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What’s wrong with VSMs?

Vector Space Models work reasonably well, but have a few problems:

* They are based on bag-of-words, so they ignore grammatical
context and suffer from term mismatch.

 [hey don't adapt to the user or collection, but ideal term weights are
user- and domain-specific.

* [hey are heuristic-based, and don't have much explanatory power.



Probabilistic Modeling

We can address these problems by moving to probabilistic models,
such as language moadels:

 We can take grammatical context into account, and trade off
between using more context and performing faster inference.

 The model can be trained from a particular collection, or conditioned
based on user- and domain-specific features.

 [The model is interpretable, and makes concrete predictions about
query and document relevance.



INn this Module...

1. Ranking as a probabilistic classification task

2. Some specific probabilistic models for classification
3. Smoothing: estimating model parameters from sparse data

4. A probabillistic approach to pseudo-relevance feedback



Ranking with Probabllistic Models

Imagine we have a function that gives us the probability that a document D is
relevant to a query Q, P(R=1|D, Q). We call this function a probabilistic model,
and can rank documents by decreasing probability of relevance.

There are many useful models, which differ by things like:

e Sensitivity to different document properties, like grammatical context
 Amount of training data needed to train the model parameters

* Abllity to handle noise iIn document data or relevance labels

For simplicity here, we will hold the query constant and consider P(R=1|D).



The Flaw In our Plan

Suppose we have documents and
relevance labels, and we want to
empirically measure P(R=1|D).

Each document has only one
relevance label, so every probabillity Is
either O or 1. Worse, there i1s no way to
generalize to new documents.

Instead, we estimate the probabillity of
documents given relevance labels,
P(D|R=1).
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We can eshmate P(D\R—l) not P(R=1|D),

so we apply Bayes' Rule to estimate
document relevance.

N

e P(D|R=I) gives the probabillity that a P(R=1|D) = P(DIR=1)P(R=1)
relevant document would have the P(D)
properties encoded by the random P(D[R=1)P(R=1)
variable D. — er(m r'P(R = r)
» P(R=1) is the probability that a V(R\Dw _ 20 lz\ : %UZ)
randomly-selected document Is
relevant. HD)
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Bayesian Classification

Starting from Bayes’ Rule, we can easily build a classitier to tell us whether documents

are relevant. We will say a document is relevant if: W’f PWL;((QLBWUL l%)

P(R = 1|D) > P(R = 0|D)

P(D[R=1)P(R=1) P(D|R=0)P(R=0)
- P(D) g P(D)

P(DIR=1) P(R=0)
— P(D[R=0) ~ P(R=1)

We can estimate P(D|R=1) and P(D|R=0) using a language model, and P(R=0) and P(R=1)
based on the query, or using a constant. Note that for large web collections, P(R=1) IS
very small for virtually any query.
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Unigram Language Model

In order to put this together, we need a language model to estimate
P(D|R).

Let’s start with a model based on the bag-of-words assumption. We'll

represent a document as e&eoHee Jon of Independent words
umgrams 7). D = (W/hﬁ w@% 4,&&'* e A C OILQJC“
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Example

Let's consider querying a collection of five short documents with a
simplified vocabulary: the only words are apple, baker, and crab.

Document Rel? éapple?ébaker?écrab? Term # Rel # Non Rel P(W|R=1) A(wW|R=0)

apple apple crab 1 o 1 apple | 2 12> A3

.....................................................................................................................................................................................................

.....................................................................................................................................................................................................

.....................................................................................................................................................................................................

baker baker crabé 0 0 | 1




Example

s “apple baker crab” relevant?

PDIR=1) ¢ P(R=0) Term  PAwR=1) AW R=0)
P(DR=0) ~ P(R=1)
[[;PwiR=1) 7 P(R=0) apple 1 1/3
[T. P(WiR=0) = P(R=1) o
P(apple = 1|R = 1) P(baker = 1|R = 1)P(crab = 1|R = 1) ; 0.6 baker 1/2 2/3

P(apple = 1|R = 0) P(baker = 1|R = 0)P(crab = 1|R = ) 0.4
1-05-0.5 2 06

03061 04 P(R=1) =2/5

1125 < 1.5 P(R = 0) = 3/5




Retrieval With Language Models

So far, we've focused on language models like P(D = wy, wy, ..., w,). Where’s the query?

Remember the key insight from vector space models: we want to represent queries and
documents in the same way. The query is just a “short document:” a sequence of
words. There are three obvious approaches we can use for ranking:

1. Query likelihood: Train a language model on a document, and estimate the query’s
porobabillity.

2. Document likelihood: Train a language model on the query, and estimate the
document's probabillity.

3. Model divergence: Irain language mode\s on the document and the query, and
compare them. o( bl A) - o \ / ro WM\/
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Nalve Bayes unigram model

However, the query is very small, and
documents are long: document
language models have less variance.
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Example: Query Likelihood

