less promising.

3. Model Divergence Retrieval trains models on both the document and
the query, and compares them.

Retrieval With Language Models

I
#WW1

#
not good except in special cases .

↳→ used a lotin pnactne fautreq Hwi)

The most common way to compare
probability distributions is with
Kullback-Liebler (“KL”) Divergence.

This is a measure from Information
Theory which can be interpreted as
the expected number of bits you
would waste if you compressed data
distributed along p as if it was
distributed along q.

If p = q, DKL(p||q) = 0.

Comparing Distributions

&-.(R�S) =
�

G

R(G) log
R(G)
S(G)

#
measures

similarity floeness)
between 2

distributors
Eph) = ¥167 -4×2

Thighled by p -

T

⇐EEEG.IT?n:gesisn:*ratPog=fogzaukssspeia'fed

Model Divergence Retrieval works as
follows:

1. Choose a language model for the
query, p(w|q).

2. Choose a language model for the
document, p(w|d).

3. Rank by –DKL(p(w|q) || p(w|d)) – more
divergence means a worse match.

This can be simplified to a cross-entropy
calculation, as shown to the right.

Divergence-based Retrieval

&-.(R(Y|S)�R(Y|F))

=
�

Y

R(Y|S) log
R(Y|S)
R(Y|F)

=
�

Y

R(Y|S) log R(Y|S) �
�

Y

R(Y|S) log R(Y|F)

TCPM
= �

�

Y

R(Y|S) log R(Y|F)

www.gandd.sn (Mq, Md) by compar.deetr-ibnhu.us

- Mq
-

-dust over terms

- Md-- dist over terms

both
ktdest Idk .pay are estimated modes

from la data-text

④ ⇐ ti ta it its KL (pkg) = EgaPeel - les (Mfa,)E *

⇐ an:k¥I¥⇒iia +

+I fgctfltttgctfz) =
EE → J = I. haha +4k¥tt¥¥eY¥
OE ②

Exercise •k4pkgfzQ
• win kklpllgl ⇒⇐ pc¥qca, the

• KL Not symmetric (as usually destar)
cellpkg) f- k4qHpI

Model Divergence Retrieval
generalizes the Query and Document
Likelihood models, and is the most
flexible of the three.

Any language model can be used for
the query or document. They don’t
have to be the same. It can help to
smooth or normalize them differently.

If you pick the maximum likelihood
model for the query, this is equivalent
to the query likelihood model.

Retrieval Flexibility

Equivalence to Query Likelihood Model

4MGO R(Y|S) :=
VHY,S

|S| =
�
|S|

&-.(R(Y|S)�R(Y|F)) TCPM
= �

�

Y

R(Y|S) log R(Y|F)

= �
�

Y

�
|S| log R(Y|F)

We make the following model choices:

• p(w|q) is Dirichlet-smoothed with a
background of words used in
historical queries.

• p(w|d) is Dirichlet-smoothed with a
background of words used in
documents from the corpus.

• Σw qfw = 500,000

• Σw cfw = 1,000,000,000

Example: Model Divergence Retrieval
0IX SHY := EQWPV([SVH Y MR UYIV] PSK)

R(Y|S, ɑ = �) =
VHY,S + � � SHY�

Y SHY

|S| + �

R(Y|F, ɑ = ����) =
VHY,F + �, ��� � EHY�

Y EHY

|F| + �, ���

&-.(R(Y|S)�R(Y|F)) TCPM
= �

�

Y

R(Y|S) log R(Y|F)

= �
�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

Ranking by (negative) KL-Divergence provides a very flexible and theoretically-sound retrieval system.

