
Context: Satisfiability [easy]. If this/similar appears as regular HW,
it is not required. A boolean formula is satisfiable if there exists some variable
assignment that makes the formula evaluate to true. Namely, a boolean formula is
satisfiable if there is some row of the truth table that comes out true. Determining
whether an arbitrary boolean formula is satisfiable is called the Satisfiability Problem.
There is no known efficient solution to this problem, in fact, an efficient solution would
earn you a million dollar prize. While this is hard problem in computer science, not
all instances of the problem are hard, in fact, determining satisfiability for some types
of boolean formulae is easy.

i. First, let’s consider why this would be hard. If you knew nothing about a given
boolean formula other than that it had n variables, how large is the truth table
you would need to construct? Please indicate the number of columns and rows
as a function of n

ii. Now consider the following 100 variable formula.

x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ x4) ∧ . . . ∧ (¬x99 ∨ x100)

Without constructing a truth table, how many satisfying assignments does this
formula have, explain your answer.

iii Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses.
3-DNF means that the formula is in disjunctive normal form and each clause
has three literals. (A literal is the instantiation of the variable in the formula,
so for x, ¬x or x.) An example might be something like:

(¬x1∧x3∧x10)∨(¬x3∧x15∧¬x84)∨(x17∧¬x37∧x48)∨ . . .∨(¬x87∧¬x95∧x100)

What is the largest size truth table needed to solve this problem. What is the
maximum number of such truth tables needed to determine satisfiabilty.

1



part B: 2CNF-SAT [required]. The 2CNF-SAT instance is a boolean CNF
formula with 2 variables in each clause, ”OR” inside clauses, ”AND” between clauses.
There are m boolean variables x1, x2, ..., xm) and n clauses C1, C2, ..., Cn). Every
variable and its negation appears in at least one clause. Such formula is given as
input in format redundantly :
- for each variable there is a list of clauses containing it
- for each clause there there are 2 variables
For example the formula (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) will be
given as:
m = 3, n = 4
x1 : C1

¬x1 : C3

x2 : C2

¬x2 : C1, C4

x3 : C2, C3

¬x3 : C4

C1 : x1,¬x2

C2 : x2, x2

C3 : ¬x1, x3

C4 : ¬x2,¬x3

Your task is to design a strategy that determines, for a given formula, the boolean
assignments for the variables such that all clauses are satisfied, thus the formula is
true (if more such assignments are possible, you only need to output one). If no such
assignment is possible, output ”FALSE”.

As established inpart A, there are 2m possible assignments for the variable set.
So if one were to build the truth table and ”brute force” search all rows/assignments
until one works, it would take exponential time — not good! Instead: do trial and
error, but in a smart way that only tries at most 2 ∗m2 boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with
bullets and English statements. You can write in your procedure statements like
* x = x1

* foreach C containing variable x {
- - - -
}
* C= next clause, or C = next clause containing x

* loop C through all clauses that contain x or ¬x

* for each x ∈ C {
- - - -
}
* y = the other variable in clause C, other than x or ¬x

2



part C) optional, no credit [very hard] Can you adapt your strategy from
part B to work on 3SAT-CNF formula, where each clause has exactly 3 variables?
Why or why not? How many trial assignments of the variables your program has to
make to determine the satisfiable assignment?

Example 3SAT formula
(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x1)
m = 4, n = 4
x1 : C1

¬x1 : C3, C4

x2 : C2

¬x2 : C1, C4

x3 : C1, C2, C3

¬x3 : C4

x4 : C2

¬x4 : C3

C1 : x1,¬x2, x3

C2 : x2, x3, x4

C3 : ¬x1, x3,¬x4

C4 : ¬x2,¬x3,¬x1

3