World War | (WWI or WW1 or World War One), Querydeadllestwarlnhlstory -----------------
also known as the First World War or the Term  P(wiD) |09 P(wiD)
Great War, was a global war centred in Europe : _ -

that began on 28 July 1914 and lasted until 11 deadllest ............. 1/94_0011 ----------------- 1973 --------------
November 1918. More than 9 million war 6/94 = 0.063  -1.195
combatants and 7 million civilians died as a i 3/94 = 0,032 1406
result of the war, a casualty rate exacerbated |
by the belligerents’ technological and industrial history 1/94 0. 011 -1.973
sophistication, and tactical stalemate. It was

one of the deadliest conflicts in history, paving - N'=2.30e-7 Z =-6.637
the way for major political changes, including |

revolutions in many of the nations involved. k@f\uofa\ S XO\ g,ugf/ }4 ‘&.@mﬁg
=D QL. ey



Example: Query Likelihood

Wikipedia: WWI

World War | (WWI or WW1 or World War One), Querydeadllestwarlnhlstory -----------------
also known as the First World War or the Term  P(wiD) |09 P(wiD)
Great War, was a global war centred in Europe : _ -

that began on 28 July 1914 and lasted until 11 deadllest ............. 1/94_0011 ----------------- 1973 --------------
November 1918. More than 9 million war 6/94 = 0.063 -1.195
combatants and 7 million civilians died as a i 3/94 = Q. 032 1496
result of the war, a casualty rate exacerbated |
by the belligerents’ technological and industrial history 1/94 0. 011 -1.973
sophistication, and tactical stalemate. It was

one of the deadliest conflicts in history, paving - N'=2.30e-7 Z =-6.637
the way for major political changes, including |

revolutions in many of the nations involved.




Example: Query Likelihood

Wikipedia: Taiping Rebellion

The Taiping Rebellion was a massive civil

war in souther
against the ruli
was a millenari

N China from 1850 to 1864,
ng Manchu Qing dynasty. It
an movement led by Hong

Xiuguan, who announced that he had
recelved visions, In which he learned that he
was the younger brother of Jesus. At least 20

million people

died, mainly civilians, in one of

the deadliest military contlicts in history.

Query: “deadllest war in history”

......................................................................................................................................................................

Term  P(wID) Iog P(wID)
deadliest 1/56:0.017§ -1.748

.................................................................................................................

......................................................................................................................................................................

......................................................................................................................................................................

history | 1/56 = oo17§ -1.748

N =2.56e-8 3 =-6.691



Summary: Language Model

There are many ways to move beyond this basic model.
* Use n-gram or skip-gram probabillities, instead of unigrams.

 Model document probabillities P(D) based on length, authority, genre,
etc. instead of assuming a uniform probability.

* Use the tools from the VSM slides: stemming, stopping, etc.

Next, we'll see how to fix a major issue with our probability estimates:
what happens if a query term doesn'’t appear in the document?



Retrieval With Language Models

There are three obvious ways to perform retrieval using language models:

W

1. @u\erlLikeﬂhood Retrievaf trains a model on the document and
estimates the query's likelihood. We've focused on these so far

nsf Gl aceyst o Grasl ca e
2.\|Document Likelihood Retrieval {rains a model on the que??and
estimates the document's likelihood. Queries are very short, so these
seem less promising.
uxd o (she practve (whe? le)

Model Divergence Retrieval trains models on both the document and

the query, and compares them.

3.




Comparing Distributions

The most common way to compare
orobabillity distributions is with
ullback-Liebler ("KL") Divergence.

This is a measure from Information
Theory which can be interpreted as
the expected number of bits you
would waste If you compressed data
distributed along p as If it was
distributed along g.

It p=¢q, Dxi(pllg) = 0.
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Divergence-based Retrieval

) 6§
Model Divergence Retrieval works as W DAOS (Hq/l MA) l/\/ W(ﬁr’.

. 314
follows: Low [\ael A Hibuhous
1. Choose a language chQide\ fornge Dxi(p(wlq)|[p(w|d))
guery, p(wlqg). =5t ol (eruss
Ma, = 3" p(wla) log 212
p(w|d)
2. Choose a language model for the i
document, p(wld). MA_;OMAV O Jefuns = EW: p(w|q) log p(w|q) — ZW: p(wl|q) log p(w|d)
3. ?gnk by -Dxi(p(wlq) || p(w|d)) — more rank Z p(w|q) log p(w|d)
divergence means a worse match. lﬁél%\ »
\
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Retrieval Flexibility

Model Divergence Retrieval
generalizes the Query and Document
Likelihood models, and is the most
flexible of the three.

Any language model can be used for
the query or document. They don't
have to be the same. It can help to
smooth or normalize them differently.

If you pick the maximum likelihnood
model for the query, this is equivalent
to the query likelihood model.

i 1
Pick p(w|q) |7,‘q m
Dxr(p(wlq)|[p(wl|d)) ZP (w|q) log p(w|d)

Equivalence to Query Likelihood Model



Example: Model Divergence Retrieval

We make the tollowing model choices:
Let gf, := count(word w in query log)

* p(wlg) is Dirichlet-smoothed with a P
background of words used in p(wlg, p = 2) = —2 >, dh
historical queries. al + 2

tfa + 2,000 X P

+ p(wld) is Dirichlet-smoothed with a p(wld, p =2000) = ————= =550

bac <grou nd of words used In DKL( (w|q)Hp(w|d Zp w|q logp(w\d)
documents from the corpus.

g + 2 X <L a4+ 2,000 x <
. %, qf, = 500,000 a2y e 2,000 g

d| + 2,000
> ¢fw = 1,000,000,000

Ranking by (negative) KL-Divergence provides a very flexible and theoretically-sound retrieval system.