Example: Model Divergence Retrieval

Wikipedia: WWI
World War I (WWI or WW1 or World War
One), also known as the First World War or
the Great War, was a global war centred in
Europe that began on 28 July 1914 and
lasted until 11 November 1918. More than
9 million combatants and 7 million civilians
died as a result of the war, a casualty rate
exacerbated by the belligerents'
technological and industrial sophistication,
and tactical stalemate. It was one of the

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 0.002 -1.891

war 2,000 35,000 0.202 0.003 -1.700

one 6,000 5E+07 0.205 0.049 -0.893

-4.484

�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

Example: Model Divergence Retrieval

Wikipedia: Taiping Rebellion
The Taiping Rebellion was a massive civil
war in southern China from 1850 to 1864,
against the ruling Manchu Qing dynasty. It
was a millenarian movement led by Hong

Xiuquan, who announced that he had
received visions, in which he learned that he
was the younger brother of Jesus. At least 20
million people died, mainly civilians, in one of

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 8.75E-05 -2.723

war 2,000 35,000 0.202 0.001 -2.199

one 6,000 5E+07 0.205 0.049 -0.890

-5.812

�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

Although the bag of words model works very well for text classification, it is intuitively
unsatisfying – it assumes the words in a document are independent, given the relevance
label, and nobody believes this.

What could we replace it with?

• A “bag of paragraphs” wouldn’t work – too many paragraphs are unique in the
collection, so we can’t do meaningful statistics without subdividing them.

• A “bag of sentences” is better, but not much – many sentences are unique, and two
documents expressing the same thought are unlikely to choose exactly the same
sentence. We need similar documents to have similar features.

• We’ll use sets of words, called n-grams, and consider sets of different sizes to balance
between good probability estimates (for small n) and semantic nuance (for large n).

Modeling Language

Maximum likelihood probability
estimates assign zero probability to
terms missing from the training data.

This is catastrophic for a Naive Bayes
retrieval model: any document that
doesn’t contain all query terms will get
a matching score of zero.

Many other probabilistic models have
similar problems. Only truly impossible
events should have zero probability.

Probability Estimation

Query Likelihood Model

Query: “world war one”

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.00

0.05

0.03

2(&|3)
TCPM
=

�

Y�3

2(Y|&)

= �.�� · �.�� · �

pvobcwld) = ? have prob= E¥ag#
#naive

The solution is to adjust our probability estimates by taking some probability away from the
most-likely events, and moving it to the less-likely events.

!

!

!

!

!

This makes the probability distribution less spiky, or “smoother.” The probabilities all move
just a little toward the mean.

Smoothing

Maximum Likelihood Estimate

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.00

0.05

0.03

Smoothed Estimate

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.0010

0.0495

0.0295

Smoothing is important for many reasons.

• Assigning zero probability to possible events is incorrect.

• Maximum likelihood estimates from your data don’t generalize perfectly
to new data, so a Bayesian update from some kind of prior works better.

However, uniform smoothing doesn’t work very well for language
modeling. Next, we’ll see why that is, and how we can do better.

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to
information retrieval.

Smoothing

Laplace Smoothing, aka “add-one
smoothing,” smooths maximum likelihood
estimates by adding one count to each
event.

!

!

!

!

This is equivalent to a Bayesian posterior
with a uniform prior, as we'll see.

Laplace Smoothing

Pierre-Simon Laplace (1745-1827)
Image from Wikipedia

2(G) =
EQWPV(G) + ��

G�GXGPVU (EQWPV(G) + �)

2(Y|F) =
VHY,F + �
|F| + |8|

If we assume nothing about a
document’s vocabulary distribution,
we will use uniform probabilities for all
terms.

When we observe the terms in a
document, the Bayesian update of
these probabilities yields Laplace
smoothing.

This Bayesian posterior is our
smoothed estimate of the vocabulary
distribution for the document’s topic.

Deriving Laplace Smoothing
2(ř|Ɇ) MW &KTKEJNGV(ř|Ɇ�, . . . , Ɇ8) �

8�

K=�

řɆK��
K

2(F|ř) MW /WNVKPQOKCN(ř) �
8�

K=�

řVHK,F
K

2(Y|F) � 2(F|ř)2(ř|Ɇ) =
8�

K=�

řVHK,F+ɆK��
K

MW &KTKEJNGV(ř|Ɇ� + VH�,F, . . . , Ɇ8 + VH8,F)

E[2(Y|F)|Ɇ = �] =
VH�,F + �
|F| + 8

Laplace smoothing can be
generalized from add-one smoothing
to add-� smoothing, for � ∈ (0, 1].

This lets you tune the amount of
smoothing you want to use: smaller
values of � are closer to the maximum
likelihood estimate.

Add-� Smoothing

2(G) =
EQWPV(G) + Ɇ�

G�GXGPVU (EQWPV(G) + Ɇ)

2(Y|F) =
VHY,F + Ɇ

|F| + Ɇ|8|

Uniform smoothing assigns the same probability to all unseen words,
which isn’t realistic. This is easiest to see for n-gram models:

!

We strongly believe that “house” is more likely to follow “the white”
than “effortless” is, even if neither trigram appears in our training data.

Our bigram counts should help: “white house” probably appears more
often than “white effortless.” We can use bigram probabilities as a
background distribution to help smooth our trigram probabilities.

Limits of Uniform Smoothing

2(JQWUG|VJG,YJKVG) > 2(GHHQTVNGUU|VJG,YJKVG)

One way to combine foreground and background distributions is to take their
linear combination. This is the simplest form of Jelinek-Mercer Smoothing.

!

For instance, you can smooth n-grams with (n-1)-gram probabilities.

!

You can also smooth document estimates with corpus-wide estimates.

Jelinek-Mercer Smoothing

R̂(G) = ɐRHI(G) + (� � ɐ)RDI(G), � < ɐ < �

R̂(YP|Y�, . . . ,YP��) = ɐR(YP|Y�, . . . ,YP��) + (� � ɐ)R(YP|Y�, . . . ,YP��)

R̂(Y|F) = ɐ
VHY,F

|F| + (� � ɐ)
EHY�
Y EHY

Most smoothing techniques amount to
finding a particular value for λ in
Jelinek-Mercer smoothing.

For instance, add-one smoothing is
Jelinek-Mercer smoothing with a
uniform background distribution and a
particular value of λ.

Relationship to Laplace Smoothing

4MGO ɐ =
|F|

|F| + |8|

R̂(Y|F) = ɐ
VHY,F

|F| + (� � ɐ)
�

|8|

=

�
|F|

|F| + |8|

�
VHY,F

|F| +

�
|8|

|F| + |8|

�
�

|8|

=
VHY,F

|F| + |8| +
�

|F| + |8|

=
VHY,F + �
|F| + |8|

TF-IDF is also closely related to
Jelinek-Mercer smoothing.

If you smooth the query likelihood
model with a corpus-wide background
probability, the resulting scoring
function is proportional to TF and
inversely proportional to DF.

Relationship to TF-IDF

log 2(S|F) =
�

Y�S

log

�
ɐ
VHY,F

|F| + (� � ɐ)
FHY
|E|

�

=
�

Y�S:VHY,F>�

log

�
ɐ
VHY,F

|F| + (� � ɐ)
FHY
|E|

�
+

�

Y�S:VHY,F=�

log(� � ɐ)
FHY
|E|

=
�

Y�S:VHY,F>�

log

�
ɐ VHY,F

|F| + (� � ɐ) FHY
|E|

(� � ɐ) FHY
|E|

�
+

�

Y�S

log(� � ɐ)
FHY
|E|

TCPM
=

�

Y�S:VHY,F>�

log

�
ɐ VHY,F

|F|

(� � ɐ) FHY
|E|

+ �

�

Dirichlet Smoothing is the same as
Jelinek-Mercer smoothing, picking λ
based on document length and a
parameter μ – an estimate of the
average doc length.

!

The scoring function to the right is the
Bayesian posterior using a Dirichlet
prior with parameters:

Dirichlet Smoothing

ɐ = � � ɑ
|F| + ɑ

�
ɑ

EHY��
Y EHY

, . . . , ɑ
EHYP�
Y EHY

�

R̂(Y|F) =
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

log R(S|F) =
�

Y�S

log
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

Example: Dirichlet Smoothing
Query: “president lincoln”

tf 15

cf 160,000

tf 25

cf 2,400

|d| 1,800

Σ 10

μ 2,000

log R(S|F) =
�

Y�S

log
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

= log
�� + �, ��� � (���, ���/���)

�, ��� + �, ���

+ log
�� + �, ��� � (�, ���/���)

�, ��� + �, ���
= log(��.��/�, ���) + log(��.���/�, ���)
= � �.�� + ��.��
= � ��.��

Dirichlet Smoothing is a good choice for
many IR tasks.

• As with all smoothing techniques, it never
assigns zero probability to a term.