Example: Model Divergence Retrieval

g + 2 x L tf.q + 2,000 X Z%

S0
LI
2 q| + 2 "5 Td[ 1 2,000

Wikipedia: WWI ’

World War | (WWI or WW1 or World War Query “world war one”
One), also known as the First World War or e
the Great War, was a global war centred in - qf ct P(W|CI) P(W|d) Score

Europe that began on 28 July 1914 and
lasted until 11 November 1918. More than

.........................................................................................................................................................................................................

9 million combatants and 7 million civilians war | 2,000 35,000 - 0.202 0_003 _1 700
died as a result of the war, a casualty rate S e
exacerbated by the belligerents’ one | 6,000 5E+07 0.205 0.049 -0.893

technological and industrial sophistication,
and tactical stalemate. It was one of the -4.484




Example: Model Divergence Retrieval

g + 2 x L tf.a + 2,000 x <

Z afw Z Cfw
w 1 w
223 ad+2 % ldl+2 000
Wikipedia: Taiping Rebelllo _ Query “worl d war one”
The Taiping Rebellion was a massive civil 5
war in southern China from 1850 to 1864, qf o p(wlq) p(wld) Score

against the ruling Manchu Qing dynasty. It

was a millenarian movement led by Hong
Xiuguan, who announced that he had

received visions, in which he learned thathe | 7

was the younger brother of Jesus. At least 20 one 6.000 5E+O7 0.205 0 049 5—0.890
million people died. mainly civilians. in one of |

world | 2,500 90 OOO 0.202 8 /9E-05 | —2.723

.....................................................................................................................................................................................................................

..................................................................................................................................................................................




Modeling Language

Although the bag of words model works very well for text classitication, it is intuitively

unsatisfying — it assumes the words in a document are independent, given the relevance
label, and nobody believes this.

What could we replace it with?

* A "bag of paragraphs” wouldn't work — too many paragraphs are unigue Iin the
collection, so we can't do meaningful statistics without subdividing them.

* A "bag of sentences” is better, but not much — many sentences are unigue, and two
documents expressing the same thought are unlikely to choose exactly the same
sentence. We need similar documents to have similar features.

o We'll use sets of words, called n-grams, and consider sets of different sizes to balance
between good probability estimates (for small n) and semantic nuance (for large n).



_pblwd] = { vaie gel= B

Probability Estimation/>» waic

Maximum likelihood probability Query: “world war one”
estimates assign zero probability to 0.05
T . 0.05
terms missing from the training data. 0038
This is catastrophic for a Naive Bayes 0025 (0.03
retrieval model: any document that 0.013
doesn’t contain all query terms will get , 0.00
a matching score of zero. P(world | D)~ P(war|D)  P(one | D)

Query Likelihood Model

Many other probabilistic models have o
similar problems. Only truly impossible P(D|Q) = H P(w|D)
events should have zero probability. weQ

= 0.03-0.05-0



Smoothing

The solution is to adjust our probability estimates by taking some probability away from the
most-likely events, and moving it to the less-likely events.

Maximum Likelihood Estimate Smoothed Estimate
0.05 0.05
0.05 0.0495
0.038 0.038
0.025 0.03 £|> 0.025 —0.0295
0.013 0.013
, 0.00 , 0.0010
P(world | D) P(war|D) P(one|D) P(world | D) P(war|D) P(one|D)

This makes the probabillity distribution less spiky, or “smoother.” The probabilities all move
just a little toward the mean.



Smoothing

Smoothing is important for many reasons.

* Assigning zero probability to possible events Is Incorrect.

 Maximum likelihood estimates from your data don't generalize pertectly
to new data, so a Bayesian update from some kind of prior works better.

However, uniform smoothing doesn’t work very well for language
modeling. Next, we'll see why that Is, and how we can do better.

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to
information retrieval.



. aplace Smoothing

Laplace Smoothing, aka “add-one
smoothing,” smooths maximum likelihood
estimates by adding one count to each

event.
P(e) count(e) + 1
e J—
ZeEevents (count(e) + 1)
tfw d + 1
P(w|d) = —
M =1

This Is equivalen

' to a Bayesian posterior

with a uniform pri

or, as we'll see.

Pierre-Simon Laplace (1745-1827)

Image from Wikipedia



Deriving Laplace Smoothing

If we assume nothing about a 4
document’s vocabulary distribution, P(r|a) is Dirichlet(nay, ..., ay) oc | | nf™
we will use unitform probabilities for all i=1
ferms.