• It is a Bayesian posterior which considers
how the document differs from the corpus.

• It normalizes by document length, so
estimates from short documents and long
documents are comparable.

• It runs quickly, compared to many more
exotic smoothing techniques.

Effect of Dirichlet Smoothing

tf tf ML Score Smoothed
Score

15 25 -3.937 -10.53

15 1 -5.334 -13.75

15 0 N/A -19.05

1 25 -5.113 -12.99

0 25 N/A -14.4

Dirichlet Smoothing is the same as
Jelinek-Mercer smoothing, picking λ
based on

 * doc length |d|

 * doc vocabulary |V| (number of
unique terms in document)

!

Witten-Bell Smoothing

� =
|d|

|d|+ |V |

An n-gram is an ordered set of n
contiguous words, usually found within
a single sentence. Special cases are n
= 1 (unigrams), n = 2 (bigrams), and n =
3 (trigrams).

Skip-grams are more “relaxed” – they
can appear in any order, and need not
be adjacent. They are an unordered
set of n words that appear within a
fixed window of k words.

N-grams and Skip-grams

The quick brown fox jumped over the lazy dog.
Sentence

Trigrams (n = 3)
the quick brown
quick brown fox

brown fox jumped
…

Skip-grams (n = 3, k = 5)
quick brown fox

fox jumped quick
lazy dog jumped

…

We typically construct a generative
model of n-grams using Markov chains
– what is the probability distribution over
the next word in the n-gram, given the n
– 1 words we’ve seen so far?

P(wn|w1, w2, …, wn-1)

This assumes that words are
independent, given the relevance label
and the preceding n – 1 words.

We use a special token, like $, for words
“before” the beginning of the sentence.

Markov Chains

The quick brown fox jumped over the lazy dog.
Sentence

Trigram Sentence Probability
2(VJG|$, $) · 2(SWKEM|$, VJG) · 2(DTQYP|VJG, SWKEM)
·2(HQZ|SWKEM, DTQYP) · 2(LWORGF|DTQYP, HQZ)
·2(QXGT|HQZ, LWORGF) · 2(VJG|LWORGF, QXGT)
·2(NC\[|QXGT, VJG) · 2(FQI|VJG, NC\[)

How many n-grams do we expect to see, as a
function of the vocabulary size v and n-gram
size n?

• At first glance, you’d expect to see

!

• However, most possible n-grams will never
appear (like “correct horse battery
staple?”), and n-grams are limited by
typical sentence lengths.

• As n increases, the number of distinct
observed n-grams peaks around n = 4 and
then decreases.

Number of n-grams in a Corpus

�
X
P

�
= 1(XP)

Web 1T 5-gram Corpus

0M

350M

700M

1,050M

1,400M

n=1 n=2 n=3 n=4 n=5

1.18E+09

1.31E+09

9.77E+08

3.15E+08

1.36E+07

Total tokens: 1,024,908,267,229
Vocabulary size: 13,588,391

The best n-gram size to use depends on a variance-bias tradeoff:

• Smaller values of n have more training data: infrequent n-grams will
appear more often, reducing the variance of your probability estimates.

• Larger values of n take more context into account: they have more
semantic information, reducing the bias of your probability estimates.

The best n-gram size is the largest value your data will support. Common
choices are n = 3 for millions of words, or n = 2 for smaller corpora.

Choosing n-gram Size

Using n-grams and skip-grams allows us to include some linguistic
context in our retrieval models. This helps disambiguate word senses
and improve retrieval performance.

Larger values of n are beneficial, if you have the data to support them.
The number of n-grams does not grow exponentially in n, so the index
size can be manageable.

Next, we’ll see how to use an n-gram language model for retrieval.

Wrapping Up

1

many slides courtesy James Allan@umass Amherst
some slides courtesy Christopher Manning and Prabhakar Raghavan @ Stanford

language models
for retrieval

1

2

• Model is an idealization or abstraction of an actual process
• Mathematical models are used to study the properties of the
process, draw conclusions, make predictions
• Conclusions derived from a model depend on whether the
model is a good approximation of the actual situation
• Statistical models represent repetitive processes, make
predictions about frequencies of interesting events
• Retrieval models can describe the computational
process
 – e.g. how documents are ranked

 – Note that how documents or indexes are stored is implementation

• Retrieval models can attempt to describe the human
process

 – e.g. the information need, interaction
 – Few do so meaningfully

• Retrieval models have an explicit or implicit definition of
relevance

what is a retrieval model?

2

3

today

retrieval models

• boolean

• vector space

• latent semnatic indexing

• statistical language

• inference network

• hyperlink based

3

4

1. J. M. Ponte and W. B. Croft. A language modeling approach to information

retrieval. Proceedings of ACM-SIGIR 1998, pages 275-281.

2. J. M. Ponte. A language modeling approach to information retrieval. Phd

dissertation, University of Massachusets, Amherst, MA, September 1998.

3. D. Hiemstra. Using Language Models for Information Retrieval. PhD

dissertation, University of Twente, Enschede, The Netherlands, January 2001.

4. D. R. H. Miller, T. Leek, and R. M. Schwartz. A hidden Markov model

information retrieval system. Proceedings of ACM-SIGIR 1999, pages 214-221.

5. F. Song and W. B. Croft. A general language model for information retrieval. In

Proceedings of Eighth International Conference on Information and Knowledge

Management (CIKM 1999)

6. S. F. Chen and J. T. Goodman. An empirical study of smoothing techniques for

language modeling. In Proceedings of the 34th Annual Meeting of the ACL,

1996.

7. C. Zhai and J. Lafferty. A study of smoothing methods for language models

applied to ad hoc information retrieval. Proceedings of the ACM-SIGIR 2001,

pages 334-342.

8. V. Lavrenko and W. B. Croft. Relevance-based language models. Proceedings

of the ACM SIGIR 2001, pages 120-127.

9. V. Lavrenko and W. B. Croft, Relevance Models in Information Retrieval, in

Language Modeling for Information Retrieval, W. Bruce Croft and John Lafferty,

ed., Kluwer Academic Publishers, chapter 2.

language models not in MIR

4

5

outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples

5

6

probabilities

• sample space

• probability

• independent events

• cond. probability

• Bayes theorem

• distributions

6

7

information theory,
coding

• entropy

• joint entropy

• cond. entropy

• relative entropy

• convexity, Jensen ineq.

• optimal coding

• Fano’s ineq.

7

8

outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples

8

9

• Probability distribution over strings of text
– how likely is a given string (observation) in a given “language”
– for example, consider probability for the following four strings

p1 = P(“a quick brown dog”)
p2 = P(“dog quick a brown”)
p3 = P(“быстрая brown dog”)
p4 = P(“быстрая собака”)

– English: p1 > p2 > p3 > p4

• … depends on what “language” we are modeling
– In most of IR, assume that p1 == p2

what is a language model ?

9

10

• Every document in a collection defines a “language”
– consider all possible sentences (strings) that author could have
written down when creating some given document
– some are perhaps more likely to occur than others

• subject to topic, writing style, language …
– P(s|MD) = probability that author would write down string “s”

• think of writing a billion variations of a document
and counting how many time we get “s”

• Now suppose “Q” is the user’s query
– what is the probability that author would write down “q” ?

• Rank documents D in the collection by P(Q|MD)
– probability of observing “Q” during random sampling from the
language model of document D

lang modeling for IR

10

11

language models

• estimate probabilities of certain ”events”

in the text

• based on these probabilities, use

likelihood as similarity

• language model based on

– letters?

– words?

– phrases?

11

-
"generator "

generative model
task: write an

- automatic text

generator .

I# wuhfifhfrpn.gg?-pwsasiliskcgaeratm
-

-

12

statistical text generation

12

O -

patter's) -- uniform 280 (prob

p
-

Helter)= english pros
28 prob

proscaxy ") = argtiish p-

✓ - u w

=
prob ("xyz") - same as in english

13

13

PAGEANT") a. correct

what prob
-

outa? is.iq
-tellers ?pCwords7aconcII@uuisrau.sD
- phrases

Abcs") - correct

⇒
-

8. word - tigre 9. phrases

14

• What kind of language model should
we use?

– Unigram or higher-order models?
– Multinomial or multiple-Bernoulli?

• How can we estimate model
parameters?