.
P(d|r) is Multinomial(m) o H n;ﬁ’d
When we observe the terms In a i—=1

document, the Bayesian update of %
these probabilities yields Laplace P(w|d) o< P(d|m)P(r|a) = H nfﬁ’”“"_l
smoothing. i=1

IS Dirichlet(n\al -+ lffljd, ce. Ay T lffV’d)

This Bayesian posterior is our .
smoothed estimate of the vocabulary [ P(w|d)|a = 1] = .4 +
distribution for the document’s topic. d|+V




Add-a Smoothing

Laplace smoothing can be
generalized from add-one smoothing

to add-a smoothing, for a € (0, 1].

This lets you tune the amount of
smoothing you want to use: smaller

values of o are closer to the maximum
lIkelihood estimate.

P(e) =

P(w|d) =

count(e) + a

Zeéevents (count(e) T a)
tfw,d + a

d| +a|V



Limits of Uniform Smoothing

Uniform smoothing assigns the same probabillity to all unseen words,
which isn't realistic. This is easiest to see for n-gram models:

P(house|the, white) > P(effortless|the, white)

We strongly believe that “house” is more likely to follow “the white”
than “effortless” is, even if neither trigram appears in our training data.

Our bigram counts should help: "white house” probably appears more
often than “white effortless.” We can use bigram probabilities as a
background distribution to help smooth our trigram probabilities.



Jelinek-Mercer Smoothing

One way to combine foreground and backgro

Jund distributions Is to take their

inear combination. This is the simplest form o

- Jelinek-Mercer smoothing.

p(e) = Apg(e) + (1 — A)pyyle), 0 < A < 1

For instance, you can smooth n-grams with (n-1)-gram probabillities.

IA)(Wn|W1, e Wn—l) — )Lp(wn\wl, Ce e Wn—l) -+ (1 — A)p(wn|w2, Ce Wn—l)

You can also smooth document estimates with corpus-wide estimates.

tfw,d
d|

p(wld) = A

- (1—A)

fy
D S




Relationship to Laplace Smoothing

Most smoothing technigues amount to
finding a particular value for A in p(w|d)
Jelinek-Mercer smoothing.

For iInstance, add-one smoothing Is
Jelinek-Mercer smoothing with a
uniform background distribution and a
particular value of A.

4|
d| + |V
tfwd 1
41— )=
d| V]
( |d| tfw,d |
dl +|V|) |d
#w,d 1
dl+ V| |d] + V]
tfw,d‘|‘1

(\d\ M\V\)

1

V]



Relationship to TF-IDF

TF-IDF i1s also closely related to log P(q|d) = Zlog( ‘7‘[2“1 - (1 - )Tf:‘)

Jelinek-Mercer smoothing. e g p p
— Z lo ( |W|d - (1 — )ﬁ) + Z log(l—)x)|—;|v

If you smooth the query likelihood wEaila>0 . wEa:t.a=0

model with a corpus-wide backgrouna C Y e (A et 4 (1 fa ) S gt A %

probability, the resulting scoring Va0 1= = id

function is proportional to TF and S g A g

inversely proportional to DF, om0\ (L =A)f



Dirichlet Smoothing

Dirichlet Smoothing is the same as
Jelinek-Mercer smoothing, picking A
based on document length and a
parameter y — an estimate of the
average doc length.

H

A=1
d| + p

The scoring function to the right is the
Bayesian posterior using a Dirichlet
prior with parameters:

(s )
S

>
d| + p
tfw, dT W ch;wcfw




Example: Dirichlet Smoothing

Query: “president lincoln”

s wcfw
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- log plald) =3 _log — ==
cf 160,000 =y H
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- . 15+2,000 x (160. 000/10°)
tf 25 -8 1,800 + 2,000
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 25 + 2,000 x (2,400/10%)
Cf 2,400 +log 1.800 + 2. 000
- | 800 —log(15.32/3, 800) + log(25.005/3, 800)
____________________________________________________________________________________________________________________________________________________________________________________________ — _ 551+ —5.02
5 10 — —10.53
u 2 000




Effect of Dirichlet Smoothing

Dirichlet Smoothing is a good choice for
many IR tasks.

As with all smoothing techniques, it never
assigns zero probabillity to a term.

t Is a Bayesian posterior which consic

ers

now the document differs from the cor

't normalizes by document length, so
estimates from short documents and long
documents are comparable.

't runs quickly, comparec

exotic smoothing technic

OUS.

{0 many more

ues.

ML Score Smoothed
Score
15 25 -3.937 -10.53
15 1 -5.334 -13.75
15 0 N/A -19.05
1 29 -5.113 -12.99
0 25 N/A -14.4




Witten-Bell Smoothing

Dirichlet Smoothing is the same as
Jelinek-Mercer smoothing, picking A
based on

d

* doc length |d| \ — TE v

* doc vocabulary |V| (number of
unique terms in document)




An n-gramis an ordered set of n

conti

a Sir

9
9

Uous words, usually found within

e sentence. Special cases are n

=1 (unigrams), n= 2 (bigrams), and n =
3 (trigrams).

Skip-grams are more “relaxed” — they
can appear in any order, and need not
be adjacent. They are an unordered
set of n words that appear within a

fixed window of k words.

N-grams and Skip-grams

Sentence
The quick brown tox jumped over the lazy dog.

Trigrams (n = 3)
the quick brown

quick brown fox
brown fox jumped

Skip-grams (n =3, k =5)
quick brown fox
fox jJumped quick
lazy dog jumped



Markov Chains

We typically construct a generative

model of n-grams using Markov chains

— what is the probability distribution over Sentence
the next word in the n-gram, given the n The quick brown fox jumped over the lazy dog.

- 1 words we’ve seen so far?

P(w,|wi, wo, ..., w,.
b Y Trigram Sentence Probability

nis assumes that words are (the|$, $) - P(quick|$, the) - P(brown|the, quick)
independent, given the relevance label . P(fox|quick, brown) - P(jumped|brown, fox)

and the preceding n - 1 words. - P(overlfox, jumped) - P(the|jumped, over)
- P(lazy|over, the) - P(dog|the, lazy)

T T

We use a special token, like $, for words
“‘before” the beginning of the sentence.




Number of n-grams in a Corpus

How many n-grams do we expect to see, as a

function of the vocabulary size v and n-gram Web 1T 5-gram Corpus
size n”
1,400M 1.31E+09

e At first glance, you'd expect to see 1.18E+09

(V) = O(v") 1,050M 9.77E+08

n
 However, most possible n-grams will never
S /00M

appear (like “correct horse battery

staple?”), and n-grams are limited by

typical sentence lengths. 350N 3 1EEL08
 As n increases, the number of distinct

observed n-grams peaks around n = 4 and on SEE+07

then decreases. n=1 n=2 n=3 n=4 n=>5

Total tokens: 1,024,908,267,229
Vocabulary size: 13,588,391



Choosing n-gram Size

The best n-gram size to use depends on a variance-bias tradeoft:

« Smaller values of n have more training data: infrequent n-grams will
appear more often, reducing the variance of your probability estimates.

o [Larger values of n take more context into account: they have more
semantic information, reducing the bias of your probability estimates.

The best n-gram size is the largest value your data will support. Common
choices are n = 3 for millions of words, or n = 2 for smaller corpora.




Wrapping Up

Using n-grams and skip-grams allows us to include some linguistic
context in our retrieval models. This helps disambiguate word senses

and improve retrieval performance.

Larger values of n are beneficial, if you have the data to support them.
The number of n-grams does not grow exponentially in n, so the index

Size can be manageable.

Next, we'll see how to use an n-gram language model for retrieval.
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what IS a retrieval model?

e Model is an idealization or abstraction of an actual process

e Mathematical models are used to study the properties of the
process, draw conclusions, make predictions

e Conclusions derived from a model depend on whether the
model is a good approximation of the actual situation

e Statistical models represent repetitive processes, make
predictions about frequencies of interesting events

e Retrieval models can describe the computational

process

- e.g. how documents are ranked
— Note that how documents or indexes are stored is implementation

e Retrieval models can attempt to describe the human
process

- e.g. the information need, interaction
— Few do so meaningfully

e Retrieval models have an explicit or implicit definition of
relevance




retrieval models

e boolean

e vector space

e |atent semnatic indexing
today | e statistical language

e inference network

e hyperlink based
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probabilities

e sample space
e e probability
e independent events
e cond. probability
e Bayes theorem
e distributions

All of
Statistics

A Concise Course
in Statistical

Inference

Larry Wasserman




iInformation theory,

coding ELEMENTS (OF

e entropy
e joint entropy

e cond. entropy

e relative entropy

e convexity, Jensen ineq.
e optimal coding

e Fano’s ineq.

THOMAS M. (OVER
JOY A, THOMAS

Wiley Series in Telecommunications
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hat IS a language model

e Probability distribution over strings of text
- how likely is a given string (observation) in a given “language”
- for example, consider probability for the following four strings

pl = P("a quick brown dog”)
p2 = P(“dog quick a brown”)
p3 = P(“bbicTpas brown dog”)
p4 = P(“bbicTpas cobaka’)

- English: pl > p2 > p3 > p4

e ... depends on what “language” we are modeling
- In most of IR, assume that pl == p2




lang modeling for IR

e Every document in a collection defines a “language”

- consider all possible sentences (strings) that author could have
written down when creating some given document

- some are perhaps more likely to occur than others

U

e subject to topic, writing style, language ...
- P(s|MD) = probability that author would write down string “s”

e think of writing a billion variations of a document

"

and counting how many time we get s

e Now suppose “Q” is the user’s query
- what is the probability that author would write down “q” ?

e Rank documents D in the collection by P(Q|MD)

- probability of observing “Q” during random sampling from the
language model of document D

10

10



language models

I o estimate probabilities of certain "events”
in the text

e based on these probabilities, use
likelihood as similari \geners s ¢ !
NO&L‘ dagl wike awn

° Ianguaige model based onm@mmw

words? W &f @0%¥9
- phrases?