– Basic models
– Translation models
– Aspect models
– non-parametric models

• How can we use the model for
ranking?

– Query-likelihood
– Document-likelihood
– Likelihood Ratio
– Divergence of query and document models

LM choices

14

15

unigram LM

• words are sampled independently, with
replacement

• order of the words is lost (no phrases)

15

16

higher-order LM
• Unigram model assumes word independence

– cannot capture surface form: P(“brown dog”) == P(“dog
brown”)

• Higher-order models
– n-gram: condition on preceding words

– cache: condition on a window (cache)

– grammar: condition on parse tree

• Are they useful?
– no improvements from n-gram, grammar-based models
– some research on cache-like models (proximity, passages, etc.)
– parameter estimation is prohibitively expensive

16

17

outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples

17

18

• Predominant model

• Fundamental event:
what is the identity of the i’th query token?

• observation is a sequence of events, one for
each query token

multinomial similarity

18

19

• Original model

• fundamental event: does the word w occur in the query?

• observation is a vector of binary events, one for each
possible word

multiple-Bernoulli similarity

19

20

•what is the probability to generate the given
query, given a language model?

•what is the probability to generate the given
document, given a language model?

•how ”close” are 2 statistical models?

score, ranking in LM

20

21

• Standard approach: query-likelihood
– estimate a language model MD for every document D in the
collection
– rank docs by the probability of “generating” the query

• Drawbacks:
– no notion of relevance in the model: everything is random sampling
– user feedback / query expansion not part of the model
-examples of relevant documents cannot help us improve the language
model MD
– does not directly allow weighted or structured queries

score: query likelihood

21

22

• Flip the direction of the query-likelihood approach
– estimate a language model MQ for the query Q
– rank docs D by the likelihood of being a random sample from MQ
– MQ expected to “predict” a typical relevant document

• Problems:
– different doc lengths, probabilities not comparable
– favors documents that contain frequent (low content) words

score: document likelihood

22

23

• Try to fix document likelihood:
– Bayes’ likelihood that Mq was the source, given that we
observed D
– related to Probability Ranking Principle: P(D|R) / P (D|N)
– allows relevance feedback, query expansion, etc.
– can benefit from complex estimation of the query model MQ

score: likelihood ratio

23

24

• Combine advantages of two ranking methods
– estimate a model of both the query MQ and the document MD
– directly compare similarity of the two models
– natural measure of similarity is cross-entropy (others exist):

– number of bits we would need to “encode” MQ using MD
– equivalent to Kullback-Leibler divergence
– equivalent to query-likelihood if MQ is simply counts of words in Q

• Cross-entropy is not symmetric: use H (MQ || MD)
– reverse works consistently worse, favors different document
– use reverse if ranking multiple queries w.r.t. one document

score: model comparison

24

-

aEiia¥⑤qs¥!?
w&d ⇒ p9w9 deIII ⇒↳ crewads=-o

25

Models of Text Generation

Query Model Query

Doc Model Doc

Searcher

Writer

Is this the same model?

25

26

Retrieval with Language Models

Query ModelQuery

Doc ModelDoc

Retrieval: Query likelihood (1)
 Document likelihood (2)
 Model comparison (3)

1

2

3

26

27

• Use Unigram models
– no consistent benefit from using higher order models
– estimation is much more complex (e.g. bi-gram from a 3-word
query)

• Use Multinomial models
– well-studied, consistent with other fields that use LMs
– extend multiple-Bernoulli model to non-binary events?

• Use Model Comparison for ranking
– allows feedback, expansion, etc. through estimation of MQ and MD
– use KL(MQ || MD) for ranking multiple documents against a query

• Estimation of MQ and MD is a crucial step
– very significant impact on performance (more than other choices)
– key to cross-language, cross-media and other applications

LM: popular choices

27

28

Translation model (Berger
and Lafferty)

• Basic LMs do not address issues of synonymy.
– Or any deviation in expression of information need

from language of documents

• A translation model lets you generate query
words not in document via “translation” to
synonyms etc.
– Or to do cross-language IR, or multimedia IR

 Basic LM Translation

– Need to learn a translation model (using a dictionary or
via statistical machine translation)

28

29

outline

• review: probabilities

• language model

• similarity, ranking in LM

• probability estimation

• smoothing methods

• examples

29

①estruatonwithuoryfeew
SMOOTHING} words (shortDL)

zero

zIafids .