11
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0 statistical text generation

Zero-order approximation. (The symbols are mdependent and |
equiprobable.) ?(\eum) = pban L
ol

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

. First-order approximation. (The symbols are mdependent Fre-
quency of letters matches English text.) *?( ’7,_ &,\S(A@LA f

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI %
28 pro

ALHENHTTPA OOBTTVA NAH BRL
. Second-order approximation. (The frequency of pairs of letters
matches English text.) wg( Iy ) — “S%(’\ fy,g
Qy IE ANTSOUTINYS éJRE T QCTORE ST BE S DEAMY

ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

. Third-order approximation. (The frequency of triplets of letters

matches English text.) \7@% (t\(\{fI) = Stme @S W eudsh
IN NO IST LAT WHEY CRATICT FROURE BERS GROCID

PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE 12

12




. FOUrth-0Tuc: wppr vmviivavesice = aae --wq=20CY Of quadruplets of let-

ters matches English text. Each letter depends on the previous
three letters. This sentence is from Lucky’s book, Silicon Dreams

[183]) P A eT!) = vk

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTHE MERG.
(INSTATES CONS ERATION. NEVER ANY OF PUBLE AND TO
THEORY. EVENTIAL CALLEGAND TO ELAST BENERATED IN
WITH PIES AS IS WITH THE)

Instead of continuing with the letter models, we jump to word
models.

. First-order word model. (The words are chosen independently but

with frequencies as in English.) ?(Ms) - %N,_;Q-
REPRESENTING AND SPEEDILY IS ANI@APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO
OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.

. Second-order word model. (The word transition probabilities

match English text.) Pt et o) = et
THE HEAD AND( IN !FRONTAL ATTACK{ON AN ENGLISH

WRITER THAT THE CTER OF\THIS POINT IS
THEREFORE R METHOD) FOR THE LETTERS THAT THE

TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED

Z) \)’b\fd{ WQW& 9L HA@XLS
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LM choices

e \What kind of language model should

we use?

- Unigram or higher-order models?
- Multinomial or multiple-Bernoulli?

e HoOw can we estimate model

parameters?
- Basic models
- Translation models
- Aspect models
- non-parametric models

e How can we use the model for
ranking?

- Query-likelihood

- Document-likelihood

- Likelihood Ratio

- Divergence of query and document models

14
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unigram LM

e words are sampled independently, with
replacement
e order of the words is lost (no phrases)

query
> e0ee

P(ecee)= P(e)P(o)P(e) P(e)
= 4I9*2l9*419*31l59

15
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higher-order LM

e Unigram model assumes word independence
- cannot capture surface form: P(*brown dog”) == P(“dog
brown”)

e Higher-order models
- n-gram: condition on preceding words ‘
- cache: condition on a window (cache) q
XX X

- grammar: condition on parse tree

e Are they useful?
- no improvements from n-gram, grammar-based models
- some research on cache-like models (proximity, passages, etc.)
- parameter estimation is prohibitively expensive

16
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multinomial similarity

e Predominant model

e e Fundamental event:
what is the identity of the i'th query token?

e observation is a sequence of events, one for
each query token

> N T

k
P(q,...q, | M)=]]P(q, | M)
i=1

18




ultiple-Bernoulli similarity

e Original model

e e fundamental event: does the word w occur in the query?

e observation is a vector of binary events, one for each
possible word

-

P(q,...q, | M) = HP<w|M> H[l P(w| M)]

WE( .. WE(q) ..

ue
9ON@®

19
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score, ranking in LM

eWwhat is the probability to generate the given
query, given a language model7?

eWhat is the probability to generate the given
document, given a language model?

ehoOw ""close” are 2 statistical models?

20
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score: query likelihood

e Standard approach: query-likelihood

- estimate a language model MD for every document D in the
collection

- rank docs by the probability of “generating” the query

k
P(q,...q, MD):HP(Qi M)
i=1

- no notion of relevance in the model: everything is random sampling

- user feedback / query expansion not part of the model
—exacljmlpll/el%of relevant documents cannot help us improve the language
mode

- does not directly allow weighted or structured queries

21
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jiscore: document likelihood

e Flip the direction of the query-likelihood approach
- estimate a language model MQ for the query Q
- rank docs D by the likelihood of being a random sample from MQ
- MQ expected to “predict” a typical relevant document

e Problems:
- different doc lengths, probabilities not comparable
- favors documents that contain frequent (low content) words

P(DIMQ):HP(WIMQ)

weD

22
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score: likelihood ratio

e Try to fix document likelihood:
- Bayes’ likelihood that M, was the source, given that we
observed D
- related to Probability Ranking Principle: P(D|R) / P (D|N)
- allows relevance feedback, query expansion, etc.
- can benefit from complex estimation of the query model MQ

P )P(D M, CLLPOIM)

we D

PM o[ D)= P(D) " T] P(w|GE)

weD

23
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score: model comparison

e Combine advantages of two ranking methods
— estimate a model of both the query MQ and the document MD
— directly compare similarity of the two models
— natural measure of similarity is cross-entro

H(MQHMD):_ZP(W’MQ)IOgP(W|MD)

— number of bits we would need to “encode” MQ using MD
— equivalent to Kullback-Leibler divergence
— equivalent to query-likelihood if MQ is simply counts of words in Q

e Cross-entropy is not symmetric: use H (MQ || MD)
— reverse works consistently worse, favors different document
— use reverse if ranking multiple queries w.r.t. one document

W
I VAL D)
wd = %a&clﬁg /w%%%cD—vZTH 'J, b

24




Models of Text Generation

0

P(M | Searcher) P(Query| M)

@ Query Model
@ Doc Model

P(M | Writer) P(Doc| M)

25
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Retrieval with Language Models

0

Retrieval: Query likelihood (1)
Document likelihood (2)
Model comparison (3)

26
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LM: popular choices

Use Unigram models
- no consistent benefit from using higher order models

- estir)nation is much more complex (e.g. bi-gram from a 3-word
query

Use Multinomial models

- well-studied, consistent with other fields that use LMs
- extend multiple-Bernoulli model to non-binary events?

Use Model Comparison for ranking
- allows feedback, expansion, etc. through estimation of MQ and MD
- use KL(MQ || MD) for ranking multiple documents against a query

Estimation of MQ and MD is a crucial step

- very significant impact on performance (more than other choices)
- key to cross-language, cross-media and other applications

27
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0

Translation model (Berger
and Lafferty)

. Basic LMs do not address issues of synonymy.

- Or any deviation in expression of information need
from language of documents

e A translation model lets you generate query

words not in document via “translation” to

synonyms etc.
- Or to do cross-language IR, or multimedia IR

PGIM) =TS o POIMOT (g, | v)

Basic LM Translation

- Need to learn a translation model (using a dictionary or
via statistical machine translation)

28
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\M(icb) SAWQ Pydbleun
M’lﬁ? estlm tlong Jit s |

e Want to estimate MQ and/or MD from Q and/or D

e (GGeneral problem:

- given a string of text S (= Q or D), estimate its language model MS
- S is commonly assumed to be an i.i.d. random sample from MS
e Independent and identically distributed

e Basic Language Models

- maximume-likelihood estimator and the zero frequency problem
- discounting, interpolation techniques
- Bayesian estimation

30

30




maximum likelihood

Pri(WIMs) = #Ww,S) /|S]

e count relative frequencies of words in S
e maximume-likelihood property:

— assigns highest possible likelihood to the observation
e unbiased estimator:

— if we repeat estimation an infinite number of times with

different starting points S, we will get correct probabilities (on
average)

— this is not very useful...

~
w

Il
— — —
~— T
W W

el

U U0 VU
cecee
Tl

o O
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)\ |zero-frequency) problem
\ e Suppose some event not in our observation S

— Model will assign zero probability to that event
— And to any set of events involving the unseen event

e Happens very frequently with language

e It is incorrect to infer zero probabilities
— especially when creating a model from short samples

r--

2
) eCce0C0000

|
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Dis ot —Stmosthr

Laplace smoothing
&Evcéx e VWU&M (urefn \\AJC@%J_Q K,ﬁi@&

e count events in observed data (= INS LQFLQLQ
MH& H+T=n

e add 1 to every count Posels fac

e renormalize to obtain probabilities, . .

®

It corresponds to uniform priors QH*\ ™
) daeds oS N+2 ‘2]

e if event countsare (@@ @) with Y, m; =
N then

max lielihood estimates are (3*, %2,.
laplace estimates are (m1+1 metl mffﬂ)

k’ N+k’ all
Losic esbiwales = Manl k&ﬁlwa! Lek(l?b% WJ@ 7
Wi Wy M ML oo T
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0 discounting meth
S il (2D N e

e Laplace smoothing © “'° N

N+

e Lindstone correction
— add € to all count,

renormalize '

e absolute discounting

— substract € , redistribute
probab mass

(Y S SEEVIE S 3 b tg
Wy Wy WA I
N N X Lw/—w\@ INHe ) ke

e Luagpeet Lt (9, 71

(1 +€) / (3+5¢)
(1+€) / (3+5¢)
(1+ €) / (3+5¢)
(
(

0 +¢)/ (3+5¢)
0 +€)/ (3+5¢)




Z\M\/\ 7%&0\:\9 O [orun. NS

\

) dlscountlng methods

/lf | /\/
e Held-out estimation 7 b‘D\'J (%’o O‘”"\) =) ehuaks -

- Divide data into training and held-out sections \QQ%C/
- In training data, count Nr, the number of words occurring r times

- In held-out data, count Tr, the number of times those words occur
- r* = Tr/Nr is adjusted count (equals r if training matches held-out)
- Use r*/N as estimate for words that occur r times

e Deleted estimation (cross-validation)

- Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)

- Estimate for words that occur r tlmes is average of each

e Good-Turing estimation
- From previous, P(w|M) = r* / N if word w occurs r times in sample

- IndGood—Turing, steal total probability mass from next most frequent
Wor

- Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

TPM(r+1) = Nppg - P(wr M) = TPM(r+1)/N;
Nr—|—1 T‘—|—1
Ny N
35
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. pdlscouiug
(i‘nterpolatiorj:\ methods

\C/;?%‘

e Problem with all discounting methods:
- discounting treats unseen words equally (add or subtract €)
! - some words are more frequent than others

e |dea: use background probabilities

- “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)