②w¢d⇒MYhledfE÷Eer⇒
A

go:&! prosfwords)
sails .

Ei÷qE¥I'in:c ,flip coin N times

pchead)=¥÷¥hasa4wB0=
{

30

• Want to estimate MQ and/or MD from Q and/or D

• General problem:
– given a string of text S (= Q or D), estimate its language model MS
– S is commonly assumed to be an i.i.d. random sample from MS

• Independent and identically distributed

• Basic Language Models
– maximum-likelihood estimator and the zero frequency problem
– discounting, interpolation techniques
– Bayesian estimation

estimation

30

LIZ# plheadl - Es g
same problem for veryshort does

31

• count relative frequencies of words in S
• maximum-likelihood property:

– assigns highest possible likelihood to the observation

• unbiased estimator:
– if we repeat estimation an infinite number of times with
different starting points S, we will get correct probabilities (on
average)
– this is not very useful…

maximum likelihood

31

32

• Suppose some event not in our observation S
– Model will assign zero probability to that event
– And to any set of events involving the unseen event

• Happens very frequently with language

• It is incorrect to infer zero probabilities
– especially when creating a model from short samples

zero-frequency problem

32

-

33

Laplace smoothing

!"

!"#$"%& '())*+,-.

! %)/-* &0&-*' ,-)1'&20&3 3"*"

! "33 4 *) &0&25 %)/-*

! 2&-)2("$,6& *))1*",- #2)1"1,$,*,&'

! ,* %)22&'#)-3' *) /-,7)2(#2,)2'

! ,7 &0&-* %)/-*' "2& 8!4"!9" ###"!$: ;,*+
!
% !% <

& *+&-
("= $,&$,+))3 &'*,("*&' "2& 8!4

&
" !9

&
" ###" !$

&
:

$"#$"%& &'*,("*&' "2& 8!4>4
&>$

" !9>4
&>$

" ###" !$>4
&>$

:

33

Discount -smooth

-
derived very complicated (with integrals) k=#fossils

= z
coins Laplace

N trial HtTan
heads tails

Laplace estimate
Htt TH

N trials comes
¥2 ' NID

80 O
H

basic exsteiueafes - Max likelihood Laplace estimates M

In men .
.
-

me → unite , 'h¥a . - - ifeng.TO
N

FEHN
'

=L ? yes ECKET-if.se
Outta

Laplace defog,
N e- tooo ah = # I write

,
.
. WEE

- Kef
direct lbasil Max- lilac:/ EN En , - -

- Wen
meh MEHLaplace ⇒ saggy . - - madwtf

34

discounting methods

• Laplace smoothing

• Lindstone correction
– add �to all count,

renormalize

• absolute discounting

– substract �� redistribute

probab mass

34

÷ :÷a=⑨ntIO=TA±
⇒ valid distribution

Ntk
t

-

mate mate

In' En .

- MIN Eithne
basic team' fomgeueral Laplace EH

35

• Held-out estimation
– Divide data into training and held-out sections
– In training data, count Nr, the number of words occurring r times
– In held-out data, count Tr, the number of times those words occur
– r* = Tr/Nr is adjusted count (equals r if training matches held-out)
– Use r*/N as estimate for words that occur r times

• Deleted estimation (cross-validation)
– Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)
– Estimate for words that occur r times is average of each

• Good-Turing estimation
– From previous, P(w|M) = r* / N if word w occurs r times in sample
– In Good-Turing, steal total probability mass from next most frequent
word
– Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

discounting methods

35

E high⇒ stroganoff
E low (Eeo . oooo i)⇒ estimatese

basic

36

• Problem with all discounting methods:
– discounting treats unseen words equally (add or subtract ε)
– some words are more frequent than others

• Idea: use background probabilities
– “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)
– reflects expected frequency of events

interpolation methods

ML estimate
background probability

final estimate =

36

②#discounting

direct

¥÷÷÷ie÷÷÷÷÷±

37

• Correctly setting λ is very important

• Start simple
– set λ to be a constant, independent of document, query

• Tune to optimize retrieval performance
– optimal value of λ varies with different databases, query
sets, etc.

Jelinek Mercer smoothing

37

38

• Problem with Jelinek-Mercer:
– longer documents provide better estimates
– could get by with less smoothing

• Make smoothing depend on sample size

• N is length of sample = document length
• µ is a constant

Dirichlet smoothing

38

39

• A step further:
– condition smoothing on “redundancy” of the example
– long, redundant example requires little smoothing
– short, sparse example requires a lot of smoothing

• Derived by considering the proportion of new events
as we walk through example

– N is total number of events = document length
– V is number of unique events = number of unique terms in doc

Witten-Bell smoothing

39

40

• Two possible approaches to smoothing

• Interpolation:
– Adjust probabilities for all events, both seen and
unseen

• Back-off:
– Adjust probabilities only for unseen events
– Leave non-zero probabilities as they are
– Rescale everything to sum to one: rescales “seen”
probabilities by a constant

• Interpolation tends to work better
 – And has a cleaner probabilistic interpretation

interpolation vs back-off

40

41

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003

d2: 0.02 0.001 0.01 0.003 0.004

41

41

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003

d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(“algorithm”|d2)

p(“data”|d1) < p(“data”|d2)

p(“mining”|d1) < p(“mining”|d2)

But p(q|d1)>p(q|d2)!

41

41

Two-stage smoothing

Query = “the algorithms for data mining”

d1: 0.04 0.001 0.02 0.002 0.003

d2: 0.02 0.001 0.01 0.003 0.004

p(“algorithms”|d1) = p(“algorithm”|d2)

p(“data”|d1) < p(“data”|d2)

p(“mining”|d1) < p(“mining”|d2)

But p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.

41

42

c(w,d)

|d|
P(w|d) =

Two-stage smoothing

42

42

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1

-Explain unseen words

-Dirichlet prior(Bayesian)

µ

Two-stage smoothing

42

42

c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1

-Explain unseen words

-Dirichlet prior(Bayesian)

µ

(1-λ) + λp(w|U)

Stage-2

-Explain noise in query

-2-component mixture

λ

Two-stage smoothing

42

43

• How do we determine if a given model is a LM?
• LM is generative

– at some level, a language model can be used to generate text
– explicitly computes probability of observing a string of text
– Ex: probability of observing a query string from a document model
probability of observing an answer from a question model
– model an entire population

• Discriminative approaches
– model just the decision boundary
– Ex: is this document relevant?
does it belong to class X or Y

– have a lot of advantages,
- but these are not generative approaches

LM are generative techniques

43

44

• Goal: estimate a model M from a sample text S

• Use maximum-likelihood estimator
– count the number of times each word occurs in S, divide by length

• Smoothing to avoid zero frequencies
– discounting methods: add or subtract a constant, redistribute mass
– better: interpolate with background probability of a word
– smoothing has a role similar to IDF in classical models

• Smoothing parameters very important
– Dirichlet works well for short queries (need to tune the parameter)
– Jelinek-Mercer works well for longer queries (also needs tuning)
– Lots of other ideas being worked on

LM: summary

44

45

Language models: pro & con

• Novel way of looking at the problem of text
retrieval based on probabilistic language
modeling

• Conceptually simple and explanatory
• Formal mathematical model
• Natural use of collection statistics, not heuristics

(almost�)

• LMs provide effective retrieval and can be
improved to the extent that the following
conditions can be met

• Our language models are accurate representations
of the data.

• Users have some sense of term distribution.

45

46

Comparison With Vector Space

• There’s some relation to traditional tf.idf
models:
– (unscaled) term frequency is directly in model

– the probabilities do length normalization of term
frequencies

– the effect of doing a mixture with overall collection
frequencies is a little like idf: terms rare in the general
collection but common in some documents will have a
greater influence on the ranking

46

47

• Similar in some ways
– Term weights based on frequency

– Terms often used as if they were independent

– Inverse document/collection frequency used

– Some form of length normalization useful

• Different in others
– Based on probability rather than similarity

• Intuitions are probabilistic rather than geometric

– Details of use of document length and term, document,
and collection frequency differ

Comparison With Vector Space

47