- reflects expected frequency of events

AD((EQ‘ ol

bagkground probability

' €/§fr<\/'w\\f« @f\wv\bujc,

ML estimate

sala Qw Co\(w?w
%‘ waﬂ CWC's
&i_ %Qi e M)

un Qoc
inal estimate = ) ' -+ (I_K)
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Jelinek Mercer smoothing

v

e Correctly setting A is very important

e Start simple
- set A to be a constant, independent of document, query

e Tune to optimize retrieval performance
— optimal value of A varies with different databases, query
sets, etc.

x.+(1—x)'

37
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Dirichlet smoothing

e Problem with Jelinek-Mercer:
- longer documents provide better estimates
— could get by with less smoothing

e Make smoothing depend on sample size

e N is length of sample = document length
e U is a constant

N/ (N + p) .+ u/(N+u)g

) (1-2)

38
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0 Witten-Bell smoothing

e A step further:
- condition smoothing on “redundancy” of the example
- long, redundant example requires little smoothing
- short, sparse example requires a lot of smoothing

e Derived by considering the proportion of new events
as we walk through example

- N is total number of events = document length

- V is number of uniqgue events = number of unique terms in doc

N/(N+V).+ V/<N+V>'

(1-4)
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0 interpolation vs back-off

e Two possible approaches to smoothing

Interpolation:

- Adjust probabilities for all events, both seen and
unseen

Back-off:

- Adjust probabilities only for unseen events
- Leave non-zero probabilities as they are

- Rescale everything to sum to one: rescales “seen”
probabilities by a constant

Interpolation tends to work better
- And has a cleaner probabilistic interpretation

40
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Two-stage smoothing

Query ="the algorithms for data  mining"

dl: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

41
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Two-stage smoothing

Query ="the algorithms for data  mining"

dl: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

p( “algorithms”|d1) = p(*“algorithm”|d2)
p( “data”|dl) < p(“data”|d2)
p( “mining”|d1) < p(*“mining”|d2)

But p(q|d1)>p(q|d2)!
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Two-stage smoothing

Query ="the algorithms for data  mining"

dl: 0.04 0.001 0.02 0.002 0.003
d2: 0.02 0.001 0.01 0.003 0.004

p( “algorithms”|d1) = p(*“algorithm”|d2)
p( “data”|dl) < p(“data”|d2)
p( “mining”|d1) < p(*“mining”|d2)

But p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.

41
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Two-stage smoothing

c(w,d)

P(w|d) =

42
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Two-stage smoothing

Stage-1

-Explain unseen words
-Dirichlet prior(Bayesian)

1

>

e

W

o

P(w|d) =

c(w,d) +up(w|C)

dl  +u
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Two-stage smoothing

Stage-1 Stage-2

-Explain unseen words  -Explain noise in query
-Dirichlet prior(Bayesian) -2-component mixture

W “ A |
L|_L > \&-
L
Pwid) = (1-) — D FUWIE) oy
dl  +u
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QLI\/I are generative techniques

e How do we determine if a given model is a LM?

e LM is generative
- at some level, a language model can be used to generate text
- explicitly computes probability of observing a string of text

- EXx: probability of observing a query string from a document model
probability of observing an answer from a question model

- model an entire population

e Discriminative approaches
- model just the decision boundary

- EX: is this document relevant?
does it belong to class X or Y

“..

O O “‘ O O : .' 8‘¢
O“,‘o ° o OH .
O O “‘ . ‘ O o... ?:

- have a lot of advantages,
- but these are not generative approaches
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LM: summary

Goal: estimate a model M from a sample text S

Use maximum-likelihood estimator
- count the number of times each word occurs in S, divide by length

Smoothing to avoid zero frequencies
- discounting methods: add or subtract a constant, redistribute mass
- better: interpolate with background probability of a word
- smoothing has a role similar to IDF in classical models

Smoothing parameters very important
- Dirichlet works well for short queries (need to tune the parameter)
- Jelinek-Mercer works well for longer queries (also needs tuning)
- Lots of other ideas being worked on

44
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Language models: pro & con

V,

R Novel way of looking at the problem of text
retrieval based on probabilistic language
modeling

e Conceptually simple and explanatory
e FOormal mathematical model

e Natural use of collection statistics, not heuristics
(almost:--+)

o LMs provide effective retrieval and can be
iImproved to the extent that the following
conditions can be met

e Our language models are accurate representations
of the data.

e Users have some sense of term distribution.

45
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Comparison With Vector Space

V,

e There’s some relation to traditional tf.idf
models:
- (unscaled) term frequency is directly in model

- the probabilities do length normalization of term
frequencies

- the effect of doing a mixture with overall collection
frequencies is a little like idf: terms rare in the general
collection but common in some documents will have a
greater influence on the ranking
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Comparison With Vector Space

V,

e Similar in some ways
- Term weights based on frequency
- Terms often used as if they were independent
- Inverse document/collection frequency used
- Some form of length normalization useful

e Different in others

- Based on probability rather than similarity
e Intuitions are probabilistic rather than geometric

- Details of use of document length and term, document,
and collection frequency differ
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